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Summary 

The dynamical behavior of a class of biochemical control circuits that regulate enzyme or protein 
synthesis by end-product feedback is analyzed. Both inducible and repressible systems are studied 
and it is proven that in the former unique steady states are ~obally asymptotically stable. 
This precludes periodic solutions in these systems. A similar result holds for repressible systems 
under certain constraints on kinetic parameters and binding contants. However, when the reaction 
sequence is sufficiently long, or when a large enough number of effector molecules bind to each 
represser molecule, repressible systems can show zero-amplitude ("soft") bifurcations: these are 
predicted lay Hopf's bifurcation theorem. 

I. Introduction 

Enzyme and protein synthesis is a major component of cellular activity throughout 
much of the division cycle in proliferating ceils. While the total mass of a growing 
cell increases continuously throughout interphase, the majority of enzymes are 
synthesized periodically at specific points in the cell cycle [Mitchison, 1971]. A 
major question is whether these periodic syntheses are the result of autonomous 
periodicities in the molecular pathways that produce the enzyme, or whether they 
result from entrainment of the pathway by some other intracellular pacemaker. 
Since biosynthetic pathways can be controlled at more than one level using 
different modes of control, there is undoubtedly no unique answer. 

In some pathways a key enzyme, usually the first in a sequence, is under allosteric 
control by a product synthesized further down the sequence (Atkinson, 1965). 
Synthetic pathways can also be controlled at the genetic level by controlling the 
rate of synthesis of one or more unstable enzymes in the pathway. In this mode of 
control, which is generally interpreted according to the Jacob-Monod model, an 
"effector" molecule from the cytoplasm binds to the represser of the structural 
gene and either inhibits or facilitates production of mRNA for the enzyme. The 
former is called repression and the latter induction of enzyme synthesis. In many 
pathways several modes are used, in particular, allosteric control of a single 
enzyme is often coupled with repression of all enzymes in the pathway rAtkinson, 
1965]. Such multi-mode control leads to very complex dynamical equations for the 
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temporal behavior of the key components in the pathway. Consequently, it is 
imperative to first understand simpler systems in which only a single mode of 
control is used. This is our objective here. 

A model for the feedback control of enzymatic activity was proposed by Yates and 
Pardee (1956) and studied by Morales and McKay (1967), by Walter (1969, t971) 
and by Hunding (1974). Goodwin (1965) proposed and analyzed a model for control 
of enzyme synthesis at the genetic level; this model has been studied further by Grif- 
fith (1968), Goodwin (I969) and Tyson (1975). Dynamically the two models are 
indistinguishable when the Goodwin model is applied to enzyme repression; they 
differ of course when Goodwin's model is used to describe enzyme induction, as in 
Griffith (1968). 

Considerable confusion has arisen from some of the preceding literature concern- 
ing the existence or non-existence of periodic solutions for these simple feedback 
control models. Goodwin (1965) reported stable periodic solutions on the basis 
of analog computations but some of Griffith's results cast doubt on the existence 

�9 of these oscillations. Similarly, Morales and McKay (1967) reported stable periodic 
solutions based on analog computations for the Yates-Pardee model, but Walter 
(1971) reported that digital simulation of the same equations produced only highly 
damped oscillations. The uncertainties concerning oscillations stem from the 
difficulty of a complete analytical study of the equations and the consequent 
reliance on numerical simulations. In this paper we analyze these equations in 
detail, with a view towards establishing the existence or non-existence of periodic 
solutions by a combination of analytic and numerical techniques. 

In the following section we derive the basic differential equations for both 
inducible and repressible systems and obtain some qualitative properties of their 
solutions. In that section it is shown that a two-step control circuit can be analyzed 
completely and that oscillations are never possible, a conclusion already reported 
by Griffith (1968). 

Section 3 is devoted to the analysis of inducible systems. Conditions for uniqueness 
of the steady state are given and it is proven that uniqueness implies global 
asymptotic stability. Consequently, inducible systems with a single steady state 
can never show sustained autonomous oscillations~ If such circuits oscillate it must 
be due to either coupling with another circuit, to another too.de of control some- 
where in the circuit, or to periodic changes in the concentration of some 
substrate. 

Repressible or negative feedback systems are studied in Section 4. It is found that 
there is a very simple relation between the minimum length of the e control 
circuit and the number of effector molecules bound by the repressor which 
guarantees that the steady state is asymptotically stablC. Stable periodic solutions 
are unlikely in these cases. When the steady state is unstable, the Hopf theorem 
gives local existence of a periodic solution in a neighborhood of the bifurcation 
curve. Tyson (1975) and Hastings, Tyson and Webster (1975) have proven that a 

~" A reviewer brought Hunding's paper, in which this same relation appears, to our attention. 
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periodic solution exists whenever the steady state is unstable and it is probably 
the same solution given by the Hopf theorem. This appears to be the case for the 
five step circuit we analyze in that section. For that particular system the region 
of parameter space in which the steady state is proved to be globally asymptotically 
stable is only slightly smaller than the region of asymptotic stability. 

II. Kinetic Equations for the Control Circuits 

The control circuits; studied here consist of an n-step sequence of enzyme- 
catalyzed reactions that convert a substrate S o to an endproduct S, ,  with feedback 
of Sn to the first step in the sequence: 

in--  I 
So k-~~ St k~" Sz > ... S . -  t ~" Sn 

.. f (Sn ) I 
(I) 

Although each reaction is enzyme-catalyzed, it is assumed that the concentrations 
of intermediate species are sufficiently small and that the corresponding enzyme 
concentrations are constant so that the 2-nd through (n-1)-st reactions can be 
considered first order and irreversible, Only the enzyme for the first step in the 
sequence is unstable, and its concentration is governed by the equilibrium between 
the rates of synthesis and degradation. Furthermore, it is assumed that So varies 
significantly only on a time scale that is much longer than the time scale of the 
control action and hence So is regarded as constant. 

The simple schematic at (1) obscures the fact that-the effector molecule S, may act 
at one of several steps between gene transcription and assembly of the enzyme at 
the ribosomes. Different biochemical pathways are controlled at different steps 
(Mitchison. 1971) or at more than one step (Atkinson. 1965) but for concreteness. 
only control at the level of gene transcription is considered here, All other steps 
in the production of enzyme for the first reaction are unaffected by S~, and 
equilibrate to stationary states more rapidly than the controlled step. In turn, the 
controlled step equilibrates more rapidly than steps 1 through n in the control 
circuit 2. 

There are at least two distinct types of control that are used at the genetic level; 
control by induction and control by repression (YagJl and Yagil, 1971). In the 
former an increase in S, stimulates the production of enzyme and this in turn 
further increases the throughput through the pathway; thus the system functions 
as a positive feedback control system. In a repressible system an increase in the 
level of S n decreases the rate of enzyme synthesis and the system behaves like 
a negative feedback control system. Negative feedback control systems are 

When the time scales of the steps in enzyme production are not sufficiently separated from those 
in the sequence I . . . .  n, one can simply reinterpret S t as m R N A  and one of the succeeding 
species as the enzyme. This is the interpretation used by Goodwin (1965). The governing 
equations and the dynamical behavior of the circuit remain the same. 
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notoriously susceptible to oscillations and the same proves to be true in repressible 
systems. 

Consider first an inducible system (in Yagirs terminology these are negatively 
inducible (Yagil, 1975)). In accordance with the Jacob-Monod model of control, 
the effector S. reacts with the represser R of an operon and thereby provides an 
alternate kinetic pathway for R: 

R + S. ~ RS~2) +(S,)~- ... ~ RS~ p~ 
(2) 

R + O ~ O R .  

Here R S~ p~ is a repressor-effector complex involving p effector molecules, O is the 
free operon concentration, and OR the concentration of operon-repressor com- 
plex 3. When p> 1 the concentration of intermediate complexes is considered 
negligible and the total represser concentration taken as R, = R + R S~ ~. Evidently 
the total operon concentration O, is O r - O  + ORb and with the assumption that 
the rates of enzyme production and degradation are proportional to the fraction 
of free operons and enzyme concentration, respectively, the quasi-steady enzyme 
concentration is also proportional to the fraction of free operons. Consequently 

0 1 + K 1 S ,  p 
f (S . )  ~ 0----~= (K2 R,+ 1)+K 1 S t '  (3) 

and the rate of the first reaction in the sequence at (1) is 

ko Sof (S.)= ko So (1 + g~ SP.) (4) 
K +K~ SP. 

Here K1 and K: are the equilibrium constants for the first and second steps of (2) 
and K - K: R, + I. The qualitative features of this rate law for p > 1 are shown 
in Fig. 1 a. 

k~Sn 

Fig. I a 

,, S, 

3 In view of the small number of operons and represser molecules, a stochastic model would be 
more appropriate here but of course would be more difficult to treat. The fraction of operons 
being transcribed in our dctsrministic model [cfo Equation 3] would be interpreted as the 
probability that any given opcron was free to be transcribed. 
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k~S~ 

/ 

So 
Fig. 1 b 

Fig. i. Qualitative features of the feedback term (a) Inducible systems, (b) Repressible systems 
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When gene. transcription is repressed by high concentrations of the effector, the 
kinetic mechanism is 

R +pS~ ~ RS~ ~) 
(5) 

R S~P) +O.~_ O R S(~P ) 

This leads to a rate expression of the form 

koSo(I+K1 S~) 
ko S o j t S , ) _  ~ + ( K I + K t K z R ~ ) S  v" (6) 

Since K~ Sff = R S(~P)/R, whenever the fraction of repressor bound to operon is small 
R S~P)/R ~ 1 and the rate law is approximately giwn by 

ko So 
koSof(S~).,  I+K1 K~ R,S~" (7) 

This is the form of rate law used by Goodwin (i965) and others cited in the 
preceeding section. Its basic features are shown in Fig. 1 (b). 
In either the inducible or repressible case, the differential equations governing 
the dynamic behavior of the control circuit are 

d S_.__!_ ~ _~ _ kl SI + ko S o f (S~), 
d~ 

dS2 -~k 1 S l - k ,  S, (8) 
dt - "' 

dS~ 

and the nonlinear term is given either by (4) or (7). These equations can be 
simplified by introducing the dimensionless variables 

z~-kot, ~j~-kj/ko, cS~=SjSo, K2t=K 1 S~, 
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f 1 i+~ I S~ ' 

f(s")= 11+  s.. 
Lg+g,  s." 

and the vectors and matrix 

S =  

n 

repressible case, 

inducible case, 

f (s)= 
t O )  

(9) 

for then (8) reads 

L= 
- i l  0 ... 0 ~ - ~2 0 

�9 " ~.-i --~n 

dS 
....... LS+F(S). 

dz 

(10) 

(11) 

Hereafter the overbars will be dropped. 

The first step in the analysis of this equation is to establish some general 
properties of its solution(s). Because F (S) is cominuously differentiable for non- 
negative S~, the solution of (11) exists and is unique on some finite time interval 
[0, T). Along any of the hyperplanes S~=0, i=1 ,  ... n, dSddt>_O and con- 
sequently any trajectory that begins in the nonnegative orthant remains there for 
all time. By computing the inner product of the vector field of (11) with the inward 
normals to the planes St-- dp/ki, 4) > i, one can show that the rectangular solid with 
vertices at (0, 0 . . . .  0) and 4) (1/k 1 .... 1/k,) and with sides parallel to the coordinate 
axes is invariam under the flow of (11). Therefore the solution of (11) enters a 
compact subset of the nonnegative orthant and exists for all time. 

In view of this fact, a qualitative picture of the dynamical behavior can be obtained 
by first determining the number of steady state solutions (critical points) of (11) 
and their stability properties and then deciding whether or not periodic solutions 
exist. 

Steady states are nonnegative solutions S* of the vector equation 

S* = - L -  1 F (S*) (12) 

or the equivalent scalar equations 

kl S~'--k: S* = . . . .  k. S~* = f  (S.*). (13) 

From Fig. 1 it is clear that the steady state is always unique in repressible 
systems whereas there may be one, two or three steady states in an inducible 
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system. Near a critical point, the behavior of the solution of (11) is governed by the 
linear system in ~ - S -  S*, 

d~= L+-~ s=s, 

whose solution is 

~=e  z'  r (0). (15) 

By the spectral representation theorem (Kato, 1966) 

~ ' :  ~ e ~J' {Pj+nilpotents} (16) 
j = t  

where Pj is the projection onto the linear manifold spanned by the eigenvector(s) 
belonging to the eigenvalue 2j. These eigenvalues are solutions of the characteristic 
equation 

det [ Z - 2 I ]  =0,  (17) 

which, when expanded, reads 

2~+ k~ 2~-~+ k~k~ X"-z+...+ H k~(k~-f'(S*.))=O. (18) 
\ i =  t i =  I 

The real parts of the 2's determine stability and if some ).'s are complex, the 
solution is oscillatory but not in general periodic. 

The following two sections deal with the questions of stability of critical points 
and the existence of' periodic solutions to (11) when n>3. These questions are 
easily answered for n= 2 by use of the Poineare-Bendixson theorem and Ben- 
dixon's criterion. By virtue of the latter, there exists no periodic solutions 
confined to the Hrst quadrant, because the divergence of the vector field is 
negative throughout that quadrant. The former theorem then implies that the 
only co limit points are critical points. Because the steady state is unique in any 
repressible system, it is necessarily asymptotically stable and globally asymptoti- 
cally stable ~. The same is true in two-step inducible systems for which there is only 
one critical point. When three steady states exist in an inducible system, one can 
only say that the set of steady states is globally attracting in the sense that any 
trajectory beginning: in the first quadrant approaches one of the steady states 

III. Indueible Systems 

A~ Multiplicity and Stability of Steady States 

In an inducible system, a steady state is a nonnegative solution of the equations 

k 1 S~--k 2 S'~ . . . . .  k. S*, (19) 

Throughout. "'global" always refers to the nonnegative orthant of concentration space. A 
mathematically precise definition of global asymptotic stability is given in the following section. 
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I + K  1 Sn *v 
k. S* = (20) 

K + K1 S *~ ' 

and as previously noted, these have either one or three solutions. The n +  3 
parameters (k 1 . . . .  k~, K, K I, p) determine the steady state concentrations but of 
these, only k., K, K1, and p enter into S* and the remaining n -  1 fix S*, S._ 1. 
On the boundary in parameter space that divides regions of one steady state from 
those of three steady states, the derivatives of the left and right sides of (20) must 
also be equal. Therefore this boundary is found by eliminating S* from (20) and 

p k . ( k .  KS*~ - l) 
k. = (21) 

1 + K 1 S *v  

Since these equations are independent of k 1 . . . .  k._ 1, the boundary is a cylinder 
in n-dimensional space whose generators are orthogonal to the planes k, = constant. 

It is convenient to define 

I . t=k ,S* ,  v = K  1 S *p (22) 

for then (20), (21) can be written 

l + v  
# = " g ~ v '  l + v = p ( K # - l ) .  (23) 

Elimination of # leads to 

v z + v [K (i - p ) + ( 1  +p)]  + K =0~ (24) 

From this equation it follows that arbitrary values of p and K will generally not 
give nonnegative values of k,, K1 and S* along the boundary. For these to be 
nonnegative it is necessary that 

p : - 2  p ~-~Z-~-) + 1_>0. (25) 

This inequality is satisfied for sufficiently large K and the minimum K that 
suffices for various integral p is given in the following table. 

Table 1 

p 1 2 3 4 5 6 

K,,,n oo 9 4 9-78 2.25 1.96 

If, for example, we assume a nuclear diameter of 2.5 microns and I 0  repressor 
molecules/nucleus, then the measured value of 1013 moles =~ for K:  of the lac 
operon [Bourgeois and Monod, 1970] gives 

K ~ K  2 R t +  1 > -.. 105. (26) 

Therefore, whenever repressor is tightly bound to the operon one can expect to 
find values of k. and K~ that lead to three steady states, provided p >  1. For 
p = 1, no value of K wiU suffice. 
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When p and K are such that three solutions can exist, one finds from (22) and (,24) 
that the boundary of the three solution region of the K t - k .  plane is given by 

1 § v_ ~- l,,p (27) (k.)= = v~'~' (g+ v• 

The region thus defined is shown in Fig. 9 Suppose that p, K and Kt are held 
fixed. At small k, only the upper steady state, in which the gene is fully induced, 
exists. In this steady state S, is large, the enzyme concentration is close to the 

HIGH STEADY STATE 

K~ 
Fig. ! Regions of on= and thr~ steady states in the Kt-k. plane.. Curves labelled ~ correspond to 

the two roots of Equation 24 

maximum possible+ and the dimensionless total throughput k, S. is close to one. 
When K i is also small, k, can only be increased slightly before two other steady states 
appear. With further increase of ~ the intermediate and upper steady states dis- 
appear and only the lower steady state in which S, is small exists. If Kt is large 
and k. small k. can be increased substantially before two other steady states 
appear. Hence the larger K~ is, the more the tot~ throughput k. S, is buffered 
against change in the enzyme concentration of the last step. 

Asymptotic stability or instability of any steady state is governed by the roots of 
(18), written here as 

. - - I  

P (2) = Po ( 2 ) - f '  (S*) I~ k,=O (28) 
i = l  

where Po (2 ) -  det {2I-L) .  Fig. 1 (a) shows that when three steady states exist, 
f '  (S*)>k, at the intermediate state and so P(0)<0. Since every coefficient in 
Po (2) is nonnegative, P' (2) > 0 for all 2 > 0 and there exists one and only one real 
positive solution to (28). Although this equation may also have complex conjugate 
roots with a positive real part, it is of little interest to determine when this 
occurs because the intermediate steady state is always unstable. 

For any steady state other than the intermediate one when three exist, f '  (S*) < k, 
and one expects that these steady states are stable. This is shown in the following 
theorem. 
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Theorem 1 : When the steady state of an inducible system is unique, it is asymptoti- 
cally stable. When three steady states exist, the upper and lower states are asymptoti- 
cally stable and the intermediate state is unstable. 

Proof: A sufficient condition that a steady state be asymptotically stable is that the 
matrix L. of the linearized system have only eigenvalues with negative real parts. 
At any but the intermediate steady state, f '  (S~*) < k, and P (0) > 0. Since P' (2) > 0 
for 2 > 0, [, never has any real nonnegative eigenvalues. By Ger~gorin's theorem 
(Mine and Marcus, 1964), the eigcnvalues tic in the closed region of the complex 
2 plane consisting of the union of the disks 

( ().'1 2+k ; l< l  ksl}, j = l  .... n - 1  
G ; -  {2" ]2+f ' (S*) l< lk  s[} j--n.  (29) 

The first n - 1  disks lie in the left-half plane and are tangent to the imaginary 
axis. By virtue of the preceding remarks, the n-th disk is wholly contained in the left- 
half plane. Therefore no eigenvalues of/ .  lie in the closed fight-half plane when S* 
is the upper or lower of three steady states or the single steady state. 

B. Global Stability Results 

With the preceding result on the local behavior of solutions, one can predict 
what happens when a system at a steady state is slightly perturbed. To complete 
the qualitative description of the solutions, information on the existence or non- 
existence of periodic or oscillating solutions is needed. When the steady state in 
an inducible system is unique, such solution s are precluded by the following 
theorem. Before stating it we need the following 

Definition: A steady state S* of the autonomous system (11) is globally asymptotically 
stable if it is stable and tim S (So, t)= S* Jbr all initial points S o in the positive 

orthant of concentration space. 

Theorem 2: When the steady state in an inducible system is unique, it is globally 
asymptotically stable. 

To prove this, we first need a number of other resultso 

The standard technique for proving that a steady state is globally asymptotically 
stable is to show that there exists a scalar-valued function V(S) (a Lyapunov 
function) that satisfies the following conditions (Brauer and Nohel, 1969) 

(i) V(S)>0 for all Si>0, 
(ii) V is non-increasing along the trajectories of (11), 

(iii) S=S*  is the only invariant subset of the set (30) 
{S: (V V, L S +  F (S)) =0}, 

(iv) V ( S ) ~  o~ as I[ S - S *  I} "* ~ ,  Si>0. 

(Here ( , )  and tl.l[ are the Euclidean inner product and norm on R~.) 
Fortunately, the existence of V(S) can be demonstrated once and for all for a 
large class of F (S)o 
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Problems similar to (11), in which there is only one nonlinear term and the 
nonlinearity depends only on a linear combination of the dependent variables, 
have been studied in control theory where they go under the name of Lure's 
problem (Lee and Markus, 1967). More precisely, Lure's problem concerns the 
system 

dx 
=Lx+b.  U (y) (31) 

dt 

where x, b and c are n-vectors, y - ( c ,  x), and U is a scalar valued function for 
which U (0) = 0 and y U (y) >_. 0. For such equations an appropriate choice for the 
Lyapunov function consists of a quadratic form plus an integral of the non- 
linearity 

y 

V(x)=(x ,  H x ) + , l  ~ U(y)dy. (32) 
o 

Here H is a symmetric positive definite matrix and 7 is a real scalar (Aizerman and 
Gantmacher. 1964). If 7 and H can be chosen in such a way that the conditions 
on V are satisfied, the zero solution of (31) is Nobally asymptotically stable. It 
turns out that this can be done for a whole class of nonlinear functions U (y). 
Before stating the general result we need the concept of absolute stability 
(Aizerman and Gantmacher, 1964). 

Definition: Suppose that U is single-valued, that U (0)--0, and that 

0 < y  U (y)<12 ya. (33) 

For fixed 12>0, the system (31) is absolutely stable in the sector [0, Q] provided 
the origin is globally asymptotically stable for any" U (y) that satisfies (33). 

Given that U (y) satisfies (33), conditions on the linear part of(31) that are sufficient 
to guarantee absolute: stability, can be derived directly from (32). However, it proves 
more convenient to work in terms of the frequency response of the linear 
portion; the following theorem in essence expresses these necessary conditions 
in terms of the frequency response. 

Theorem' 3 ['Popov's Theorem]: Suppose that L has only ei#envaIues with negative 
real parts and that the numerato'r and denominator of 

O (,t) __. <c, ( 2 -  L)-  1 b> (3,*) 

have no roots in common. Then a sufficient condition that (31) be absolutely stable 
in the sector I'0, 12] is that there exist a real ? such that the complex function 

1 
T(2) --- O--(1 +7 ~) G (~) 

satisfies (35) 
Re T (i co) > 0 

for all real oo > O. 

A proof of this theorem and generalizations of it can be found in (Aizerman and 
Gantmacher, 1964). 
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To use Popov's theorem to prove Theorem 2, we cast (11) into the form of (31). 
Define 

xi = S i -  S~', 

U (x.) = - k~ S~' + f  (x, + S*), (36) 

br=(1,  0 . . . .  0) and cr=(0,  0, ... 1). 

Now (1 i) takes the standard form 

dx 
= L x + b  U (y), y = ( c , x > = x , .  (37) 

dr 

The first step is to verify that G (2) has no common roots in its numerator and 
denominator. Because L is lower trianguiar~ its resolvent is also and has the form 

I 1/(k 1 +2) 0 ..... . . . . . . .  0 t I 1 1/(k 2 + 2 )  0 . . .  0 

(;~ - L ) -  1 = : m l  �9 

I._ i m._ 2 1/(k. + 2)  

(38) 

In view of the structure of b and c, only the (n, i) element of (2 - L)-  1 has to be 
computed and one finds that 

1 (39) k, 
i=i ki+ 2 

and 

~ . e x p  - i _  Oj 
v=l Vkv+co  ~ j=l  

where O: =- tan-  i (co~k j). 

According to the definition (35) of T (2), 

(4O) 

T (i ~ o ) = ~ - ( i  + i co ~,) G (i o~) 

and (41) 

Re T(i c o ) - - ~ - - R e  G( i~ )+o~7  Im G (i w). 

Popov's theorem asserts that if there exists a real 7 such that Re T(i o~)> 0 for 
o~_> 0, then the origin in (37) is globally asymptotically stable. Geometrically this 
means that there must exist a 7 such that the locus traced by the point 
(Re G, oa Im G) as o0 varies lies to the left of the line 

Re G 1 
~o Im G-- - -  (42) 

7 ? Q '  

Clearly the modulus of G is monotone decreasing in co and 

lira G (i co) = 0. (43) 
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Consequently the locus of (Re G, 09 Im G) spirals inward toward zero and the 
maximum of Re G for Im G=0  occurs at co=0. If f2 is such that T(0)>0 and 7 
is chosen according to 

d (co Im G) 

7 -  t _ do.) ~=o 
- d (Re G) ' (44) 

do) 

(34) will be satisfied for all c~>0. Since 

T(O)= -Re~(O)= n k.' (45) 

T(0)>0 provided k. > O. By definition ~ is the boundary of the sector within 
which U is completely contained and Fig. 1 (a) shows that k. > O always holds when 
there is only one steady state. This proves that (11) is absolutely stable under this 
condition and. hence that the steady state of (11) is globally asymptotically stable 
whenever it is unique., 

This theorem shows that under the conditions given, the necessary condition for 
absolute stability is alLso sufficient. As a corollary, it follows that for p = l and any n, 
the unique steady state is globally asymptotically stable. 

The preceding results give as complete a characterization of the dynamic behavior 
of an inducible system as is possible without specific restrictions on the kinetic 
and binding coefficients. In specific cases, it can happen that when three steady 
states exist the intemaediate state has an n - 1  dimensional stable manifold that 
partitions the phase space in such a way that theset of critical points is globally 
attracting, in the sense used previously. In such cases, periodic solutions can be 
ruled out. It appears that this can only be decided on a case by case basis. 

IV. Repressible Systems 

A. Stability of the Steady State 

The steady state in a repressible system is the unique solution of the system of 
equations 

kl SI' =k2 S~ . . . . .  k. S.*, 
1 (46) 

k .  ~ S. - = f ( S * ) .  
I + Kt  S*~ p 

Since f '  (S*)<0, it follows from (18) or (28) that the characteristic equation for 
the linear system can never have a real positive root. Accordingly, the stability of 
a steady state can only change by virtue of a pair of complex conjugate eigen- 
values crossing the imaginary axis. In the absence of the nonlinear feedback 
term f (S.), the linear system whose matrix is L has n real negative eigenvalues 
) ~ l = - k t , . . . 2 n = - k ~ .  With the addition of the feedback term, the resulting 

Journ. Math. BioL 3/1 5 
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matrix L may have one or more pairs of complex conjugate eigenvalues. The 
characteristic equation for L is 

n--J. 

P(2)=Po ( 2 ) - f '  (S~*) 1-[ k,=0, (47) 
i - - i  

and consequently, as f '  (S*) decreases, successive pairs of complex roots appear. 
At the point at which a real pair first becomes compleX, the real part is strictly 
negative, but as f '  (S*) decreases further the real part may become positive, 
However, at most one pair of complex roots has zero real part for fixed f '  (S*,) and 
any n, as the following proposition shows. 

Proposit ion 1: Define p = f '  (S*,) and write ;t =~ +leo. For fixed k 1 . . . .  k,, P (2)=0 
has at most one pair of purely imaginary roots • i coo at any f ixed po. Moreover, when 
2= +_i co o, then (d ~/d p)p=p. ~-0. 

Proof: Po (2)-- h (k; + 2), 
j = l  

Po(ico)= iI 1/~+,o ~ {cos ~ o;+isin E o;}, (48) 
j~-i j j 

where O:=-tan-~(~/k:). The characteristic equation P (2)=0 has a pair of purely 
imaginary roots • i co~ if and only if 

n--i 

Re Po (i coo)=p ~ k i, Im Po (i coo)=0. (49) 
i=1 

Since Po (0)>0 and the modulus of Po increases with r~, there exists at most one 
co o such that P (i coo)--0. Furthermore, 

(Ira P) d (Re P) ~ (Ira Po) 3 (Re Po) 
P ' ( ) . ) =  ~co i ~ T - - -  3co, i ~co ' (50) 

and because the modulus of Po increases, both partial derivatives cannot vanish 
simultaneously. Therefore the pair + i coo is simple. Finally, 

n - 1  

d; ae/ep VI k, F~(~po) a(~eo)], 
do oP/OZ I0-~20~I: L G * ~  oco 3 (st) 

and if ~(ImPo)/Oco=O when ImPo(icoo)=O, it would necessarily follow that 
Re Po (i coo)=0 as well. However, Po (2)=0 has only real solutions. This proves 
the proposition. 

The necessary and sufficient conditions for (47) to have a pair of pure imaginary 
roots are ~ven by the well-known Routh-Hurwitz stability criterion. However, 
in view of the special structure of (11) it is advantageous to take a more 
geometric approach in deriving conditions for pure imaginary roots~ As previousty~ 
define new variables 
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"U (x,) = k 1 S~' - f  (S~* + x.), (52) 

b r - ( - 1 ,  0, ... 0) and c r = ( 0  . . . .  0,1), 

whereupon (t 1) read; 

dx  
= L x + b  U(y), y = ( c , x ) = x , .  (53) 

d~: 

Clearly x = 0  corresponds to the steady state, and if we lineanze U about this 
steady state we get 

dx  
- ~ - - ( L  + U' (0) b c r) x. ~54) 

A sufficient condition that x - -0  be asymptotically stable is that the matrix 

r~ - L +  U' (0) b c r (55) 

has only eigenvalues with negative real parts. For this, it is necessary and 
sufficient that 

P (it) = det [2 - (L + U' (0) b cr)] # 0 (56) 

in the closed half-plane Re it >_0. Because L is itself a stability matrix, 

d e t ( i t - L ) # 0  for R e i t > 0 ,  (57) 
and 

P (2) = det (it - L) det [I  - U' (0) (it - L ) -  1 b cr]. (58) 

The matrix ( i t - L ) -  1. b c r is of rank one or less; therefore 

det [I - U' (0) (2 - L) - 1 b c r] --- 1 - U' (0) trace {(it - L)- 1 b c r } 

= 1 - U' (0) (c ,  (it - L ) -  ~ b)  (59) 

= I - u '  (0)  O (it).  

The condition (56) for asymptotic stability now takes the form 

I - U' (0) G ( i t )S 0  (60) 

for Re it>_.0. Clearly G (2) has no poles in the fight-half=plane and the principle of 
the argument shows that (60) is equivalent to 

1 - U' (0) Re G (i co)>0 (61) 

whenever Im G (i co)=0 for o~>_0. Evidently this result is just a special case of 
Popov's theorem; that it is 
follows from (56). 

Equation (61) requires that 

also equivalent to the Routh-Hurwitz criterion 

1 
(62) 

5* 
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for stability and thereby gives the critical condition for marginal oscillatory 
stability directly. If we define 

[221 = max Re G (i CO), (63) 
Im G =0 

then marginal oscillatory stability occurs when 

u '  (o) = 0~. (64) 

At co=0, G (0)= - I/k,, and because I G I decreases as co increases, the maximum 
of Re G occurs at the first positive co at which Im G = 0. At this CO, Y" 0j = zc and 

1 

k, ,=, ~ = g2[ i, (65) 

where % is the solution of 

tan-  1 (CO~k1) +. . .  + t an-  1 (CO/k,) = n. (66) 

(2r depends only on the parameters kt, ..., k, of the linear system while U' (0) 
depends only on k,, K I, and p. Therefore one can fix k 1 . . . .  , k, and find the 
stability boundary by varying K 1 and p. Even this becomes unwieldy unless n 
is small so we shall first restrict the number of parameters we allow to vary. 

By direct computation, one finds from (65) and (66) that 

~ in (2~ = k .  cog j = l ,  n - i  (67) 
�9 - . ,  3 : +CO j ~:~ (k~ +COo) k~ q=l ~q q = l  ~ . . . .  

Certainly 3lnf2c/Ok:--.O j = l , . . . n - 1 ,  if k l = k 2  . . . . .  k,. If kp is the largest 
and kq the smallest of k I . . . .  k,_ 1, one finds that 

O~c Of 2c < 0  " ok,>~ . ( 6 8 )  

Ifkp and k~ are fixed, f2~ is largest when the remaining k's are equally spaced between 
kq and kp. Conversely, if the average k is fixed, the variational problem 

kl + ~ + k . _  1 
minf2~(k I . . . . .  k.), kj>0,  ~ n - 1  = k ,  (69) 

has the solution k 1 = k 2 . . . . .  k,_ 1 = k. Since a minimum f2c for fixed k corresponds 
to the most easily destabilized system, we shall hereafter consider only this case 
and with only a slight loss of generality we set k=  1. Only p, K1, and k, will 
be treated as variable parameters and k. >0, K 1 _>0, p_>0. 

With these restrictions on k 1 . . . .  k._ 1, (65) and (66) reduce to 
2 [2r = ( 1 + co~) ~"-1 ~/2 ] / ~  + COo, (70) 

(n - 1) t an-  i co+ tan-  : (CO/k,) = ~. 

From these one can show that 
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and 

0 ~2~ O" f2~ ek2>~ 

, . -o 2 (n - i ) '  tan 2 ( n - 1 )  >0.  

From (46) and (52) it follows that 

U' (0) :  - -f '  (S.*):p k. [1 - k .  S.] ,  

lira - f '  (S.*)=0, lira - f '  (S.*)=0, 
kn~O k n ~  

(71) 

and that 

max [ - - f '  (S~*)]= (p+ 1)2 p - 1  ' -  k.am..) 4 p "  ( p ' ~ )  ' K[/~ (72) 

Finally, at fixed k~, k, S~* decreases as K~ increases and consequently 

a K i ( - f '  (S~*)) > 0. 

With these facts, one can qualitatively sketch both U' (0) and f2~ as functions 
of k. and Kt. The result is shown in Fig. 3 and the conclusions that follow from the 
figure are summarized in Proposition 2. 

U~o) 

k~ 

Fig. 3. Slope of U (y) at the steady state and the critical f2 vs.k. 

Proposition 2: When k t - - k  2 . . . . .  k._ 1 in a repressible system, the steady state 
is asymptotically stable for all K~ >0 if k. is sufficiently small or sufficiently 
large, and for all k~>0 if' K 1 is sufficiently small. At any fixed K 1 there is at 
most one interval ,t, (~., k~)~ [0, m) such that the steady state is unstable for 

The stability boundary in the k., K~ plane is the locus given by the equations 

Or (k,)--- U' (0), k, S, - f ( S , ) .  (73) 

In view of (46), these can be written 

--rl  :~ Q ~ ( k , ) = p k . ( 1 - k . S * ) ,  k , K ,  .~*P+l + k , S ,  - 1 = 0 .  (74) 
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These equations do not necessarily have a real solution for ever)' pair (p, n), 
for p must satisfy 

~ (k.) ~2~ (k.) 
P = k . ( 1 - k , S * )  >' k---~' (75) 

by virtue of the fact that 1 - k .  S* < 1 for all k.>0. If the right-most term of (75) 
is minimized with respect to k., one finds that k. = 1 and therefore 

(k,~, KD > 10,  O) 

This remarkably simple result shows that for any fixed n, there is a minimum 
number of effector molecules that must bind with repressor in order that the 
n-step circuit can have an unstable steady state. The p's that correspond to 
various n are given in the following Table 5. 

Table 2 

n 2 

inf p oc 

5 

2.88 

6 

2 .48  

7 

2.06 

8 

1.94 

Viewed another way, the results in the table show that if four effector molecules 
bind to repressor, there must bc at least five steps in the circuit to produce an 
unstable steady state. Similarly, if only two effector molecules bind to repressor at 
least eight steps are required. This proves that the steady state in the four-step 
problem studied by Morales and McKay (1967) is stable. A specific example 
for p = 4  will be considered shortly, but first we derive some results on global 
asymptotic stability. 

B. Global Stability Results 

In the preceding section it was possible to prove that a unique steady state is 
always globally asymptotically stable because the nonlinearity is confined to the 
sector [0, k,] and this is sufficient for absolute stability. This is no longer the 
case in repressible systems; when the steady state is asymptotically stable in some 
subset of the k , - K 1  plane Popov's theorem implies global stability only in a 
smaller subset, The following propositions give the precise results. 

Proposition 3: Suppose that for fixed p, n and K~ the steady state is asymptotically 
stable for all kn>0. Then there exists a K1 E(0, K~] such that the steady state is 
globally asymptotically stable for all K 1 <_ I7i 1. 

s The results ~vcn are independent of the prior choice k I --k~ ..... k._ r Indeed. if f2~/'~ k~ is 
izl 

minimized directly, one finds by symmet~ that k1=k z .... --k.=k. By scaling time one can 
choose k = I .  
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Proof: From Proposition 2 it follows that the steady state is asymptotically 
stable for all Kt _< K~'. Furthermore, it is clear from Fig. 2 that if 

max [-f(S.*)]  <O~(0) (77) 

for fixed K1, then the nonlinearity is confined to [0, g2~ (0)] and (53) is absolutely 
stable. From (72) one has 

m a x  (78) 

and from (71) 

Therefore,/~1 given by 

K1-- (p+l)Z \-p-'Z]---lj see'-1 2 ( n - 1 ) t a n  2 ( n - 1 )  (80) 

will suffice. Evidently/~1 <-KT. 

If the inequality at (77) is satisfied the steady state is certainly asymptotically 
stable for all K1 <.~t and k.>0. Consequently, to apply the result one only has 
to c o m p u t e / ~  from (80). We have done this for p - 4  and several values of n; 
the results are given in Table 3. 

Table 3 

t l  

g~ 

(KOu~ 

2 

73 

O~ 

3 

30.5 

4 5 
r 

1.17 0.137 

j,  
:e t 9,*,7 

6 

0,055 

32.1 

For comparison, the largest K* for which the steady state is asymptotically 
stable for all k. is also shown. The values of (K~).~ for n=5  and n=6  were 
computed from (73). It is clear from Fig. 2 that (77) is a very stringent condition and 
one can expect that global asymptotic stability holds over a wider range of K t. 

The following proposition widens the range somewhat. However, the important 
conclusion from Proposition 3 is that the steady state is globally asymptotically 
stable for all k. at sufficiently sma u K I. 

Proposition 4: Suppose that for fixed p, n and K~ the steady state is asymptotically 
stable for all k. > O. Then there exists a k*. such that the steady state is globally 
asymptotically stable' for k. > k*. 

Proof: Let k. be the k. at which - f '  (S.*) attains its maximum. Because the 
steady state is asymptotically stable, f2c(k.)>[-f ' (S*)]m~ , and since ~2~ is 
increasing in k., O c (k.)> f2c (~.)V k .>  ~.. The nonlinearity is certainly contained 
in the sector [0, l ' - f '  (S*)]m~,] and by the preceding this sector is contained in 
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the sector [0, f2c] for k, > k,. Therefore the steady state is giobally asymptotically 
stable for k ,> ~,. Consequently any k. >k~ suffices. The minimum k,* for any 
fixed K I is the solution of 

f2c(k*)=max[-f ' (S*)]= (p+!}2 IP-I~-P~K~'P.  (81) 
4p \ p + l J  

It is always the case that (k,-*)~i~ < k,. 

Even if the steady state is not asymptotically stable for all k,, it always is for 
sufficiently large kn; the following shows that the same is true of global 
stability. 

Proposition 5: Suppose that for p, n and K 1 fixed, the steady state is linearly 
unstable for k, ~ (k~, k~). Then there exists a k~ > k~ such that the steady state is 
globally asymptotically stable for kn >_ ~. 

The proof of this is similar to that of the preceding proposition. 

The region of the k,~ K~ plane defined by the conclusions of the three propositions 
is shown in Fig. 4 for a case in which the steady state is linearly unstable for 
some k, and Kt. More precise results on the region of global asymptotic stability 
can be derived for specific choices of p and n. One example will be studied 
shortly. 

K 1 

R 

k~ 

Fig. 4. Regions of linear instability and global asymptotic stability in the k. - K t plane 

C. Bifurcation of Periodic Solutions 

To complete the qualitative analysis of the general repressible system, we have 
to determine the behavior of solutions when k. and K1 fall into the linearly 
unstable region. Suppose that K 1 is fixed at some value greater than/(1 (Fig. 4). 
As k. crosses the left boundary F-  of the unstable region, the real part of a 
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pair of complex conjugate eigenvalues changes from negative to positive. By an 
argument identical to that used in Proposition 1, one can show that dr 
along F- .  Consequently, the Hopf bifurcation theorem ['Ruetle and Takens, 1971] 
implies that a unique periodic solution bifurcates at zero amplitude as / ' -  is 
crossed. The periodic solution fails under one of three possibilities: (i) it exists 
only for k. < k. L, (ii) it exists only for k. = k .  z or, (iii) it exists only for k. > k. z. At 

kn~ /" - k. the period is that of the linear system, namely, 2 z~/co o. A similar situation 
obtains along F + : a unique solution emerges or disappears as k. crosses k. U and this 
solution falls under one of the above possibilities. 

The Hopf  theorem assures existence of the periodic solution., but more must be 
done to determine the direction of bifurcation and the stability of the bifurcating 
solution. Disregarding the case where the solution exists only at k . = ~  or at 

_ U k . - / r  there are two possibilities along either F -  or F +. Along F- ,  either an 
unstable periodic solution bifurcates to the left ( k . < ~ )  or an orbitally stable 
periodic solution bifurcates to the right (k.>k.Z). Similarly, along F + either a 
stable solution bifurcates to the left (k. < k D or an unstable solution bifurcates to 
the right (k.>k[).  Which of these two possibilities obtain along F +- can be 
decided by a lengthy calculation, for which a general procedure is available 

K~ 

lo' 

I 

UNEARLY UNSTABLE 

I l l l l l l l , , I I  k 
1~ 2.0 s 

Fig. 5. Regions of linear instability and global asymptotic stability in the k s - K t  plane. Solid curve: 
linear s~mbility boundary. Broken curve: global stability boundary 
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[Hsti and Kazarinoff, 1975]. However, we shall not pursue this for the general 
system, for the effort required is currently unwarranted. Some computational 
results given in the sequel suggest what may happen in general. 

D. Stability and Periodic Solutions for p = 4, n = 5 

Consider a repressible system which has five steps in the control sequence and 
for which four molecules of Ss bind to each repressor molecule. The boundary of 
the linearly unstable region of the ks, K1 plane is given by 

f2~ (ks)=4 k~ (1 - k s S~), k s K 1 S~ '5 +k  s S~ - t =0 .  (82) 

These equations have been solved numerically and the boundary is shown as a 
solid line in Fig. 5. Above this curve the steady state is linearly unstable and 
elsewhere it is asymptotically stable. 

The region of the plane in which Popov's theorem implies that the steady state 
is globally asymptotically stable is found as follows. The nonlinearity always 
lies in the sector [0, 7J where Z is the maximum chord slope: 

)~-- max [ f (S'~)- f (x' + S'~) ] x ,  x,  " (83) 

If Z<I2, for fixed k s and K 1, the steady state is globally asymptotically stable. 
The boundary of the desired region can therefore be obtained by solving 

I 2 c x s = f ( S . ~ ) - f ( x s . ,  * _ f ,  , Ss), ~ c  = (x~ + S~') (84)  

in conjunction with the equations 

Qc=(1 +w~)"Y- V ~ ,  
(85) 

I 
k s S~' = 

I + K  1 S~*' 

4 tan- 1 0% + tan- 1 (coo/k s) = ~. 

The last equation can be solved explicitly to give 

o% --2 k s + 3 - 2  y'ks: + 2 k5 :t-2 (86) 

and so g2~ can be found explicitly for any ks. The remaining three equations 
contain the four variables x~, S~', K~ and k 5 and one can expect that they 
generally define a curve in the k s, K1 plane. One finds that 

and 

8 k 5 S~' - 5 + I//55 - 16 S~' (K 1 + k~) 
x5 = 8 K 1 

1 - k5 S~ 
K I =  ks S~ '5 ' 

k 5 (i - k  5 S~ + K  1 x 5) S~ ~ +(ks S~'- 1)(k 5 S ' ~ - K  1 xs)(x~ + S~')4=0. 

(87) 
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This system of equations defines the boundary of the region of global asymptotic 
stability. These were solved numerically and the results are shown as the broken 
curve in Fig. 5. Except at large k~.and K t, the broken curve follows closely the solid 
curve that defines the limit of linear stability. Consequently. but for the small 
region between these curves, an asymptotically stable system is also globally 
asymptotically stable,. It seems doubtful that this conclusion would change signi- 
l]cantly for larger n aitthough the two curves may not follow quite as closely. 

The Hopf theorem predicts that periodic solutions bifurcate upon crossing /'= 
and the preceding results show that if bifurcation is to the left along ['-, the 
unstable solution can at most exist in a very smaU interval l'k~, ~ ] .  A similar state- 
merit holds for unstable solutions that may bifurcate to the right at F +. Although 
we cannot rule out the possibility of unstable bifurcating solutions, they seem 
unlikely in view of the following`computations. 

Equations (53) were integrated numerically at numerous points across the linearly 
unstable region. Fig, 6 (a) shows the amplitude and Fig. 6 (b) the period of the 

AMPLI;UOE 
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0.1 

PERIO0 
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i 

it i ) i i * , - ,  i k ~  

b 

Fig. 6, (a) Amplitude vs. k s and {b) Period vs. k s of the periodic solution for the five-step circuit 
with p=4,  K t --.2883 
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periodic solution as a function of k~ for fixed Kx. The quantity shown is the 
root mean square amplitude (~  (A S~)2) 1/2. As closely as can be determined 
numerically, the stable solution bifurcates to the right at k5 z. As k s increases the 
amplitude first increases, goes through a maximum, and then decreases. At the 
right-hand boundary of the linearly unstable region the periodic solution bifurcates 
to the left. The period decreases monotonically as k s increases from k~ to k v. 

In Fig. 7 we show the amplitude as a function of K1 for fixed k 5. The solutions 
have the interesting property that the period is essentially insensitive to changes 
in K1; all points shown in the figure have a period within _+5~o of T=8.75. 
Furthermore, the amplitude rises sharply at first but levels off quickly and 
thereafter is essentially constant. Therefore when the affinity of repressor for effec- 
tor is sufficiently large, both the period and amplitude are essentially constant. 

0"21 

500 1000 " 1500 
, K1 

2OOO 

Fig. 7. Amplitude vs. K~ for the same system as in Fig 6 but with k~ = 1.0 

D i s c u s s i o n  

The major question that motivated this investigation was whether simple 
"straa.'ght-through" molecular circuits for the feedback control of gene transcrip- 
tion are capable of sustained autonomous oscillations. If the control circuit 
functions by positive feedback, and if there is only one steady state, one can 
categorically rule out sustained oscillations: the steady state is always globally 
asymptotically stable for any choice of kinetic constants in the first n - 1  steps. 
Consequently, such circuits are very strongly buffered against perturbations in 
the enzyme or substrate concentrations: for any concentration fluctuations the 
system returns to the steady state. When three steady states exist, one can make 
no general statement about the absence of oscillations; a case-by-case analysis is 
needed. What is interesting when there are three steady states is the possibility 
of switching between the two stable states by, for example, changing the enzyme 
concentration for the final step in the sequence. If the concentration of this last 
enzyme is under control of another circuit, its concentration can be raised or 
lowered and the net production of some key protein for differentiation can be 
switched on or off. 

Such switching between steady states is impossible in circuits that use negative 
feedback, but under appropriate conditions these circuits can oscillate. One 
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interesting result is that a very simple relation exists between the number of 
effector molecules bound to repressor and the minimum length of the circuit 
needed to produce an unstable steady state. If p is fixed, and n is below the 
required minimum, the steady state is asymptotically stable for any choice of 
kinetic and binding constants. Ifp is above this minimum, it is still the case that the 
steady state is asymptotically stable if k, is small enough or large enough. Thus 
either long-lived (smaU k,) or short-lived (large k~) end products lead to a stable 
steady state. Asymptotic stability does not preclude large amplitude oscillations 
a priori, but we could show that when k t . . . . .  k~_ 1 and either K t is small or 
k~ is sufficiently large, the steady state is also globally asymptotically stable. 

The computational results given in the preceding section show that Popov's 
theorem can give a very good estimate of the region of global asymptotic 
stability. While results were only given for the case k l = k  z . . . . .  k~_ t, the 
technique is certainly applicable in general. One only has to solve a system 
comparable to (84) and (85) over the range of the variable k;'s. Since all k/s for 
the intermediate steps enter both the characteristic equation and Equations (85) 
and (86) symmetrically, only a restricted region of parameter space needs to be 
explored. 

All .the preceding analysis is based on the assumption that all enzymes and 
substrates are uniformly distributed in space. In reality cellular enzymes are often 
immobilized on various organelles and any intermediate product in the control 
circuit must diffuse to the succeeding enzyme. If intermediates are small and the 
distances short (as they are within a single cell), diffusion will be sufficiently rapid 
to maintain spatial uniformity. However, for larger molecules the time delay due 
to transport may be significant; this could be another source of oscillations. A 
simplified model wherein enzymes are spatially localized has been studied by 
Glass and Kauffman (1972), who found that in a two-enzyme system spatial se- 
paration of enzymes could indeed produce oscillations where none would occur 
in a uniform system. A very careful analysis by Aronson (1975), of a somewhat 
similar system of two immobilized enzymes leads to a similar conclusion: when 
the product of enzyme A inhibits enzyme B but B's product activates the enzyme 
for A, time-periodic solutions exist for appropriate values of the kinetic parameters. 
The results are not quite directly applicable to the case at hand, because once 
the possibility of spatial non-uniformity is allowed, transport mechanisms other 
than diffusion must also be considered. The most important one is probably 
transport across the nuclear membrane. 
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