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Abstract. The Clausius-Clapeyron equation has been derived for the coherent 
transition between phases with different elastic moduli. Expressions for the 
phase elastic moduli have been obtained for one-dimensional polymorphism, 
i.e., when phase structures differ in atomic layer stacking. The results are 
applied to the sphalerite-wurtzite transition. 

The thermodynamics of nonhydrostatically stressed systems and their relevance 
to the theory of metamorphism present a wide range of problems (Paterson 
1973; Robin 1974; Ostapenko 1977) including coherent polymorph transition 
under nonhydrostatic stresses. Phases with equal elastic moduli were considered 
by Coe and Paterson (1969). The present paper will assess the influence of 
nonhydrostatic stresses on the phase coherent transition where elastic moduli 
differ. More specifically, we consider the 'one-dimensional' polymorphism where 
the structure of each of the phases is obtained by packing the crystal layers of 
the compound in an appropriate way (Verma and Krishna 1966). 

The coherent transition of first order produces a heterophase layered state, in 
which the elastic moduli are determined by the phase composition of the 
sample. Thus our primary aim is to see how the mode of packing an arbitrary 
mixed-layer modification affects the elastic moduli. For this, we have to isolate 
the largest structural units (blocks) - layers available in the compound, with 
which any type of layer modification can be constructed. For example, for the 
mixed-layer sphalerite-wurtzite modifications such blocks consist of the tetra- 
hedron layers. For the micas, they are double silicon-oxygen layers, the upper 
part being displaced in relation to the lower by a third of the period in the layer 
plane. This arrangement results in a monoclinic rather than hexagonal sym- 
metry for the simplest modification of the 1M mica, with a lattice period 
transverse to the layer plane at each structural block. For the sphalerite-wurtzite 
system, the cubic modification 3 C is the simplest, i.e., sphalerite. Our aim is to 
calculate the elastic moduli for more complex modifications in a compound 
using the elastic moduli for the simplest modification. Considering ionic with 
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substantial covalent participation compounds we should not forget that the 
elastic properties are largely determined by rigid, directed short-range valence 
bonds rather than by long-range Coulomb forces with a radius of interaction 
greater than the thickness of the layer. Direct microscopic calculation for 
sphalerite (Martin 1970) which made allowance for both short-range bonds and 
long-range Coulomb forces showed that the latter contributed only a few per 
cent. Therefore, the elastic moduli of mixed-layer modifications can be calculat- 
ed from elastic moduli of the simplest modification in terms of the macroscopic 
elasticity theory where only short  range forces are considered (Landau and 
Lifshits 1965). 

The validity of this approach was confirmed in earlier (Geilikman 1979) 
microscopic calculations of the elastic moduli for the sphalerite-wurtzite po- 
lytypes. There was full agreement between the results calculated on the basis of 
the elasticity theory and those obtained with accurate microscopic calculations. 
In other words, calculating elastic moduli becomes a matter of estimating the 
effective moduli of a sample 'put together' from layers with a similar structure 
and a different orientation. Thus in micas, each successive layer can be rotated 
by 0 °, 60 °, 120 °, and 180 ° relative to the preceding layer (Bragg and Claringbull 
1965). The elastic moduli of a composite layered sample were considered earlier 
(Lifshits and Rozentsveig 1946). However, a more compact form would seem 
more desirable for our purpose. We shall proceed from Hook's law for any given 
layer: 

%(0 = c,j~o,(1),~..(1) (1) 

where i, j, k, re=x, y, z; aij(1) is the stress tensor, ekm(l ) is the strain tensor and 
cijkm(l ) is the tensor of the elastic moduli for the simplest modification in the 
coordinate axes rotating about the z axis perpendicular to the plane of layers 
through an angle which corresponds to the orientation of a given layer. The 
index 1 indicates the number of each crystal layer. The relation between the 
tensors of elastic moduli of differently oriented layers can be calculated using the 
matrix for the rotation of the coordinate system round z axis. The matrix has 
the form 

I co! q0, sin cp~ 0 
R~j SoCP, cos~0~0 01' (2) 

where qo~ is the rotation angle of the / th  layer; the elastic moduli tensor for this 
layer becomes 

cijk,.(1) o =Rip ejq Rk, R,~ t Cpqsr (3) 

Here C°qs, is the tensor of the elastic moduli for the starting orientation to 
which the (p~ angle is referred. 

The overall coherence of the crystal is a critical requirement under which no 
layer can 'glide' in relation to another. This is a compatibility condition (Kr6ner 
1958; Roitburd 1974) according to which the strain tensor must have the form 
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el j(1 ) = ½(rn~ p j(1) + mj pi(1)) + @i j )  (4) 

where the average sign ( . . . )  denotes averaging over the sample in the direction 
of the z axis, 

l 

where )~ is the specific content of the layers of a given orientation in the sample. 
The vector m~ is the unit vector of the normal to the layer plane, i.e., mz = 1, the 
other components being zero. The vector p~(1) is obtained from the mechanical 
equilibrium condition 

m i ~ij(l) = m i ( a i j )  . (6) 

Here (a~j)  is the macroscopic external stress tensor determined by the nonhy- 
drostatic external load. Omitting intermediate calculations, the scheme goes like 
this: having found the vector p~(l) from the equilibrium condition (6), the strain 
tensor (4) is substituted into (1), and the two sides are averaged according to (5) 
to produce Hook's law for the whole sample: 

(%)= cij~,. ( ~ )  (7) 

where Cijk~ is the required elastic moduli tensor for the layered modification 
obtained from 

Cijk, . = < Cijkm(1) > -- < Cij,z(l ) t,q(1) C qzkm(1) > 

÷ (Cij,z(1) t ,q(l))  ( t q p ( l ) ) - i  (tps(l) Cszk~(l) > (8) 

where tij(1 ) = c~)  z. With this expression the elastic moduli for layered modifi- 
cation can be found for virtually any type of symmetry. For example, the elastic 
moduli for the mica polytypes 20, 2M, 3T, and 6H can be calculated using the 
elastic moduli for 1M polytype. Before we consider the sphalerite-wurtzite 
transition, it is essential to derive certain general thermodynamic relations for 
the transition of phases with different elastic moduli. 

The chemical potential of the stressed system (per unit volume) is 

0 1 
# ~--. #0  __ Eij Gij - -  2 Sijkm a i j  akin,  (9) 

where #0 is the chemical potential of the system in the absence of external stress, 
e ° is the inherent deformation and Sijkm is the tensor of compliance coeffi- 
cients calculated for a particular tensor of elastic moduli (Nye 1957). 

Let us consider a heterophase state arising during the coherent ~ - f l  phase 
transition. Here the chemical potential for a free state contains three items: 

#o = 2~#~ + (1 -- 2~)#~ + Eoo a (10) 

#~ and #p are chemical potentials for the individual phases, 2~ is the specific 
content of the e-phase layers in the sample, and Eco h is the elastic energy of the 
coherent conjugation produced by the difference in the phase inherent strains. 
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The fi-phase inherent strain value is taken as a reference point for all other 
inherent strains so that 

e°=)~uij (11) 

where ui~ is the a-phase inherent strain. 
For the case where the heterophase state is a phase equilibrium, the 

following condition 

~#/02~ = 0 (12) 

must be observed for the chemical potential (9). It will be noted that for the 
phases with different elastic moduli the tensor of compliance coefficients will 
depend on the phase composition of the sample. 

Substituting (10) and (11) into the expression for the chemical potential (9) 
and using the phase equilibrium condition (12) yields 

- -  63Ec°h U O" 1 t~ Sijk,,, ~ - # ~ . - t - ~ - -  ij i,i-~ 32~ aiYkm=O" (13) 

From this we readily find the Clausius-Clapeyron equation 

(S~-S~)dT--- ( u , j + ~ a k , ~ )  da,j (14) 

where S o and S~ are phase entropies. Equation (14) differs from preceeding 
equations (Paterson 1973; Ostapenko 1977) by a second term in the righ-hand 
side which stems from the difference in the phase elastic moduli. 

Let us take the sphalerite-wurtzite transition as an example. Here structural 
layers formed by the tetrahedra can only be right or twin oriented. For 
convenience, we introduce nz= + 1 where 'plus' is for right, and 'minus' for the 
twin orientation. These notations correspond to H~igg's definition describing 
polytype structures (Verma and Krishna 1966). If the layer packing is such that 
nz= 1 for each layer pure sphalerite is formed, in which the trigonal axis normal 
to the layer plane coincides with the cubic [111] direction. The elastic moduli 
for the polytype modifications sphalerite-wurtzite were calculated earlier (Gei- 
likman 1979). It is not difficult to see that the general expression (8) obtained in 
this paper leads to the same results, so we can move straight to the expressions 
for the compliance coefficients in the Clausius-Clapeyron Eq. (14). The s14 and 
s44 coefficients appear to depend on the mode of stacking and are thus different 
for wurtzite and sphalerite: 

sl~.= -nc4jclcl~l; s~4=c~ + 2n2/c, (15) 

where C44[C44(C1I--C12)--2C24]/C24. C~, u are the sphalerite elastic moduli 
in the trigonal arrangement (2, # = 1, 2, ..., 6 according to Voigt's notation), and 
the x axis is perpendicular to the vertical plane of the mirror reflection. The 
structural parameter n is the average value nt, calculated from (5), i.e., 
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l l = L  

n=~l_~tn,,  (16) 

where L is the number of layers in the crystal. For the wurtzite (fl-phase) n = 0, 
and for sphalerite n = + 1, depending on a right or a twin crystal orientation. 

The strain of the phase transformation u~a in (11) depends generally on two 
factors one of which is the change in the crystal volume during transition. Using 
the numerical evidence for the constant lattices (Sternberg 1977) gives us: 

UXx = Uyy "~ 10 -- 3 

u ~ - 3 , 2 . 1 0  -4. (17) 

The tensor of this strain is diagonal owing to the threefold symmetry axis in the 
crystal and persists during the transition so that this strain works only against 
Gxx , ~yy, and o-z~ stresses. 

Apart from the strain which results from volume jumps there may be a 
'packing' deformation as a result of the repacking involved in sphalerite- 
wurtzite transition. So far, no comprehensible theory has been suggested to 
explain the mechanism and kinetics of the sphalerite-wurtzite or any other fcc- 
hcp transitions. However, structural considerations suggest that sphalerite can 
be converted to wurtzite (and vice versa) simply by displacing every second layer 
along the y axis by a/1/3, where a is the lattice constant in the layer plane. 
Though this strain does not affect the crystal volume, it does change its form. 
However, owing to the threefold symmetry axis, there are three and not one 
equivalent displacement directions in the layer plane which form an angle of 
120 ° . The crystal will retain its macroscopic form if the number of shears along 
each of these three directions are the same and if they are evenly distributed 
across the crystal (along the z axis). 

The repacking deformation is a so called deformation with an invariant 
plane and so it does not produce incompatibility during the phase coherent 
conjugation. The elastic energy of the coherent conjugation results from the 
strain itself (17). In an earlier paper (Roitburd 1974) the elastic energy of the 
conjugation was calculated for the phases with equal elastic moduli. In our 
example the whole problem has to be solved over again, using the elastic moduli 
from a previous paper (Geilikman 1979). This is, however, no real problem, and 
we will give the final result 

E~oh = (¢11 + ¢12 - c2~3/c33) u~x X~(1 -,;o~,) (18) 

where 2~ is the part of sphaterite, and 1 - 2~ is the part of wurtzite in the sample. 
So (9), (10), and (15) yield the chemical potential for the nonhydrostatic stress 
field of the sphalerite-wurtzite coherent conjugation 

# = E o  + Ecoh + 2~,#~,(T)+(1-2~) #~(T)-2~,uij~rij 

--1C{ n C44 [o-yz(axx_O-y,)+2axra~zj_n2(o-~z (19) 
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Here, E o is the part of the elastic energy of external stresses which does not 
depend on the phase composition of the sample, the last term being the 
difference between the phase compliance coefficients according to (15). Assum- 
ing a minimal chemical potential and knowing ]nj = 1 for sphalerite, we will find 
that sphalerite must be right oriented if the term in brackets of (19) is negative, 
and twin-oriented (n = - 1) if it is positive. There is a simple relation between the 
sphalerite specific content and the structural parameter 

;~ = J nr (2o) 

because of n = 0  for wurtzite. Consequently, for the transition between the 
phases with different elastic moduli, nonhydrostatic stresses alter the phase 
equilibrium temperature, and more than that, they determine the orientation of the 
formed phase. 

Let us consider the case where only shear stresses ax~ and ~yz act upon the 
sample. Here the dominant term for the transformation strain in Clausius- 
Clapeyron Eq. (14) will become naught because the tensor ui~ is diagonal (17) so 
that the second term formed by the difference between the phase elastic moduli 
becomes dominant. Introducing the shear load 2 2 1/2 cr = (o-xz + O-y~) and using 
formulae (13), (14), and (19) yield 

d T _  42~ 

da cAS 
- -  a ,  ( 2 1 )  

where AS=S~-S  B. For the latent heat of the sphalerite-wurtzite transition of 
13.4 kJ/mol (Landolt-B6rnstein 1961), the elastic moduli from a previous paper 
(Geilikman 1979), the coefficient in (21) will be 4~cA S~  0.3 deg/kbar 2. 

The major inference from (21) is that the phase composition dependence of 
the elastic moduli may result in a quadratic rather than a linear load de- 
pendence of the phase equilibrium temperature. Notably, even for equal elastic 
but with nonuniform state of new phase (for example, polysynthetic twins), the 
tensor of the elastic moduli (8) will depend, as a result of anisotropy, on the 
orientation ratio of phases. 

Consequently, the phase equilibrium Eqs. (13) and (14) show that the 
coherent transition between the non-hydrostatically stressed phases has certain 
characteristic features resulting from the difference in the phase elastic moduli. 
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