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Abstract. A systematic theoretical deduction of polytype 
structures of mica that can result by the spiral growth mech- 
anism operating in faulted 1-~/, 2M~ and 3T basic matrices 
is reported. As a prerequisite, all possible intrinsic and ex- 
trinsic stacking fault configurations in each of the basic 
matrices have been worked out and their stacking fault ener- 
gy (SFE) estimated. The deduction of polytype structures 
on the basis of the "faulted-matrix model" takes into 
account (i) the introduction of each of the low energy fault 
configurations in the exposed ledge of the screw disloca- 
tions, (ii) the change in the layer-position of the fault within 
the exposed ledge and 0ii) the variation of the strength 
of the generating screw dislocation. At each stage, the spi- 
rally-grown polytypes are deduced for each basic structure. 
The most probable structures are predicted on the basis 
of the lowest SFE for the same strength of the screw disloca- 
tion and are then compared with the polytype structm'es 
reported in the literature. It was found that the faulted 
matrix model accounts successfully for the origin of all the 
polytype structures in mica. Furthermore, it may provide 
a basis for limiting the number of trial structures for deter- 
mining the structures of long period polytypes. 

Introduction 

Polytypism in micas has received considerable attention 
during the last thirty years. The greatest part of this re- 
search has been devoted to the structural aspect of mica 
polytypism i.e., to the study of a structural control (Guven 
1971) on the layer-stacking sequences connected with spe- 
cific distortions in the structure of single layers. This 
concept has been developed by crystallographers on the 
basis of the refinement of over 30 structures of mica deter- 
mined by X-ray, neutron and electron diffraction (for 
reviews see e.g. Bailey t980; Baronnet 1980). 

A considerable amount of experimental effort has also 
been directed towards the investigation of the phase aspect 
of  mica polytypism. Owing to the specific distortions, al- 
though faint, of single layers involved in the common short- 
period stacking sequences (referred to by earlier workers 
as polymorphs), it has been believed that each of these 
could be stable phases within a given field of the PR2o- T 
diagram, for a fixed chemical composition of the system. 
The ultimate goal of such a hypothesis was to use mica 
"polymorphs" as indicators of the intensive thermodynam- 

ic conditions prevailing during the genesis of mica-bearing 
rocks. Unfortunately, annealing experiments (Takeuchi and 
Haga 1971) on mica monocrystals to observe solid state 
structural transformations have failed to substantiate this 
hypothesis. On the basis of their experiments on the synthe- 
sis of mica, some workers (Yoder and Eugster 1954, 1955; 
Yoder 1959; Velde 1965a) have reported the following 
structural transformations as arising through crystallization 
from hydrothermal solution: 1 Mrn(120)-~ 1M and 2M1 
1M for phlogopite, IMrn(120) --+ I M ~  2M1 and 3T-~ 2M~ 
for muscovite 1. These are very sluggish and are promoted 
by increasing temperature. From the monotropic character 
of these transformations and the tendency finally to attain 
a single form, the nature of which differs from species to 
species, it has been inferred that (i) there exists a unique 
stable stacking mode for a given mica viz. J M for phlogo- 
pite and 2Mx for muscovite; (ii) the other modifications 
are metastable under steady state/equilibrium conditions 
and occur during mica synthesis because of growth kinetics 
effects like varying composition and/or supersaturation. 
Thus the 1Mrn(120)-~ IM--,2M~ conversion sequence of 
muscovite observed at constant temperature should corre- 
spond to growth conditions under decreasing supersatura- 
tion (Baronnet 1980). 

The growth aspect of mica polytypism was first envis- 
aged by Amelinckx (1952) and Amelinckx and Dekeyser 
(1953) who postulated that a dislocation-free initial platelet 
of mica could develop only the disordered 1Mr structure 
and that ordered stacking sequences could originate only 
by the activity of growth spirals. Smith and Yoder (1956) 
suggested the possibility of structural control between the 
layers which would depend on the environmental conditions 
during the nucleation and layer by layer growth of the crys- 
tals. Depending on the strength of this structural control, 
the initial platelet folaned during the nucleation and layer 
by layer growth period could adopt a perfectly ordered, 
more or less faulted or even completely disordered stacking 
sequence. It was suggested that the subsequent spiral 

IMrn(120) refers to a disordered sequence of the mica involving 
stacking of successive layers with n x 120 ° rotation between them, 
with n randomly chosen as 0, 1 or 2 along the sequence. In 
the one-layer monoclinic tM structure, all single layers are 
stacked parallel to each other, whereas in the three-layer trigonaI 
3T structure, they are stacked with a constant +120 ° rotation 
angle between consecutive layers, tn the two-layer monoclinic 
structure 2M1, + 120 ° and -120 ° rotation angles alternate regu- 
larly along the sequence. 
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growth should play no role in the ordering of perfectly 
ordered mica "polymorphs" but only allow their growth 
under low supersaturation conditions. Screw dislocations 
could occasionally generate complex stacking sequences 
provided the initial platelet contained some growth faults. 
Smith and Yoder's proposal of "pre-ordering" during layer 
by layer growth has been supported by recent transmission 
electron microscopy (TEM) examination of the (001) face 
microtopography of synthetic mica crystallites, including 
OH-phlogopite (Baronnet 1972), OH-muscovite (Baronnet 
et al. 1976), paragonite and end members of the lepidolite 
group (Baronnet 1976). The pre-ordering in the initial plate- 
let has been inferred from the step pattern of early first 
growth spirals on the micas, the exposed ledge structures 
of which often show a fully ordered sub-structure. In addi- 
tion to the realization of Smith and Yoder's expectations, 
it was observed that growth spirals are also able to create 
new stacking sequences on a perfectly ordered parent plate- 
let, if the pitch of the screw dislocation is a non-integral 
multiple of the repeat period of the parent matrix in accor- 
dance with Frank's (1951 a) screw dislocation theory of po- 
lytypism. 

A systematic theoretical deduction of all possible com- 
plex polytypes that could result from screw dislocations 
of non-integral Burgers vectors created in perfect 2M1, 
2M2, 20  and 3T parent matrices has been carried out by 
Baronnet (1975). He has shown that of the seventeen com- 
plex polytypes known at that time, only seven could result 
from single screw dislocations operating in perfect parent 
matrices (perfect-matrix model). It was tentatively sug- 
gested that the growth of the remaining polytype structures 
should involve the occurrence of stacking faults or the co- 
alescence of various basic structures within the exposed 
ledge of the generating screw dislocation. The present paper 
reports a systematic study of the influence of the stacking 
faults, present near the surface of the parent matrix at the 
time of the creation of the screw dislocation step, on the 
spiral growth of polytype structures in mica in accordance 
with the faulted matrix-model developed by Pandey and 
Krishna (1975 a, b) for close-packed structures. 

To describe the stacking sequences of mica layers, we 
shall use the conventional notations evolved by Ross et al. 
(1966) and by Zvyagin (1962) as detailed in the Appendix. 

A preliminary report on the application of the faulted- 
matrix model to the genesis of mica polytypes has been 
published elsewhere (Baronnet et al. 1981). 

The Faulted Matrix Model 

A faulted matrix model for the spiral growth of polytype 
structures has recently been developed by Pandey and 
Krishna (1975a-d, 1976) to explain the origin of polytype 
structures in such materials as SiC, CdI2 and PbI 2. The 
model considers the possibility that the parent matrix, 
formed during the nucleation and the layer by layer growth 
period, may be faulted and may contain low energy stacking 
faults near its surface at the time of the creation of the 
screw dislocation step. These faults may become incorpo- 
rated into the structure of the screw dislocation step, which 
will then generate a polytype structure, even if it has an 
integral Burgers vector. The application of the faulted 
matrix model to a systematic deduction of polytype struc- 
tures in mica can be achieved in the following steps: 

(i) Postulate the different "basic structures" which are 

expected to be formed during the nucleation and the layer 
by layer growth; 

(ii) Work out all possibly intrinsic and extrinsic stacking 
faults that are geometrically possible in each basic struc- 
ture; 

(iii) Estimate the stacking fault energy (SFE) of the var- 
ious intrinsic and extrinsic fault configurations to determine 
the most probable fault configurations; 

(iv) Deduce all possible polytype structures that can 
result from the winding of the screw dislocation step con- 
taining most probable fault configurations at different layer 
positions in the step; 

(v) Estimate the SFE of the polytype structures so de- 
rived to predict the most probable series of polytype struc- 
tures that can result from screw dislocations of equal 
strengths created in the same basic matrix containing the 
lowest energy fault configurations; 

(vi) Compare the most probable series of structures pre- 
dicted theoretically with those actually observed in micas. 

The Basic Structures of Micas 

The short period structures formed during nucleation and 
the layer by layer growth period will be considered as"  basic 
structures" or "basic matrices" for the generation of com- 
plex polytype structures. As pointed out earlier, the basic 
structures may correspond either to a genuine thermody- 
namically stable phase (polymorphic phase) or a metastable 
phase formed because of growth-kinetic effects. It is be- 
lieved that the basic structures for a given species of mica 
should actually correspond to the statistically most frequent 
short period structures in the natural as well as synthetic 
micas. Table 1 gives the relative frequency of occurrence 
of the various short period and the disordered IMrn(120) 
structures for various species of synthetic and natural micas. 
It is evident from the table that 1M, 2 M  1 and 3T are the 
most common short period structures and will therefore 
be considered as "basic structures" for the generation of 
complex polytypes. This is justified in view of the fact that 
most of the complex polytype structures of mica contain 
one or more structure units of 1M, 2 M  1 and 3T in their 
unit cells as evident from the last column of Table 1. Of 
the three other short period structures viz. 2M2, 20  and 
6H, originally envisaged by Smith and Yoder to result dur- 
ing the pre-ordering period, 6H has never been found while 
2M 2 is known to occur in lepidolites and 20  has been ob- 
served only very rarely. Also no complex polytype structure 
is known to be based on any of these three short period 
structures. We shall therefore not consider 2M2, 20  and 
6H, as basic structures. In addition, the disordered 
1Mrn(120) structure cannot be retained in the deduction 
of polytype structures on the basis of the faulted matrix 
model since it is meaningless to introduce a stacking fault 
in it. 

Stacking Faults in the Basic Structures of Mica 

We shall extend the concept of intrinsic and extrinsic faults, 
first introduced by Frank (1951 b) for close-packed struc- 
tures, to classify the different possible fault configurations 
in the basic structures of mica. In the intrinsic type fault 
the perfect sequence of stacking vectors (Smith and Yoder 
1956) extends right upto the fault plane whereas in the 
case of extrinsic faults the fault plane does not belong to 
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Table 1. Basic structures and polytypes in natural and synthetic micas 

Species Basic structures Polytypes 

Natural Synthetic Natural Synthetic 

Phlogopite IM>2Mx,  3T, IMrn(120) °) 1M, 1Mrn(120) °) 

Siderophyllite 1 M, 2Ma (ii! 1 M (in) 

Biotites 1 M  > 2 M  1 > 3 T (~' v. xxix) 1 M  > > 2M1 (iv, vi, vii) 

Zinnwaldites 1 M >  2M1, 3T (ii' xxix) 1M "m 

Lepidolites 1 M, 2M 2 > 3 T> > 2M 1 (ix, xi, xxix) 

Clintonite 1M, 2M1 (v) 

Muscovite 2Mx> >3T, 1M, 1Mrn(120) (xiii'~xlx) 

IM, 2Mx, 2M2 ?(~ili) 

1M, 1Mrn (120) (~ii) 

2MI,  1M, 1Mrn (120) (xiii, xiv) 

Phengite 2M 1, 3 T> 1M (~ -xx) > > 2M 2 (xxxiii) 2M1, 1M(xxi, xxli) 

Paragoni te  2M1 (xxiii) 2M~, 1Mrn(120) (~  . . . . .  ) = 

Margarite 2MI (~) 2M, 1Mrn (120) (~vi, xx,ii) _ 

3 Tc [022] (iv), 
9 Tc [(0722] 0i) 

4Tc[(0)222), 
8 r c  [ ( 0 ) 6 2 2 ) ,  

14Te[(0)1222] 

23 Tc[(0)z~22], 
8 Tc[(22)322], 
4M[2220] 

8M[(222)z22], 
11M[(222) 322], 
8 Tc[(0)7221, 
10 Tc [(2) 522200] (i~) 

9 Tc[(0)72~], 
5M[22222), 
14M[222)422] (ii) 

3M[11~](~x~i) 

4Tc[0132]( x~x)* 

r 

3Tc[02~],  
5 Tc [0 (22)2 ] (~vim 

3 Tc [022] (~xxli) 

3 Tc [022] (~ii)  

(i) Yoder and Eugster 1954, (ii)Rieder 1970, (~i~)Rieder 1971, Ov)Ross et al. 1966, (v)Deer et al. 1965, e,i)Wones 1963, ¢vu)Hewitt and 
Wones 1975, (~"~)Munoz 1968, 0x)Foster 1960, (~) Levinson 1953, (xi)Cerny et al. 1970, (xi~)Olesch 1975, (xli~)Yoder and Eugster 1955, 
¢~v) Velde 1965a, (xv) Ernst 1963, (~v~) Beugnies et al. 1969, (~i) Fiorentini Potenza and Morelli 1968, (x~ii) Blasi and Blasi de Pol 1973, 
(~ix) Dunoyer de Segonzac and Hickel 1972, (~x) Velde 1970, (x~i) Crowley and Roy 1964, (~i~) Velde 1965b, (~u) Harder 1956, (~iv) Eugster 
and Yoder 1954, (~x~) Chatterjee 1970, (x~) Velde 1971, (~i~) Chatterjee 1971, (x~,-~ii) Baronnet et al. 1976, (~ )  Koval' et al. 1975, (x~) Takeda 
1967, (m~) Bailey and Christie 1978, (~il) Baronnet 1980, (~xi~i) Zhoukhlistov et al. 1973 

* Synthetic Li-fluorphlogopite 
(Modified from Baronnet 1980) 

Table 2. List of possible fault configurations in IM[0] structure and their stacking faul t  energy (SFE) 

S.No. Fault Zvyagin symbol RTW symbol SFE 

2. 12o 

3. I3o 
4. E~ i 

5. E~O 2 

6. E~ 3 

. . .  c c c c  :: BBB~.. .  

. . . C C C C  :: A A A A . . .  

. . .  c c c c  :: e02~?... 

. . . c c c c  ::~ i c c c c . . .  

. . . C C C C  :: A :: C C C C . . .  

. . . c c c c  ::c :: c c c c . . .  

• (0)pl (0)q . . .  ~bl (1) + 2~b 2 

• (0) ,2(0)q . . .  ~1 (2) + 2~2 

• (0),3 ( % . . .  ~1 (3) + 2 ~2 

• (0)p] 1 (0)q. . .  2 ~b 1 (1) + 3 ~b2 

• (0)p22 (0)q. . .  2 ¢1 (2) + 3 ~b2 

• (0),33 (0)q. . .  2~b 1 (3) + 3 ~b 2 

Note: Dotted vertical line indicates the fault plane with respect to the perfect stacking sequence on 
its left hand side 

the perfect stacking sequence on either side of  it. The meth- 
od used here for deducing the possible fault  configurat ions 
is based on the method  suggested by Pandey and Kr ishna  
(1975 d, 1976) for close-packed structures. We  shall use the 
s tandard  Zvyagin no ta t ion  for deducing the fault  configura- 
tions and the Ross -Takeda-Wones  (RTW) symbols for pro-  
viding a compact  no ta t ion  to represent them (cf. also Ap-  

pendix). I t  it found that  the fault configurations in the basic 
structures of  mica can be completely specified by symbols 
like I q ..... or E q ..... where I and E stand for intrinsic and 

P P .  
ex tr ins ic  respectwely, qrs .. .  for the R T W  symbols not  
forming a par t  of  the regular R T W  sequence and p for 
the R T W  symbol  just  preceding the first faulted R T W  

qrs... symbol  (q). I t  is easy to see that  fault  configurations Ip 



12 
0 

i 1 
0 

3 ~i  0 i02 I0 2 2 

tt 

E T1 E 2 f  
0 0 

E33 
0 

Fig. 1. Irreducible types of intrinsic and extrinsic fault configura- 
tions in the tM basic matrix 

glrs q r s  q r s  . .  and E " are enant iomorphous  with I~- - -  and E~- - - ,  re- . P . . . P . P 

spectlvely. Most  of  the intrinsic fault configuraUons corre- 
spond to twin configurations in the conventional sense. 

Possible Fault Configurations in the 1M[O] Structure 

The IM[0] structure can be written as . . .CCC. . .  in the 
Zvyagin notation. During the layer by layer growth of a 
crystal with the . . .CCCC.. .  stacking sequence, a fresh 
1M[0] sequence can start in five different ways correspond- 
ing to the five different orientations which the first faulted 
layer can adopt.  These are, . . .AAAA .... A A A A  .... 
BBBB. . . ,  .../Y/~BB ... and . . .CCCC .... This leads to five 
possible intrinsic fault configurations. Of  these, t~ and ~ 
are enant iomorphous  with lo 1 and Foo respectively leaving 
only three unique intrinsic fault configurations in the 1M 
[0] structure as depicted in Fig. 1. The intrinsic faults in 
IM[0] actually correspond to twin configurations. These 
are listed in Table 2 in Zvyagin, R T W  and Ivq ..... notations. 
I 2 and 15 were considered by Smith and Yoder  (1956) as 
common  twinning modes in natural  1M micas. The extrinsic 
fault configurations were deduced by inserting A, A, B, 
/? and C type layers in the . . . C C C C . . .  sequence. This 
provides us only three unique extrinsic fault configurations 
in the 1M[0] structure which are also listed in Table 2 and 
represented by their stacking vectors in Fig. 1. 

Possible Fault Configurations 
in the 2Mi[22  ] Structure 

In the 2M1 [22] or ...A/YA/~ ... structure, an intrinsic fault 
configuration can commence at any of  the two layer posi- 
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Fig. 2. Irreducible types of intrinsic and extrinsic fault configura- 
tions in the 2M 1 basic matrix 

tions in the two-layer monoclinic unit cell. I f  the intrinsic 
fault commences after B type layer, then the first faulted 
layer can be A, B, B, C or C. Corresponding to each of  
these five possibilities, there are two different ways in which 
the subsequent 2M 1 sequence may  follow. This provides 
ten possible intrinsic fault con_fi_gurations that  can occur 
after the /~ type layer in the AB unit cell. Similarly one 
can obtain another  ten fault configurations after A type 
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Table 3. List of possible fault configurations in 2M, [22] structure and their stacking fault  energy (SFE) 

S.No. Fault Zvyagin symbol RTW symbol SFE 
type 

2. ~22 2 

3 q 

4. 112 2 

5. 

6. Ii2 2 

7. I~ 

8. I~ 2 

9. 

10, I~ 2 

11, E2 *a~ 

12, Ei2 i2 

13. E 222 

14. E2312 

• .A/td/~ :: B A B A . . .  

. . ~ M ~  i ~ c ~ d . . .  
• .ABd.B i A C A C . . .  

• .A/~A/~ :: A B A B . . .  

• d B d 9  :: C B C K . .  

• ABA/~ :: C A C A . . .  

:: 

• 

• . A B A B  ! B A B A  ..  

• . f i ~ d B  i BCBC. . .  

. . d M a  ::A :: d da... 

:: c :: 

i c ! 
. . . .  . . _ _ _ _  

• . A B A B  i B ! A B A B . . .  

...(22)vO(22)q... 

. . .  (22)p02 (22)q.. 

. . .  (22)pl (2.2)q... 

. . .  (22)p 12 (22)~.. 

. . .  (22)j  (22)~... 

. . .  (22)v12 (22)~.. 

. . .  (22)v2 (22)~... 

. . .  (22)p22 (22)q.. 

. . .  (22)v3 (22)~... 

. . .  (22)p32 (22)q.. 

. . .  (22)v 132 (22)q. 

. . .  (22)vii2(~2)~. 

. . .  (22)~222(22)~. 

. . .  (22)vB12(22)q. 

~b, (0) + 2~b2 

~bt (0) +2~b2 

~b~ (1) + 2~b2 

~ , 0 ) + 2 ~  

~b, (1) +2~b2 

~ ( ~ ) + 2 ~ , ~  

o ~ , + ~  

Oq~l q- 2~2 

~b, (3) + 2{b2 

~bl (3) +2~b2 

~b, (1) +~b, (3)+ 3{b2 

2{b1(1) + 3{be 

O~bl q-3{b 2 

~bt (1) + ~b~ (3) + 3 ~b2 

Note.  • Dotted vertical line indicates the fault plane with respect to the perfect stacking sequence on 
its left hand site 

Table 4. List of possible fault configurations in the 3 T[222] structure and their stacking fault energy 

S.No. Fault Zvyagin symbol RTW symbol SFE 
type 

2. 

3. I1, 

4. ~ 

5. # 

6. I¢, 

7. I~ 

8. I~ 

9. I~ 

10. I~ 

11. E¢ 1 

12. E~ ~ 

13. E~ 3 

14. E~ r 

• . A B C A B C !  C A B C A B . . .  

. . A B C A B C  ~ C B A C B A . .  

. .  A B C A B C  :: /~Cd/~(~,,4.. 

. . A B C A B C  i B A C B A C . .  

• A B C A B C i A B C A B C . .  

• A B C A B C  i A C B A C B . .  

• A B C A B C  :: B C A B C A . .  

• A B C A B C  :: B A C B A C . .  

. A B C A B C  i C f l B C f l B . .  

• A B C A B C  i (JBf i (~Bf i . . .  

• A B C A B C  i B : : A B C A B C . . .  

. A B C A B C  :: B I A B C A B C . . .  

• A B C A B C : : A  : : A B C A B C . . .  

. A B C A B C  i e I A B C A B C . . .  

(222)p0 (222)q ~b ~ (0) + 2 ~b z 

(222)pl (222)q ~b~ (1) + 2q~ 2 

(222)p1 (222)q ~b~ (1) -t-2 ~2 

(222)pl (222)q ~bt (1) + 2 ~b 2 

( 2 2 2 ) j  (222)q ~b ~ (1) + 2 ~b z 

(222)v2(222)q 0 ~b~ + 2 ~b 2 

(222); (2.22)q 0 {1~1 -}- {~2 

(222)v3 (222)q qi 1 (3) + 2~b2 

(222)p3 (222)q ~b 1 (3) + 2 ~b2 

(222)pl 1 (222)q 2~b~ (1) + 3 ~b= 

(222)p2~. (222)q 0 ~b 1 + 2 ~b 2 

(222)p13 (222)q ~b~ (1) + ~b~ (3) + 3 ~b 2 

(222)p31 (222)q ~b~ (1) + ~b t (3) + 3 ~b 2 

Note•" Dotted vertical line indicates the fault plane with respect to the perfect stacking sequence on 
its left hand side 

layer. By drawing the linked stacking vectors for all these 
fault configurations, it can be shown that  the intrinsic fault 
configurations occurring after the B type layer are enantio- 
morphous  with those occuring after the A type layer• Thus 
we are left with only ten unique intrinsic fault configura- 
tions in the 2M1 structure. 

The extrinsic fault configurations were deduced by in- 
serting A ,  A ,  B ,  B,  C, C type layers after the /J layer in 

the d/? unit cell. It  is found that  the insertions of  A and 
/~ layers lead to two intrinsic fault configurations leaving 
only four possible extrinsic fault configurations in the 
2M 1 [22] structure. 

Table 3 lists the fourteen unique fault configurations 
in the 2M 1 structure in the Zvyagin, R T W  and the I q ..... 
notations• These are depicted in Fig. 2 by means of stacl{ing 
vectors. 



Possible Fault Configurations 
in the 3T[222] or 3T' [222] Structure 

The 3 T structure can be written in two ways : 

i) . . . A B C A B C  . . . .  [22213T 
ii) ...A C B A  CB . . . .  [222] 3T'  

I 0 i 0 
t t' 

[ I 
t 

1 I t, i T IT  
t t '  

<2 
I g i2 i 3 

t t '  t 

13 Ell 
t' t 

22 E 
t 

ET3 
t E 3T 

t 

Fig. 3, Irreducible types of intrinsic and extrinsic fault configura- 
tions in the 3T basic matrix 
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These structures are enantiomorphous and cannot be 
distinguished by X-ray methods unless they occur in the 
same crystal. Thus the fault configurations in [222] will 
be enantiomorphous with those in the [222] structure. We 
shall therefore deduce the possible fault configurations in 
the 3T[222] (ABC) structure only. In this structure, fault 
configurations occuring after A, B and C layers are identi- 
cal. If  the intrinsic fault commences after C type layer, 
then the first faulted layer can be A, B, B, C or C. Starting 
with each faulted layer, a fresh 3 T sequence can be written 
in two different ways: one corresponding to the sequence 
[222] and the other corresponding to the sequence [~22]. 
Both these possibilities need to be considered in deducing 
the possible intrinsic fault configurations. This provides ten 
unique intrinsic fault configurations in the 3 T structure. 

The extrinsic fault configurations were deduced by in- 
serting A, A, B, B, C, C type layers after the C type layer 
in the . . .ABC. . .  sequence. It is found that the insertion 
of A and C type layers leads to the two intrinsic fault config- 
urations deduced earlier. We are thus left with only four 
unique extrinsic fault configurations in the 3 T structure. 
Table 4 and Fig.3 lists and portrays respectively the four- 
teen unique intrinsic and extrinsic fault configurations in 
the 3 T structure. To use the P ..... notation in the 3 T struc- 
ture, it is essential to specify t~e RTW symbol just succeed- 
ing the faulted RTW symbol(s) since the sequences on either 
side of the fault plane may be either identical ( 3 T - 3  7) 
or different (3 T - 3  T'). Therefore, we shall use either t or 
t" as subscripts instead ofp  in the p,s notation to distinguish P 
the upper 3 T and 3 T'  sequences, respectively. This nomen- 
clature has been found to be more suitable than the one 
we used earlier (Baronnet et al. ]981). Accordingly, the dif- 
ferent intrinsic fault configurations listed in Table 4 have 
been represented as I~ ..... or Iq" .... 

The Most Probable Fault Configuration 

The probability of occurrence of the different fault configu- 
rations during the layer by layer growth of a basic structure 
will be determined by their relative stacking fault energies. 
Employing the notation used by Hirth and Lothe (1968) 
the energy of a stacking fault (SFE) can be expressed as: 

S F E = ~ r ,  ~, 

where 4, is the distortional energy per faulted pair of layers 
with n-layer separation and r, is the number of such faulted 
pairs. 

Unlike close-packed structures, 41 here may not always 
be zero and will be represented by ~b I (ax) where a~ corre- 
sponds to the RTW symbols of the faulted stacking angle. 
The RTW symbol corresponds to the stacking angle be- 
tween successive layers and therefore represents the rela- 
tionship between a pair of  mica unit layers with one-layer 
separation. I f  some of the RTW symbols in the fault config- 
uration do not belong to the symbols already present in 
the perfect basic structure, they would contribute 41 terms 
towards the total SFE. Thus 41 (0) in IM, 41 (2)= ~b I (2)= 0 
in 2M 1 and 3T. The non zero 4t(ax) terms are: 
4 t (1)=41( i ) ,  ~b1(2) = 41(2), ~b1(3 ) in I M  and ~bl(0 ), 
~b1(1) = 41(1 ), ~1(3) in 2M1 and 3T. 

To determine the terms in 42, we look at the stacking 
angles between layers n - 1 ,  n and n, n + 1. The permissible 
stacking angles between layers n - l ,  n and n, n + l  are: 
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Locotion of 
the four 

On the 
surface 

One layer below 

Two layers below 

Ns= 1 Ns=2 Ns= 3 ..... N s -~--~ 

I 
1 

I 

• •  Exposed ledge 

1 

bSP 

I 1 

[ 
Fig. 4. Schematic representation of the method of deduction of polytype structures by spiral growth on a faulted matrix. The exposed 
ledge of N~ layers contains a single stacking fault, shown by the striped layers. The layer-position of the fault in the exposed ledge 
depends on its location from the surface of the matrix. DSP represents the dislocation shear plane. 

0 and 0 respectively in 1M, 2 and 2 or 2 and 2 in 2M1 
and 2 and 2 or 2 and 2 in 3T implying ~b2(00)=0 for 1M, 
~b 2 (22) = ~b2 (22) = 0 for 2M1 and ~b z (22) = ~b 2 (22) = 0 for 3 T. 
Any deviation from the permissible stacking angles between 
layers n - 1 ,  n and n, n + 1 in the perfect structure would 
contribute a n o n - z e r o  ~2 term towards the total SFE. Since 
~b 2 will in general be much less than ~bl, we shall assume 
that  the different types of  faulted pairs of  layers with two- 
layer separat ion have almost  equal distortional energy. It  
should be noted that  %1 and ~2 have different values for 
different basic structures. 

Following the procedure discussed above, we have esti- 
mated  the SFE of different fault configurations in the 1M, 
2Ma and 3 T structures up to ~b z terms. These values are 
given in the last column of  Tables 2, 3 and 4. It is evident 
f rom the tables, that  the following fault configurations 
which are listed in order of  decreasing probabil i ty of  occur- 
rence or increasing SFE values, would be more  probable:  

1 M: I 2, E~g,[assuming that  %1 (2) < ~b 1 (1) or ~b 1 (3)1 

2 Mj  : I 2, i222, ~2L;7222 

I?, 
The SFE values of  all the fault configurations in the 1M 
structure contain one or more  ~,(a~) terms. In deciding 
the more  probable  fault configurations in this structure, 
we have therefore used the experimental observation (Ross 
et al. 1966) that  stacking angles of  + 120 ° are more  common  
than ___60 ° or 180 ° implying ~bl(2)<~bl(1) or ~b1(3 ). This 
holds since the (1 mod2) r*/3 stacking angles distort the 
coordinat ion polyhedra of  alkali ions in the actual mica 
structure. 

The Deduct ion  of  Po ly type  Structures 

We shall now deduce all possible series of  structures that  
can result by spiral growth round a single screw dislocation 

created in the 1M, 2M 1 and 3T basic matrices taking into 
account the possibility that  stacking faults present near the 
surface can affect the structure of  the exposed ledge. This 
is done by considering each of the more probable  fault 
configurations to lie at different distances f rom the surface 
of the basic matrix at the time of  the creation of  the screw 
dislocation ledge as illustrated in Fig. 4. The periodicity 
of  the resulting polytype structure will be determined by 
the number  N~ of single layers present in the exposed ledge 
of  the screw dislocation. N~ may take the following possible 
integral and non-integral values with respect to the repeat 
period of  the basic structure: 

1M :Ns=O mod 1 
2M1 : Ns = 0 m o d  2, and 1 rood 2 
3T : N , = 0 m o d 3 , 1 m o d 3 ,  a n d 2 m o d 3 .  

It  will be assumed that  the screw dislocation ledge contains 
a single more  probable  fault configuration. The possibility 

Table 5. Deduction of possible series of structures resulting from 
8-layered screw dislocation ledge containing a single J~ fault in 
the 2M1 matrix 

S.No. Structure of the ledge Resulting polytype 
(in Zvyagin's notation) (in RTW notation) 

1. B // B A B A B :: C (22)a(22) 

2. /7. /~ // /~ // B i C B (22)3 (22) 

3. /~ .4 a A a i e /~ e (22)2 (22)2 

4. A /~ a /~ :: 0 /Y C' B (22)2(22)2 

5. B A g l C  B C B C (22) (22)3 
6. k g : : ¢  B ¢ ~ e g (22) (22)3 

7. B IC B C B CBC (2J) 

Note." Dotted vertical line indicates the fault plane with respect 
to the perfect stacking sequence on its left hand side 



Table 6. Structure series resulting from screw dislocation ledges 
containing I 2 type fault in the 1M[0] structure 

Fault No. of Structure Stacking fault energy 
type layers in series 

the exposed 
ledge 

12 Ns=O mod 1 (0).2(0),. 2 2¢1(2)+4¢2 (n, m#0)  
241(2)+34z (n or m=0) 
241(2)+2¢2 (n=m=0)  

Table 7. Structure series resulting from screw dislocation ledges 
containing a single more probable fault in the 2 M 1 [22] structure 

Fault No. of layer Structure Stacking fault 
type in the exposed series energy 

ledge 

122 

E222 

N~=0 mod 2 (22).(22)~,, 041 +242 
(n, m#0) 

Ns = 1 mod 2 (22).(22.)m222 0¢1 + 3¢2 

(~2).(22)~ 0 41 (o) + 3 4~ 
(n, m#0) 

¢1(0)+242 
(n or m = 0) 

N,=0 mod 2 (22). (22)= 0¢i +2¢2 
(n, m#0) 

(~2).22 (22).,02 ¢ 1 (0) + 4 4z 

(22).22 (22) m22 0 41 + 4 ¢2 
(n # o) 

0¢1+242 
(n = 0) 

N~ = 1 mod 2 (22). (22),.222 0 41 + 3 ¢2 

N~=0 mod 2 (22)~22 0¢1 + 242 
(n :~ 0) 

(22).22 (22),.02 41 (0) + 4 ¢2 
(m=0, n# 0  or 
n=m=O) 

(n=0, m=0 or 
n, m#0) 

(22).22(22),~20 41 (0) + 5 42 
(n, m #0  or 
n:~0, m=0) 

¢i(0)+4¢2 
(n=0, m#0,  or 
n=m=0)  

N~- t mod 2 (~2).222 0 ¢1 + 3 42 

of  a ledge containing two or more fault configurations 
cannot be ruled out especially in the case of  screw disloca- 
tions o f  large Burgers vectors. Table 5 illustrates the method 
of  deducing possible polytype structures for the case of  
a ledge of  eight layers exposed in a 2M~ matrix containing 
a single I~ type fault near its surface. It is easy to see that 
the resulting structures belong to the structure series 
(22),(22)~ where n and m are any integers 0, 1, 2, 3, etc. 
In a similar way, the possible series of  structures that can 
result from screw dislocations of  different Burgers vectors 
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Table 8. Structure series resulting from screw dislocation ledges 
containing a single more probable fault in the 37[222] structure 

Fault No. of layers Structure Stacking fault 
type in the exposed series energy 

ledge 

12 N.=0 mod 3 (222). (222)m 0¢, +242 
(n, m#0) 

(222).2 (22.2)"20 ¢1 (0) + 3 ¢2 

iV, = l mod 3 (222).22(222),.22 0¢, + 2¢ 2 

(222). (222)"0 4, (0) + 3 ¢2 
(n, m # O) 

~(0)+2¢~ 
(n or m = 0) 

N~=2 mod 3 (222).2(222)m2 04+242 

(222).22 (222),.220 4)1 (0) + 3 42 

17 Ns=0 mod 3 (222).22(222)"0 41(0)+442 
(m # O) 

~1(o)+3~ 
(m = O) 

(222)..22 (222).~0 ¢1 (0) + 4 ¢2 
(n # o) 

~1 (0) ~- 3 ~2 
(n=0) 

(222).222(222)"220 ¢1 (0)+442 

N s = 1 rood 3 (222).222(222),.2 0¢1 +4¢2 
(m # O) 

0¢1+242 
(m=0) 

(222).22(222),.22 04i + 442 

(222).22 (222)"22. 0¢1 +442 
(n # 0) 

0¢1+2¢2 
(n=O) 

Ns=2 mod 3 (222).22 0¢1+242 

E~ ~ Ns = 0 mod 3 (222).22 (222),.0 41 (0) + 4 ¢2 
(m :~ 0) 

41(0)+342 
(m=0) 

(222).22 (222),.0 ¢i (0) + 4 42 
(n # 0) 

¢1(o)+342 
(n = 0) 

(222).222 (222),.220 ¢1 (0) + 442 

Ns= 1 mod 3 (222).0 4,(0)+2¢2 
(n # 0) 

Ns=2 rood 3 (222).0(222)~,0 2¢x(0)+442 
(n, m=~0) 

2¢1(0)+3¢2 
(n or m = 0) 

(222).220 (222),.20 2¢1 (0) + 4¢2 

(222).22 242 

created in faulted 1M[0], 2Ma[22] and 3T[222] matrices 
were worked out. Tables 6, 7 and 8 list the results obtained 
from such an analysis for the IM,  2M1 and 3T matrices 
respectively. 
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The Most  Probable Series of Structures 

According to Pandey and Krishna (1975d), the relative 
probability of occurrence of the different structure series 
will be governed by (i) the energy of the fault configuration 
present near the surface of the matrix at the time of the 
creation of the screw dislocation step, (ii) the energy of 
the screw dislocation responsible for the generation of the 
structure, and (iii) the stacking fault energy of the resulting 
polytype. In order to obtain the most probable series of  
structures, it is meaningful only to compare the SFE of 
the different structure series that can result from a screw 
dislocation of the same Burgers vector (same elastic energy 
stored by the dislocation) created in the same basic matrix 
containing the most probable (i.e., the lowest energy) fault 
configuration. To do this we have estimated the SFE of 
the different series of structures listed in Tables 6, 7 and 
8 up to the ~b 2 terms. The method used for SFE estimates 
of polytype structures is similar to that described for iso- 
lated fault configurations except for the fact that layers 
within one unit cell only are considered. The SFE values, 
so estimated, are given in the last columns of Tables 6, 
7 and 8. It should be noted that the SFE values of the 
different structures are usually either equal to, or greater 
than, the SFE of the corresponding isolated faults. This 
last case is due to the creation of additional stacking faults 
by the piling up of one unit cell over the other during the 
spiral growth. 

Table 9 lists the most probable series of structures for 
different basic structures predicted on the basis of the 
faulted matrix model. 

Table 9. The most probable series of structures resulting from theo- 
retical screw dislocation ledges containing a single lowest energy 
fault configuration 

No. of layers Fault Structure Known 
in the exposed type series polytypes 
ledge 

N~ = 0 mod 1 1o 2 (0),2 (0)m 

N. = 0 mod 2 12 (22). (22)= 

N~ = 1 mod 2 12 (22).(22),.222 

N~=0 mod 3 /t 2 (222),(222),, 

N~ = 1 mod 3 I~ (222),22(22~)~22 

N~ = 2 mod 3 I~ (222).2 (222),.2 

3Tc, 4Tc2, 8Tcz, 
9Tc, 14Tc, 23Tc 

8Tcl 

5M 

5M, 8M, 
11M, 14M 

Table 10. List of mica polytypes with known structures 

S.No. Polytypes 

Ramsdell RTW notation Zvyagin 
notation notation 

1. 

2. 

3. 

4. 

5. 

Discussion of Results 6. 
7. We shall now compare the observed polytype structures 

with the most probable series of structures predicted theo- 8. 
retically on the basis of the faulted matrix model. Table 10 9. 
lists the eighteen complex polytype structures that have 10. 
been reported so far in the literature. A comparison of 
Tables 9 and 10"shows that of the eighteen known polytype 
structures, eleven belong to the most probable series of 11. 
structures predicted theoretically on the basis of the faulted 12. 
matrix model. Of  the remaining seven polytype structures, 
5Tc[0(22)2 ] and 4M[2220] can result from 2M1 and 3T 13. 
matrices containing ~ and ~ fault configurations respec- 
tively but correspond to the second most probable struc- 14. 
ture. The other five polytype structures, namely 3M[112], 15. 
4 Tc [0132], 8 Tc[(0) 3 2~202], 10 Tc[(2)s ~2200], and 
18Tc[(0),1-1 2(0),2-1 2(0),3-1 2], can result from singly- or 16. 
multiply-faulted exposed ledges containing higher energy 17. 
fault configurations. These polytypes therefore represent 
less probable structures which can be expected to form very 
rarely in nature. Thus the origin of all the known polytype 
structures of mica can be explained if one considers spiral 
growth round single screw dislocations created in a faulted 18. 
matrix. It should be noted that the origin of only seven 
of the eighteen known polytypes (including the above 5Tc 
and 4M) could be directly explained from a consideration 
of perfect basic matrices (Baronnet 1975). 

On the basis of the faulted matrix model developed here 
to account for the growth of polytypes, it is possible to 
predict the most probable structure series to which a new 
polytype may belong, provided the structure on which it 
is based is known. Generally, a quick inspection of the 

3 Tc 022 CA C 

3M 11~ •CB 

4Tcl 0132 CBBC 

4T% (0)222 (C)2AC 

4M 2220 CABC 

5Tc 0(22)2 (A/~)zA 

5M (222) 22 CABCA 

8 Tc 1 (2~)322 (A/~)3AC 

8Tc 2 (0)622 (C)6AC 
8Tc 3 (0) 322202 (C)4ACBB 

or (0)320222 (C)4AACB 

8M (222) 222 (CAB) zCA 

9Tc (0)722 (C)TAC 
10Tc (2) s22200 (CAB) 2ABCC 

or (2)500222 (CAB)2BBCA 

11 M (222) 322 (CAB) 3 CA 

14Tc (0) 1222 (C) 12AC 

14M (222)422 (CAB),,CA 

18 TC (0nl - 12 (0).2 - 1 

2 ( 0 ) .  2 12 

with n3 <nl <n2 and 
nl +n2+n3~-18 

23 Tc (0)2122 (C)21AC 

intensity and periodicity features along hk/rows of reflec- 
tions (k=¢ 3n) recorded on X-ray photographs, is sufficient 
for the determination of this basic structure. In such cases 
the structure determination of polytypes, especially those 
with a long repeat, can be greatly simplified by theoretically 
predicting the more likely structures to be tried on the basis 
of the present, faulted-matrix model. As an example, for 
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the observed 23-layered polytype,  there are over 3.10 s pos-  
sible and distinct structures i f  the stacking angles are re- 
stricted to 0 °, + 120 ° and  - 120 ° only - micas with so-called 
" t e r n a r y "  structures - (Mogami  et al. 1978; McLarnan  
1981). However,  according to the faul ted-matr ix  model,  
only ten structures need to be tried if  we assume for ins tance  
a 1M basic structure. The observed 23Tc (see Table 9) 
belongs to one of  these ten more  probable  structures. 

While  predict ing the most  p robable  series of  structures 
we have not  considered an addi t ional  energy term resulting 
from the lattice mismatch across the shear plane of  the 
screw dislocat ion (Baronnet  1980). I t  is however impossible 
to quant i fy this contr ibut ion  since it depends on the 
number,  nature  and dis tr ibut ion of  the stacking faults in 
the parent  matr ix  as well as on the thickness of  the parent  
platelet. Nevertheless, it is easy to realize that  the presence 
of  stacking faults may  locally reestablish a good  fit across 
the shear plane, and thereby reduce the average misfit ener- 
gy as compared  to its value for an identical screw disloca- 
t ion in a perfect parent  matrix.  This is true if  the dislocation 
pitch is a non-integral  mult iple of  the basic structure repeat  
distance. 

Appendix 

Stacking Sequence Nomenclatures 
and Graphic Representation o f  Mica Layers 

The nota t ion  proposed  by Zvyagin (1962) describes the po-  
sitions of  successive mica layers with respect to a s tandard  
layer in C posit ion.  To a single layer n is a t tached a Zvyagin  
symbol  A,  which may  be either C, B, A, A, B or C if  
the ro ta t ion  of any layer n with respect to the s tandard  
layer is 0 °, + 60 °, - 60 °, + 120 °, - 120 ° or  180 °, respective- 
ly. The full sequence o f  a N~-layered poly type  writes as 
a series o f  Ns Zvyagin  symbols between parentheses:  

(A 1A2A 3 - . .A,  . . .Au,_ 1Au). 

The successive symbols describe the stacking sequence from 
bo t tom to top. 

The Ross-Takeda-Wones (RTW) rota t ional  nota t ion  is 
a series of  figure symbols  a, between square brackets  de- 
scribing each the successive stacking angles between consec- 
utive layers n and n + l ,  from bo t tom to top. They are 
0, 1, i ,  2, 2 or  3 and refer to 0 °, + 6 0  °, - 6 0  ° , +120  ° , 
- 1 2 0  ° or 180 ° interlayer  stacking angles, respectively. Fol-  
lowing the R T W  notat ion,  the stacking sequence of  the 
above Ns-layered polytype writes as: 

[ala2a 3 . . . . .  a n . . . . .  aN~ 1aNsi 

Since the layer N s + n  must  be in the same posi t ions as 
layer n, the following periodici ty condi t ion must  hold  R T W  
symbols:  

N s - 1  

a u +  ~" a n = 0 m o d 6  
n = l  

During  spiral growth, ala2 . . . . .  aN~ ~ are directly inheri ted 
from the stacking scheme in the exposed ledge of  the screw 
dislocation,  whereas aNs is due to the piling up of  layer 1 
over layer N~ (see Fig. 4). I f  aNs is a foreign symbol  (in 
nature  or location) within the basic structure, then an addi-  
tive stacking fault  is in t roduced by spiral growth itself. 

The graphic representat ion of  the stacking sequences 

(Smith and Yoder  1956) used in Figs. 1-3 displays the suite 
of  stacking vectors viewed along c x (normal  to the layers), 
f rom bo t tom to top. 
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