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Abstract A loss of inhibitory interneurons has been re-
ported in the hippocampus following seizure activity in
various animal models of epilepsy and in human epileptic
tissue. The question of whether particular populations of
inhibitory neurons are similarly affected by the chronic
block of inhibition that results after tetanus toxin injec-
tions directly into the brain has not previously been ad-
dressed. In the present study a unilateral intrahippocampal
injection of tetanus toxin into the ventral hippocampus
was used to produce a chronic epileptic syndrome charac-
terised by brief seizures that recurred intermittently for
6—8 weeks. The results reveal, for the first time, the mor-
phological changes in somatostatin interneurons follow-
ing tetanus toxin-induced seizures in the rat. A bilateral
short-term increase in immunoreactivity of somatostatin
neurons is present 1week after injection. This is accom-
panied by an increased intensity of somatostatin-im-
muporeactive axon terminals in the outer molecular layer
of the dentate gyrus, which is more marked on the con-
tralateral side. A chronic and significant loss of somato-
statin-immunoreactive neurons was noted in the hilus of
the dentate gyrus 2months later. The significance of the
chronic loss of the hilar somatostatin neurons in the con-
trol of excitatory activity in the dentate gyrus and whether
the acute morphological changes are due to a direct action
of the toxin on release mechanisms or as a result of sei-
zure activity are discussed.
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Introduction

The likelihood that a decrease in inhibition participates in
epileptogenesis has been a central theme in the investiga-
tion of mechanisms of chronic epilepsy [21, 29]. Early in-
vestigations focused mainly on models in which an acute
block of -aminobutyric acid (GABA)-mediated inhibition
was present; however, more recently models have become
available in which a chronic block of inhibition is possible
[16, 23]. Injection of minute amounts of tetanus toxin di-
rectly into the brain generates an epileptiform syndrome,
which is presumed to resuit from a chronic block of inhi-
bition [14, 38], and which allows the study of the conse-
quences of a period of relatively brief but intense seizure
activity on hippocampal structure and function.

So far, very few neuropathological consequences have
been reported to result from the chronic block of inhibi-
tion produced by low doses of tetanus toxin. Unlike toxins
acting directly on excitatory transmission, such as kainic
acid, overt lesions of pyramidal cells do not appear to re-
sult with tetanus toxin [18]. In a recent study, Jefferys et
al. [16] have reported that only 3 out of 36 tetanus toxin-
injected rats showed a small loss of CA1 pyramidal cells
contralateral to the injection site. Other studies have re-
vealed activated microglial cells along the CA1 pyramidal
cell dendrites [32], which might be indicative of previous
cellular damage in CAl. However, this remains fairly lim-
ited compared to damage produced by “excitotoxins” such
as agonists of glutamate receptors.

A loss of GABAergic interneurons has frequently been
postulated to be at the origin of chronic hyperexcitability
in epilepsy. Evidence for a significant loss of GABAergic
interneurons, from immunocytochemical studies using
glutamate decarboxylase (GAD) as a marker, have been
somewhat controversial (for review see [13]). More recent
studies have attempted a more refined analysis and have
focused on identifying particular subsets of specific in-
hibitory neurons which are lost or malfunctioning follow-
ing seizure activity [2, 3, 17, 19, 25, 34, 36, 37]. Hilar in-
terneurons containing the neuropeptides somatostatin and
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neuropeptide Y would appear to be the most vulnerable
population, losses having been reported following kainic
acid treatment [37], perforant path stimulation [34] and in
human temporal lobe epilepsy [28]. The question of
whether this particular population of inhibitory neurons is
similarly affected by the seizure activity in the tetanus
toxin model has not previously been addressed.

The present study describes, for the first time, bilateral
morphological changes in, and the subsequent loss of, so-
matostatin-immunoreactive (SI) neurons following a uni-
lateral injection of tetanus toxin into the hippocampus.

Materials and methods
Animals

Wistar rats (n = 54) weighing between 180 and 200 g body weight
were anaesthetised with an intraperitoneal injection of sodium pen-
tobarbitone (Sagatal 60mg/kg) and placed in a stereotaxic frame.
Animals were separated into groups: group A (n = 44) received a
unilateral injection of 0.5 ul (10ng) tetanus toxin (a gift from Well-
come Biotech) into the CA3 region of the ventral hippocampus
(co-ordinates: +3.2mm from interaural line; +5.3mm lateral; +6.0
mm ventral from dura: [26]); and group B (n = 10) received a uni-
lateral injection of physiological saline (0.5 1l) into the ventral hip-
pocampus. Animals in group B were killed by perfusion (see be-
low) 2 months later. Animals in group A were killed at 24h (n =
2); 48h (n = 2); 96h (n = 2); 5 days (n = 2); 6 days (n = 2); 7 days
(n=2); 9 days (n = 2); 12 days (n = 2); 14 days (n = 6); 1 month
(n = 10) and 2 months (n = 12) after the injection of tetanus toxin.
Each tetanus toxin-injected animal was continuously monitored
throughout the first 7 days by means of a video camera to establish
which animals were experiencing spontaneous seizures.

Fixation

While under deep Sagatal anaesthesia, the animals were perfused
with 100ml of physiological saline via a cannula inserted into the
left ventricle followed by 50ml of 4% paraformaldehyde in 0.1M
phosphate buffer pH7.4. The hippocampi were removed from each
animal and postfixed in 4% paraformaldehyde for a further 4h.
Each hippocampus was sliced into four blocks (Fig. 1) and trans-
ferred into 0.1 M phosphate-buffered saline (PBS) pH7.4 over-
night at 4°C. Serial 40-um-thick vibratome sections from each
block were collected in PBS prior to further treatment.

Histology and immunocytochemistry

Serial sections of hippocampal tissue from block d (Fig. 1) were
stained with 1% cresyl violet and used to confirm the position of
the injection site, and to establish any gross pathology or obvious
cell loss. Serial 40-um sections of hippocampus from block b (Fig.
1) were processed for somatostatin immunoreactivity using the
avidin-biotin method with Vectastain kits. To avoid any variability
in immunostaining sections from all animals were incubated at the
same time and with the same reagents. In brief: endogenous per-
oxidase activity was blocked by treating sections with a methanol/
hydrogen peroxide solution (11.8:0.2, v/v) for 10min. After rins-
ing in PBS, sections were treated with 1% bovine serum albumin
in distilled water for 5min, rinsed in PBS and incubated in the pri-
mary sormatostatin antibody (a kind gift of G. Sperk, University of
Innsbruck) at a dilution of 1:1000. This antibody, raised in rabbits
against the synthetic peptide, has been extensively characterised
by radicimmunoassay; it recognises on an equimolar basis so-
matostatin 14, 28 and prosomatostatin [35]. In control sections
specific immunoreactivity was blocked by preadsorbing the anti-
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Fig.1 Diagram shows how the hippocampus was sliced. The
shaded area (b) was used for somatostatin-immunoreactive neu-
ronal cell counts

serum with 10nM somatostatin. Sections were then treated with
biotinylated goat anti-rabbit IgG (1:200; 90min at 20°C), avidin-
biotin horseradish peroxidase complex (1:100; 120min at 20°C).
Immunoreactivity was visualised using 0.05% diaminobenzidine
and 0.01% hydrogen peroxidase (2—-6 min) in 0.02M PBS pH7.6.

Cell counts

The total number of SI neurons was counted in the dentate hilus of
each animal. A minimum of 30 (average of 40) serial 40-um sec-
tions were used from each hippocampus. To minimise the possi-
bility of counting the same neuron in adjacent sections only neu-
rons with an obvious nucleus were counted. Statistical analyses
(unpaired Student t-test) were performed on the data from hip-
pocampi of both sides.

Results
Animal behaviour

Each tetanus toxin-injected animal exhibited the charac-
teristic epileptic syndrome which has been described in
detail elsewhere [12, 23]. The first seizures occurred usu-
ally between 4 and 6 days after injection and then on a
chronically recurrent basis over several weeks. These
seizures typically begin with arrest of activity, followed
by myoclonic jerks of the front limbs and, in some ani-
mals, generalised tonic clonic seizures. During the final
day of continuous monitoring (day 7 after injection) all of
the tetanus toxin-injected animals exhibited myoclonic
jerks of the front limbs and in 15 animals this activity de-
veloped into a generalised seizure. The number of
seizures ranged from 6 to 12, but in one animal 22
seizures were recorded. The duration of the seizures var-
ied between 5 and 73s. None of the animals in group B
showed any evidence of seizure activity.

Cresy! violet staining

Although neuronal counts were not performed on the cre-
syl violet-stained sections, there was no obvious loss of
neurons observed in the tetanus toxin- or saline-injected
hippocampi when compared to the contralateral side at
any of the time periods examined. In those tetanus toxin-
injected animals in which the injection site was positively
identified, it was found to be on target.
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Fig.2 SI neurons in the dentate hilus and their terminal arborisa-  thionin. e, f Dark-ground microscopy. a Saline-injected control; b
tion in the outer molecular layer (OM) of the injected (c, e} and 5 days; ¢, d 7 days; e, £'9 days after injection of tetanus toxin. Scale
contralateral (b, d, f) hippocampi. a~d Counterstained lightly with ~ bar = 100 um
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Table 1 Mean number and standard deviation of hilar somato-
statin-immunoreactive neurons per section. Significance levels from
saline-injected controls

No. of Group Mean and SD P Mean and SD P
animals Left side Right side

10 Saline 354+3.7 - 354 +3.7 -
22 2 weeks 383+7.0 NS 399 +7.1 NS
10 4 weeks 354+ 6.7 NS 37.8+6.38 NS
12 8 weeks 25.6 +4.5 Hokok 24.1+4.3 Hokok

NS Not significant; *** P = < 0.001

Somatostatin staining

At post-injection times of less than 1week, no obvious
difference was apparent in the morphology or the intensity
of the hilar SI neurons in the tetanus animals when com-
pared to those observed in sections from the saline-injected
animals. However, between 7 and 14 days after injection
there was an obvious bilateral increase in the intensity of
staining of the SI neurons (Fig. 2a—d). This was accompa-
nied by a marked increase in the intensity of the SI termi-
nal plexus in the outer molecular layer (OML) of the den-
tate gyrus, which was more marked in the contralateral
hippocampus (Fig. 2e, f). At 1 and 2months after injection
of the tetanus toxin the SI neurons appeared normal.

Number of hilar SI neurons

There was no significant difference between the number
of SI neurons in the saline-injected hippocampus and that
in the contralateral hippocampus of the same saline-in-
jected animals and, therefore, the results are pooled. The
number of SI neurons in the dentate hilus of animals killed
at periods of less than 2 weeks after tetanus injections did
not differ significantly from those killed at 2 weeks, and
for convenience the results are pooled (Table 1).

As can be seen from Table 1 there was no significant
difference between the number of SI neurons in the den-
tate hilus of the tetanus toxin- injected animals killed at 2
and 4 weeks after injection and the number counted in the
hilus of the saline-injected animals. However, at 8 weeks
after an injection of the tetanus toxin, there was a highly
significant bilateral reduction in the number of hilar SI
neurons per section when compared to the saline-injected
controls.

Discussion

This study demonstrates, for the first time, changes in SI
interneurons following tetanus toxin-induced seizures in
the rat. An acute increase in immunoreactivity of SI neu-
rons and their axon terminals in the OML of the dentate
gyrus is followed by a chronic loss of SI neurons in the
dorsal dentate hilus after a unilateral injection of tetanus
toxin into the ventral hippocampus.

This discussion addresses the following points: the sig-
nificance of the short-term morphological changes and in
particular the more marked increased activity of SI axon
terminals in the OML of the contralateral dentate gyrus;
and how the chronic loss of SI hilar neurons compares
with that seen in other animal models of epilepsy and with
that seen in biopsy material from human epileptic pa-
tients.

Significance of the short-term morphological changes
in the ST neurons

The bilateral increase in somatostatin immunoreactivity
seen around 7 days could result from direct actions of the
toxin on release mechanisms or indirectly from the
seizure activity.

The acute mechanism of action of tetanus toxin in-
volves a heavy chain responsible for specific binding to
neuronal cells and a light chain which blocks neurotrans-
mitter release through cleaving synaptobrevin 2, an inte-
gral membrane protein of small synaptic vesicles [30].
The mechanism through which the toxin initially gener-
ates a block of inhibition involves a depression of the evoked
release of the inhibitory transmitter GABA [5, 15]. Since
the majority of the hilar SI cells also contain GABA, it
would seem reasonable to assume that the tetanus toxin is
acting on these cells. Somatostatin, like other neuropep-
tides, is derived from precursor molecules which are syn-
thesised in the perikaryon, stored in vesicles and then
transported to the nerve terminals [12]. An accumulation
of somatostatin immunoreactivity, as seen in the ipsilat-
eral hilar neurons of the present study, could be explained
by the toxin blocking the release of the peptide. The in-
creased somatostatin immunoreactivity observed in the
contralateral hilar neurons might be the result of the an-
terograde or retrograde transport of the toxin [31]. Both
CA3 pyramidal cells and hilar projection neurons provide
possible routes for the toxin to reach the contralateral hip-
pocampus. However, since the tetanus toxin remains in
the injected hippocampus [22], as does the block of Ca?*-
dependent K+-evoked release of GABA [8, 9], this expla-
nation seems unlikely.

An alternative explanation could be that the increased
immunoreactivity of the SI neurons both ipsilaterally and
contralaterally may be a reflection of increased synaptic
activation due to seizure activity. This latter explanation
seems more likely in view of the fact that the toxin blocks
inhibition within a few hours [38] but the increased im-
munoreactivity appears after approximately 7days, when
overt seizures are apparent. A similar explanation has
been offered to explain the increased levels of GAD
mRNA present in the hilar cells in this tetanus toxin
model [24].

The increased somatostatin immunoreactivity may be a
reflection of increased somatostatin synthesis, in an at-
tempt to further increase inhibitory potency as a result of
seizure activity. It has been suggested that, by analogy
with peripheral systems, neuropeptides, which are stored



in large dense-cored vesicles, are preferentially released
during the increased activity that may occur during epi-
leptiform bursting [12, 37]. The hippocampus is able to
cope with the initial disinhibition in the injected hip-
pocampus but, as the hilar mossy cells are uncoupled
from their inhibitory control and the commissural/associ-
ational excitation increases, the epileptiform focus “ma-
tures” [24] and further morphological changes such as ax-
onal sprouting and synaptic reorganisation might be neces-
sary.

A considerable degree of anatomical plasticity appears
to occur following seizure activity in the hippocampi in
several animal models [4, 7, 27, 37, 39] and in humans [1,
40]. The increase in somatostatin immunoreactivity ob-
served in OML of the present study could be a reflection
of sprouted somatostatin terminals. The more marked in-
crease observed in the contralateral OML may be an at-
tempt to reduce afferent excitation of contralateral granule
cells in the face of a developing mirror focus. This would
also indirectly result in a reduction of reverberating com-
missural activity back to the ipsilateral side, which would
presumably have a reduced seizure threshold at this point.

The long-term loss of SI neurons

The initial observation by Sloviter [33] of a specific re-
duction in SI neurons, similar to that observed in the pre-
sent study, following repeated perforant path stimulation
has also been reported in other animal models [6, 37] and
in human temporal lobe epilepsy [19, 28]. These neurons
also appear to be vulnerable to traumatic brain injury [20]
and cerebral ischaemia [17]. These SI neurons seem,
therefore, to be much more vulnerable to excitotoxic dam-
age (caused by excessive release of glutamate) than, for
example, the basket cell interneurons, which appear to
survive perforant path stimulation [33], kainic acid
seizures [2, 7] and are still present in hippocampi from
human epileptic brains [35]. There is some evidence to
suggest that the cells that are resistant to excitotoxic dam-
age in the dentate gyrus may be protected by the presence
of calcium binding proteins in their cytoplasm [35], al-
though this has been questioned recently {10]. In contrast
to other epilepsy models, the tetanus toxin-induced seizures
are caused by a complete failure of inhibitory GABAergic
mechanisms and not of direct stimulation. Nonetheless,
the end-result remains a loss of these vulnerable SI neu-
rons.

In conclusion the present study provides evidence of
acute bilateral morphological changes in, and a chronic
loss of, hilar SI neurons following a block of inhibition
induced by a unilateral intrahippocampal injection of
tetanus toxin.
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