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Abstract. Osteoblasts are involved in the bone resorption 
process by regulating osteoclast maturation and activity. 
In order to elucidate the mechanisms underlying osteo- 
blast/preosteoclast cell interactions, we developed an in 
vitro model of co-cultured human clonal cell lines of os- 
teoclast precursors (FLG 29.1) and osteoblastic cells 
(Saos-2), and evaluated the migratory, adhesive, cyto- 
chemical, morphological, and biochemical properties of 
the co-cultured cells. In Boyden chemotactic chambers, 
FLG 29.1 cells exhibited a marked migratory response 
toward the Saos-2 cells. Moreover, they preferentially ad- 
hered to the osteoblastic monolayer. Direct co-culture of 
the two cell types induced: (1) positive staining for tar- 
trate-resistant acid phosphatase in FLG 29.1 cells; (2) a 
decrease of the alkaline phosphatase activity expressed 
by Saos-2 cells; (3) the appearance of typical ultrastruc- 
tural features of mature osteoclasts in FLG 29.1 cells; (4) 
the release into the culture medium of granulocyte-mac- 
rophage colony stimulating factor. The addition of para- 
thyroid hormone to the co-culture further potentiated the 
differentiation of the preosteoclasts, the cells tending to 
fuse into large multinucleated elements. These in vitro 
interactions between osteoblasts and osteoclast precur- 
sors offer a new model for studying the mechanisms that 
control osteoclastogenesis in bone tissue. 
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Introduction 

Accumulating evidence from parabiosis experiments and 
bone-marrow transplantation in osteopetrosis indicates 
that osteoclasts are derived from hemopoietic precursors 
that are carried to the bone tissue by the circulation 
(Walker 1972; Coccia et al. 1980). Bone extracellular 
matrix is thought to contain several constituents capable 
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of promoting migration of preosteoclasts to the bone sur- 
face (Malone et al. 1982; Wijngaert et al. 1988; Braid- 
man et al. 1990). Moreover, implantation of devitalized 
bone particles at ectopic sites, i.e., subcutaneously (Blei- 
berg et al. 1992), or onto the chick chorionallantoic 
membrane (Webber et al. 1990; Osdoby et al. 1988) in- 
duces formation of multinucleated osteoclast-like cells 
in association with the bone surface. All these findings 
suggest the role of bone matrix and bone cells in recruit- 
ing osteoclast precursors. 

Once having entered the bone tissue, the preosteo- 
clasts differentiate toward the mature phenotype under 
the influence of the local microenvironment (Marks 
1983). Cytokines, growth factors and as yet unidentified 
organic and inorganic matrix components contribute to 
the regulation of osteoclast differentiation (Dickson and 
Scheven 1989; Fuller and Chambers 1989). In addition, 
interactions of preosteoclasts with other bone cells, in- 
cluding osteoblasts and bone endothelial cells (Marshall 
et al 1986; Formigli et al. 1995), may also stimulate os- 
teoclastogenesis. In vitro studies have shown the need of 
close contacts between osteoblasts and preosteoclasts for 
osteoclast maturation to occur (Takahashi et al. 1988a; 
Yamashita et al. 1990). In addition, multinucleated osteo- 
clast-like cells appear only to form close to colonies of 
alkaline-phosphatase-positive bone-marrow cells, possi- 
bly representing osteoblasts (Takahashi et al. 1988b). Os- 
teoblasts may therefore contribute to the differentiation 
of preosteoclasts into mature elements either through the 
secretion of soluble factors that induce marrow cell pre- 
cursors to express the osteoclast phenotype (Greenfield et 
al. 1992; Dickson and Scheven 1989) and/or through di- 
rect cell-to-cell contacts. Several in vivo morphological 
studies showing that preosteoclast differentiation prefer- 
entially occurs in close proximity to osteoblasts are con- 
sistent with the latter hypothesis; moreover, specialized 
intercellular gap junctions form between the two cell 
types (Tran Van et al. 1982; Ejiri 1983; Irie and Ozawa 
1990; Yamaga et al. 1992). Conversely, the more imma- 
ture osteoclast precursors are mainly located around the 
blood vessels (Ejiri 1983; Luk et al. 1974). 
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Despite the numerous  observations on the potential  
role of osteoblasts in promot ing osteoclast maturation,  
the mechanisms  under ly ing  the complex interact ion be- 
tween the two cell types remain  to be fully understood. 
In  order to test the funct ional  and morphologic  interac- 
t ions between osteoblasts and preosteoclasts, we have 
developed a novel  in vitro system of co-cul tured clonal 
cell lines of human  osteoclast precursor cells (FLG 29.1; 
Gattei et al. 1992) and osteoblastic cells (Saos-2; Rodan 
et al. 1987) and have evaluated the migratory responses, 
the adhesive properties, and the b iochemical  and mor- 
phologic interactions be tween the two cell types. 

Materials and methods 

Materials 

Media and serum for cell culture were purchased from Gibco 
(Grand Island, N.Y.). Tissue culture plastic ware was obtained 
from Falcon (Oxnard, Calif.). Granulocyte-macrophage colony 
stimulating factor (GM-CSF) was detected using an enzyme-linked 
immunosorbed assay (ELISA) kit obtained from Medgenix Diag- 
nostics (Fleurus, Belgium). Millicell-HA tissue culture plate well 
inserts were obtained from Millipore (Bedford, Mass., USA). Al- 
kaline phosphatase activity was tested utilizing a commercially 
available kit from Sigma (St.Louis, Mo., USA); 12-O-tetradeca- 
noylphorbol-13-acetate (TPA) was also obtained from Sigma. GM- 
CSF was provided by R & D Systems (Minneapolis, Minn., USA). 
Rat parathyroid hormone (rPTH) (1-84) was provided by Sigma. 

Cell cultures 

The FLG 29.1 clonal cell line was established from a 38-year-old 
female suffering from acute monoblastic leukemia. These cells 
are capable of differentiating toward the osteoclastic phenotype 
(Gattei et al. 1992; Formigli et al. 1995) in the presence of 10 7 M 
TPA (Cooper et al. 1982; Pegoraro et al. 1980) and in co-culture 
with bone endothelial cells. The cells were grown in RPMI 1640 
culture medium, supplemented with 10% fetal calf serum (FCS) 
and gentamycin (100 gg/ml), in an atmosphere of 10% CO2/90% 
air at 37~ 

The human osteosarcoma cell line Saos-2 was obtained from 
the American Type Culture Collection (ATCC, HTB85, Rockville, 
Md., USA) and grown in Coon's modified Ham's F12 medium 
supplemented with 10% FCS, 2 mM L-glutamine, penicillin (100 
IU/ml), and streptomycin (100 gg/ml). The cells were grown in a 
humidified atmosphere of 95% air/5% CO 2 at 37~ (Rodan et al. 
1987). 

The clonal bovine endothelial cell line (BBE) was cultured, as 
previously described, in Coon's modified Ham's medium contain- 
ing 10% Nu-serum and 1% Ultroser-G (Streeten et al. 1989). 

The human marrow stromal cells were isolated from healthy 
normal volunteers. A written declaration of consent was obtained 
from each volunteer. Fragments were incubated in minimum es- 
sential medium (MEM) containing 0.2% collagenase type IV at 
37 ~ in an atmosphere of 5% CO2/95% air. After overnight enzy- 
matic digestion, cells were mechanically dispersed with a 10-ml 
plastic pipette and centrifuged. The resulting pellet was plated in 
tissue culture flasks (105 cells/ml) and grown in MEM supple- 
mented with 20% FCS, penicillin (100 IU/ml), and streptomycin 
(100 gg/ml). 

The human articular cartilage cells were obtained from healthy 
normal volunteers. A written declaration of consent was obtained 
from each volunteer. Fragments were incubated in Coon's modi- 
fied Ham's FI2 medium containing 0.125% trypsin and 0.2% col- 

lagenase type IV at 37~ in an atmosphere of 5% CO2/95% air. 
After overnight enzymatic digestion, cell aggregates were me- 
chanically dispersed with a 10-ml plastic pipette and centrifuged. 
The resulting pellet was plated in tissue culture flasks (10 
cells/ml) and grown in Coon's modified Ham's F12 medium sup- 
plemented with 10% FCS, L-glutamine (2 mM), penicillin (100 
IU/ml), and streptomycin (100 ~tg/ml). 

Fetal osteoblast-like cells were obtained from 8-12 week hu- 
man fetal calvariae. Populations of fetal calvarial cells were pre- 
pared by collagenase digestion as described previously (Canalis 
1983). Briefly, fetal calvariae were minced with scissors and di- 
gested with a 3 mg/ml solution of crude bacterial collagenase in 
magnetically stirred spinner flasks at 37 ~ Released cells were 
collected by centrifugation after 10 rain and cultured in Coon's 
modified Ham's medium containing 10% FCS, penicillin (100 
IU/ml), and streptomycin (100 gg/ml). 

Chemotaxis 

The chemotactic response of FLG 29.1 cells to various bone-de- 
rived cells was measured in blind-well Boyden chambers (Boyden 
1962). In these experiments, a suspension of BBE cells or of Saos- 
2, human marrow stromal, and human articular cartilage ceils was 
plated in each of the bottom wells in growth medium, and left to 
adhere for 24 h. After this time, the cell monolayers were washed 
twice in Coon's modified Ham's F12 medium without growth fac- 
tors (steady state medium) and maintained in steady state medium 
containing 0,1% bovine serum albumin (BSA) for the duration of 
the experiment. The 48 lower wells were covered with a nucleo- 
pore membrane of 10 gm thickness, the 8%tm pores having been 
previously coated with a solution of gelatin (20 gg/ml). 

FLG 29.1 cells were centrifuged in steady state medium con- 
taining 0.1% BSA. The cell suspension was then added to the top 
wells of the chambers and the chambers were incubated at 37~ in 
a humidified atmosphere of 5% CO 2 and 95% air. Steady state 
medium containing 0.1% BSA was used to determine background 
counts in six replicates. After 3 h at 37~ in air containing 5% 
CO 2, the membranes were removed from the chambers, fixed in 
methanol, stained with modified Wright's stain, and then counter- 
stained and placed on microscopy slides with the surface contain- 
ing migrated cells in contact with the slide. Non-migrated cells on 
the upper surface of the membranes were wiped off. The number 
of cells that had migrated to the lower surface of the filter was 
determined by counting the cell nuclei in 15 random fields at a 
magnification of 400x. Cells that remained viable during incuba- 
tion were determined by their ability to exclude trypan blue. Re- 
sults represent the mean _SD of six experimental points. 

Quantitative adhesion assay 

BBE cells, Saos-2 cells, human articular cartilage cells, human 
marrow stromal cells, and human fetal bone cells were plated in a 
24-multiwell plate at 2x105 cells/well in growth medium and left 
to adhere. After 24 h, the medium was removed; the cell monolay- 
ers were washed twice with steady state medium and were main- 
tained in steady state medium containing 0.1% BSA for the dura- 
tion of the experiment. FLG 29.1 cells were then added to each 
well at 105 cells/well and incubated for 24 h at 37~ in 5% CO 2. 
The non-adherent FLG 29.1 cells were then removed by gentle as- 
piration and each well was washed twice with steady state medi- 
um. The non-adherent cells were centrifuged at 1200xg for 
10 rain, resuspended in 1 ml steady state medium and counted. 
The percentage of cell adhesion was determined by the difference 
between the number of FLG 29.1 cells plated on the various cell 
monolayers at the beginning of the experiments and the number of 
FLG 29.1 cells found to be non-adherent to the endothelial cells at 
the end of the experiments. The experiments were carried out in 
triplicate and the results expressed as the mean _+SD of three dif- 
ferent experiments. 



Evaluation of multinucleated cell numbers 

FLG 29.1 cells were co-cultured with Saos-2, BBE, bone-marrow 
and cartilage cells for 48 h. Cultures were then fixed in 80% ethanol 
and stained with hematoxylin and eosin. FLG 29.1 cells containing 
two or more nuclei were counted in 50 microscopy fields at 400x. 

GM-CSF release 

The amount of GM-CSF released by FLG 29.1 and Saos-2 cells 
alone or in co-culture was measured using a commercially avail- 
able immunoenzymatic assay. FLG 29.1 (5x105) and Saos-2 
( lx l06)  cells were cultured separately or in direct contact in 
25 cm 2 flasks in the presence or absence of TPA. After a 24-h in- 
cubation, the medium was removed and replaced with serum-free 
medium for 48 h. The media were then collected, centrifuged at 
1000xg for 15 min, and stored at -80~ until the assay. Experi- 
ments were carried out in four replicates and results were the 
mean +SD of three different experiments. 

Ultrastructural studies 

The morphologic interactions between Saos-2 and FLG 29.1 cells 
were evaluated by transmission (TEM) and scanning (SEM) elec- 
tron microscopy. For TEM analysis, 2x105 Saos-2 cells were cul- 
tured in growth medium on cellulose membranes in 24-well dish- 
es for 24 h. FLG 29.1 cells (1.5x105 cells/well) were then added 
to the osteoblastic monolayers in a mixture of Coon's  modified 
Ham's  F12 and RPMI 1640 media (1:1) supplemented with 10% 
FCS, in the presence or absence of 10 8 M rPTH (1-84). After a 
48-h incubation, the membranes with the adherent cells were fixed 
in 4% cold glutaraldehyde in 0.1 M cacodylate buffer, pH 7.4, at 
room temperature and postfixed in 1% OsO 4 in 0.1 M phosphate 
buffer, pH 7.4, at 4 ~ The samples were then dehydrated in an 
acetone series, passed through propylene oxide, and embedded in 
Epon 812. Semi-thin sections (1-2 p m  thick) were cut and stained 
with toluidine blue-sodium tetraborate. Ultrathin sections were 
also obtained from the same specimens, stained with uranyl ace- 
tate and alkaline bismuth subnitrate, and then examined under a 
Siemens Elmiskop electron microscope at 80 kV. For SEM analy- 
sis, the glass cover-slips bearing Saos-2 (2.5x105 cells) and FLG 
29.1 cells (2.5x105 cells) alone and in co-culture were fixed in 2% 
glutaraldehyde in 0.05 M phosphate buffer, pH 7.2, with 0.02% 
CaC12, and postfixed in 1% OsO 4 in the same buffer containing 
2% saccharose. After dehydration in alcohol and amyl-acetate, the 
specimens were critical-point dried and sputter-coated with 10% 
gold-palladium. Observations were performed under a Cambridge 
Stereoscan 100 SEM at an accelerating voltage of 15 kV and with 
a tilt angle varying from 20 ~ to 40 ~ 

Tartrate-resistant acid phosphatase activity 

Tartrate-resistant acid posphatase (TRAcP) staining was per- 
formed on FLG 29.1 and Saos-2 cells co-cultured for 48 h. After 
fixation in 80% ethanol, the cultures were incubated with a solu- 
tion containing naphthol AS-BI phosphate (Sigma) as a substrate 
for the reaction, sodium tartrate and 4% pararosaniline in 2 N HC1 
as a coupler, for 2 h. The cultures were then counterstained with 
hematoxylin, and TRAcP positive FLG 29.1 cells were counted. 
Experiments were carried out in triplicate. 

Alkaline phosphatase activity 

Saos-2 cells ( l x l 0 6  ceils) were cultured alone in growth medium 
and in co-culture with FLG 29.1 ceils (5x105 cells) in a mixture of 
Coon's  modified Ham's  F12 and RPMI 1640 media ( l : l )  supple- 
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mented with 10% FCS in 6 well plates for 48 h, and then exposed 
to the steady state medium at 37~ for 24 h. The cells were 
washed twice with phosphate-buffered saline, scraped into 1 ml 
1% Nonidet P-40, and sonicated for 5 min with a sonifier cell dis- 
ruptor at 50 Watts, 20 kHz for 30 s. The sonicates were centri- 
fuged for 15 min at 1000xg, and the supernatants were removed 
and stored at -80~ Alkaline phosphatase activity was deter- 
mined in thawed samples of the cell extracts. Enzyme activity in 
the lysate was corrected for cell number. Results were carried out 
in triplicate and expressed as the mean _+SD IU/106 cells. 

Statistical analysis 

All comparisons involved the use of Student 's t-test of means. Da- 
ta were expressed as mean +SD. 

R e s u l t s  

Saos-2 cells stimulated chemotaxis  of  undifferentiated 
FLG 29.1 cells in a cel l-number-dependent  manner, even 
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Fig. 1. Chemotactic responses of FLG 29. l cells to different bone 
cell types (Saos-2, BBE, human marrow stromal, and articular 
cartilage cells). Cell numbers in a high-power field are given as a 
measurement of chemotaxis on the ordinate axis. Results repres- 
ent the mean _+SD of six experimental points 
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Fig. 2. Adhesion of FLG 29.1 to varmus cell types (BBE, Saos-2, 
human marrow stromal, articular cartilage, and fetal bone cells). 
The experiments were carried out in triplicate and the results were 
expressed as the mean +SD of three different experiments 
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Fig. 3. FLG 29.1 co-cultured with Saos-2 cells. A strong TRAcP 
positive reaction in the FLG 29.1 cell is seen after two days of co- 
culture, x140 
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Fig. 4. Alkaline phosphatase activity in Saos-2 cells cultured 
alone and with FLG 29.1 cells. Experiments were carried out in 
triplicate and the results were expressed as the mean _+SD of three 
different experiments 

if at a lower level than that promoted by BBE cells 
(Fig. 1). Conversely, human marrow stromal and articu- 
lar cartilage cells in primary culture were unable to pro- 
mote the migration of FLG 29.1 cells (Fig. 1). 

Moreover, FLG 29.1 preferentially adhered to Saos-2 
cell monolayers rather than to plastic surfaces (30+2.2% 
versus 4.0+0.1% attached cells; P<0.001) (Fig. 2). The 
cells also revealed a significant plating efficiency on oth- 
er bone cell types, such as BBE cells (P<0.001), primary 
cultures of human articular cartilage (P<0.002), bone- 
marrow stromal cells (P<0.001), and fetal bone-derived 
cells (P<0.005). 

Direct co-culture of the two cell types for 48 h in- 
duced a strong TRAcP-positive stain in FLG 29.1 cells 
(Fig. 3) and significantly reduced the intracellular con- 
tent of alkaline phosphatase compared with that of Saos- 
2 cells cultured alone (2.9+0.8 vs 4.6_+0.3 IU/106, P<0.02) 
(Fig. 4). 

In the ultrastructural SEM analysis, FLG 29.1 cells, as 
single cells or in small clusters, appeared closely adher- 
ent to the underlying osteoblastic cells. Saos-2 cells ex- 
hibited a flattened and spread morphology with short mi- 
crovillous processes at the apical surfaces (Fig. 5). FLG 
29.1 cells possessed long thin cytoplasmic processes that 
seemed to improve their adhesion to the underlying os- 
teoblastic cells (Fig. 5). The TEM investigation showed 
that FLG 29.1 in co-culture with Saos-2 cells displayed 
early ultrastructural signs of cellular differentiation to- 
ward a more mature phenotype. Indeed, when FLG 29.1 
cells were cultured alone, they had typical morphologic 
features of undifferentiated monocytic cells, namely they 
were round, had a smooth cell surface, and their cyto- 
plasm contained abundant free ribosomes, scarce mem- 
branous organelles, a large irregular nucleus with dis- 
persed chromatin, and a prominent nucleolus (Fig. 6A). 
Conversely, FLG 29.1 cells in co-culture with Saos-2 
cells exhibited a better differentiated cytoplasm with sev- 
eral profiles of rough endoplasmic reticulum (RER) and a 
well developed Golgi complex with primary lysosomes 
nearby (Fig. 6B,C). Sites of adhesions in the form of dark 

Fig. 5. Scanning electron microscopy of FLG 
29.1 cells co-cultured with Saos-2 cells. In 
areas of FLG 29.1/Saos-2 cell interaction, 
elongated cytoplasmic processes arising from 
an FLG 29.1 cell seem to potentiate adhesion 
to the underlying Saos-2 cells, x3000 
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Fig. 6A-C. Transmission electron microscopy of FLG 29.1 cells 
cultured alone or with Saos-2 cells. A FLG 29.1 cell cultured 
alone. The cytoplasm shows few organelles other than numerous 
free ribosomes, x7500. B FLG 29.1 cells co-cultured with Saos-2 
cells. The cytoplasm of the FLG 29.1 cells shows numerous 
organelles including several RER profiles, a Golgi complex and 

primary lysosomes. • C FLG 29.1 cells co-cultured with 
Saos-2 cells. A large FLG 29.1 cell with two peripherally dis- 
placed nuclei has established sites of adhesion to the underlying 
osteoblastic cell. x5500. In the insert, a detail of the adhesion area 
between the two cell types can be seen with electron-dense "feet" 
interposed between the plasma membranes, x25000 

"feet", containing an electron-dense amorphous material, 
could be encountered at sites of close apposition of the 
two cell types (Fig. 6C, insert). The addition of 10 -8 M 
rPTH (1-84) to the co-culture resulted in a tendency for 
the preosteoclastic cells to fuse together into large multi- 
nucleated cells. Adjacent FLG 29.1 cells displayed: (1) 
areas of close apposition of the plasma membranes; (2) 
intercellular junctional complex formation, that appeared 

to be broken down in certain areas (Fig. 7A); and (3) the 
disappearance of some apposed plasma membranes with 
complete cytoplasmic continuity (Fig. 7B). Cup-like 
structures were seen in the cell membrane bordering the 
regions of fusion (Fig. 7B). By SEM, groups of fused 
FLG 29.1 cells could be easily encountered in the co-cul- 
ture after the addition of rPTH. These clusters revealed 
peripheral cytoplasmic laminar expansions that seemed 
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Fig. 7A-C. Electron-microscopic 
analysis of FLG 29.1 cells co-cul- 
tured with Saos-2 cells in the pres- 
ence of rPTH (1-84). Adjacent 
FLG 29.1 cells show areas of inter- 
cellular junctions with focal disso- 
lutions (A, arrowhead) and cyto- 
plasmic fusions (B, arrows). 
C Fused FLG 29.1 cells display 
peripheral laminar expansions 
that are joined at the fusion area. 
A x22000, B x16000, C x3800 

to increase the contact area with the underlying Saos-2 
cells and with adjacent FLG 29.1 cells (Fig. 7C). 

The number of multinucleated FLG 29.1 cells in- 
creased significantly when co-cultured with Saos-2 cells 
(0.59_+0.07 vs 0.13_+0.02, P<0.004) and with BBE cells 
(0.39+0.02 vs 0.13-+0.02 P<0.0002) (Fig. 8). No statisti- 
cal differences in the number of multinucleated FLG 
29.1 cells were found when the cells were co-cultured 
with bone-marrow or cartilage cells (Fig. 8). Moreover, 
cells with better developed organelles, including numer- 
ous pleomorphic mitochondria and clear vesicles, were 
sometimes encountered in the co-culture after the addi- 
tion of rPTH (Fig. 9). In these cells, peripheral areas de- 
void of cell organelles and filled with fine filaments 
could be observed (Fig. 9). 

In order to analyze the molecular mechanisms under- 
lying the osteoblast-preosteoclast cell interactions the re- 
lease of GM-CSF by the two cell types was measured. 

Neither FLG 29.1 nor Saos-2 cells released measurable 
amounts of GM-CSF into the culture medium. The addi- 
tion of TPA induced the release of small amounts of 
GM-CSF by the two cell types (1.12_+0.13 ng/ml for 
FLG 29.1, P<0.0005, and 0.21+0.01 ng/ml for Saos-2 
cells, P<0.005) (Fig. 10). However, when the two cell 
types were co-cultured in direct contact, the amount 
of GM-CSF secreted increased significantly (1.48+0.34 
ng/ml, P<0.001 vs control media) (Fig. 10); this ef- 
fect was potentiated by the addition of 10 -7 M TPA 
(2.64+0.4 ng/ml, P<0.05 vs untreated co-culture) 
(Fig. 10). 

Discussion 

The mechanisms that regulate osteoclast development 
and function during bone growth and remodeling have 
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Fig. 8. Percentage of multinucleated FLG 29.1 cells in co-culture 
with various bone cell types (Saos-2, BBE, human bone marrow, 
and cartilage cells). The experiments were carried out in triplicate 
and the results were expressed as the mean +SD of three different 
experiments 

not been fully characterized. Nevertheless, numerous 
studies indicate that osteoblasts play an important role in 
the process of bone resorption via: (1) the digestion of 
the organic material covering the bone surface and sub- 
sequent exposure of the mineralized matrix to the osteo- 
clast (Chambers and Fuller 1985); (2) the activation of 
pre-existing osteoclasts in the presence of PTH or vita- 

min D3 (Thomson et al. 1986; McSheehy and Chambers 
1986a, b; Teti et a1.1991; Perry and Gurbani 1992); and 
(3) the regulation of osteoclast differentiation from im- 
mature bone-marrow progenitor cells (Burger et al. 
1984; Marshall et al. 1986; Takahashi et al. 1988a; Dick- 
son and Scheven 1989). Recently, it has been suggested 
that osteoblasts, besides secreting soluble factors able to 
activate quiescent osteoclasts, retain them on their cell 
surface or adjacent extracellular matrix, thus contribut- 
ing to a reservoir of these factors that can then be made 
available during the bone remodeling process (Fuller et 
al. 1991). Despite the abundant evidence indicating 
functional interactions between osteoblasts and osteo- 
clasts, the biochemical mechanisms and the ultrastruc- 
tural modifications underlying such complex relation- 
ships remain to be elucidated. 

The present findings obtained by direct co-culture of 
clonal cell lines of an osteoblastic and preosteoclastic 
nature, may contribute to clarifying some of the mecha- 
nisms by which osteoblasts influence preosteoclast re- 
cruitment and maturation. Indeed, osteoblastic cells ap- 
pear to stimulate the migration of the preosteoclastic 
FLG 29.1 cells. This finding indicates that osteoblasts 
play a role in the recruitment of osteoclast precursors into 
the bone tissue, a role ascribed until now to bone matrix 
constituents and recently to bone endothelial cell (Formi- 
gli et al. 1995). FLG 29.1 cells also adhere to the under- 
lying osteoblastic cell monolayers with the formation of 
specialized intercellular junctions. Under these condi- 
tions, preosteoclasts show better developed organelles 
than those of FLG 29.1 cells cultured alone, in particular 
with respect to their well-extended Golgi apparatus and 
the primary lysosomes and clear vesicles nearby. All 
these ultrastructural findings have been previously report- 
ed for osteoclast precursors differentiating in vivo toward 

Fig. 9. FLG 29.1 cells co-cultured 
with Saos-2 cells in the presence of 
10 .8 M rPTH (1-84). The cytoplasm 
of a FLG 29.1 cell shows abundant 
organelles including branched mito- 
chondria and clear vesicles. The 
outer cytoplasmic rim is devoid of 
organelles and is filled with thin 
filaments (arrows). x15000 
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Fig. 10. GM-CSF release from FLG 29.1 
and Saos-2 cells alone and in co-culture in the 
presence or absence of TPA. Experiments 
were carried out in triplicate and the results 
were expressed as the mean +SD of three 
different experiments 

a more mature phenotype (Ejiri 1983; Luk et al. 1974). 
Interactions with osteoblasts are also necessary for preos- 
teoclasts to develop positive staining for TRACE an en- 
zyme expressed in vivo by mature osteoclasts (Hattersley 
and Chambers 1989). It is conceivable that a direct con- 
tact between osteoblasts and preosteoclasts may be 
required for osteoclast maturation. Interestingly, the ac- 
quisition of these distinctive parameters by the preosteo- 
clastic cells is correlated with a decrease of the alkaline 
phosphatase content in the osteoblastic cells, the presence 
of which enzyme in osteoblasts is considered to be a 
functional parameter associated with new bone formation 
(Gehron Robey 1989). This finding suggests the exis- 
tence of a role for osteoclast precursors in osteoblast bio- 
synthetic activity and/or mineralization, and confirms the 
results previously obtained showing that conditioned me- 
dia from osteoclasts are able to inhibit the synthesis of 
collagen and the alkaline phosphatase activity of osteo- 
blasts (Galvin and Osdoby 1991; Formigli et al. 1991). 

The addition of PTH to the co-culture further poten- 
tiates the differentiation of the preosteoclastic cells, 
namely by increasing their tendency to fuse together into 
large multinucleated elements. The process of fusion of 
the preosteoclastic cells may be considered a further step 
in the differentiation to the osteoclastic phenotype, since 
these cells have been demonstrated to form by the fusion 
of mononuclear precursors (Baron et al. 1986; Kurihara 
et al. 1990). Moreover, in the presence of PTH, the pre- 
osteoclastic cells exhibit some of the typical ultrastruc- 
tural features of mature osteoclasts, including a highly 
vacuolated cytoplasm that is rich in pleomorphic mito- 
chondria, but that is provided with a peripheral area poor 
in organelles. The PTH effect on osteoclast differentia- 
tion is consistent with the well-known role that this hor- 
mone plays in osteoclast formation (Ibbotson et al. 1984; 
McDonald et al. 1987; Akatsu et al. 1989; Takahashi et 

al. 1988a, b; Hattersley and Chambers 1989). It is gen- 
erally believed that PTH stimulates osteoclast formation 
indirectly via a primary action on osteoblasts (McSheehy 
and Chambers 1986 a, b), since these cells, unlike osteo- 
clasts, express PTH receptors. This could also be the 
case in the present model, where PTH is not able to 
modify either the morphology or the function of FLG 
29.1 cells cultured alone (L. Formigli, personal commu- 
nication). 

We have also characterized the regulation of GM- 
CSF release by the two cell types in co-culture. Previous 
studies have demonstrated that a large amount of this cy- 
tokine is secreted by cultured osteoblastic cells upon 
stimulation with PTH or tumor necrosis factor c~ (Horo- 
witz et al. 1989; Felix et al. 1991). The production of 
this growth factor, which is known to stimulate imma- 
ture hematopoietic cells to proliferate and differentiate 
into mature granulocytes and macrophages (Metcalf 
1986; Clark and Kamen 1987), may have several impli- 
cations for bone tissue (Felix et al. 1991). Indeed, GM- 
CSF might contribute to the regulation of the hematopoi- 
esis process taking place in the bone-marrow compart- 
ment. Alternatively, GM-CSF may be involved in the 
defense mechanisms occurring during severe inflamma- 
tory bone disease and/or in new bone formation by os- 
teoblasts (Dedhar et al. 1988). The present findings of an 
increased GM-CSF production in a co-culture system, a 
condition essential for osteoclast maturation, suggest a 
further role for the growth factor in the biology of osteo- 
clastogenesis. In particular, GM-CSF may represent a lo- 
cal factor involved in the bone resorption process by 
stimulating osteoclast generation from immature precur- 
sors. Consistent with these findings are recent studies in- 
dicating an effect of this growth factor on osteoclast cell 
formation in culture (Mochizuki et al. 1992; Hiura et al. 
1991; Takahashi et al. 1991). 
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In conclus ion ,  our results  indicate  that os teoblas ts  
p lay  an impor tan t  role  in the process  of  bone  resorp t ion  
be ing  involved  in a complex  series o f  events  inc luding  
chemotaxis ,  adhesion,  different ia t ion,  and fusion of  os-  
teoc las t  precursors .  A l though  the local  bone  microenvi -  
ronment  is more  compl i ca t ed  than our s imple  co-cul ture  
sys tem,  the present  mode l  may  represent  a novel  ap- 
p roach  for d i ssec t ing  the var ious  ce l l - to-ce l l  in teract ions  
that const i tute  the basis  o f  the bone  r emode l ing  process .  
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