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ABSTRACT. It is observed that many students have difficulty in producing correct 
proofs by the method of mathematical induction. The notion of a correct proof by this 
method is analysed mathematically. Subsequently, the topic is analysed into behavioural 
skills and subjected to a conceptual analysis. Common misconceptions of induction are 
considered, with recommendations for their remediation. Finally, criteria for the analysis 
and evaluation of textbook treatments of induction are evolved and applied to a selection 
of texts. 

1. I N T R O D U C T I O N  

The post World War Two years have seen a tremendous growth in the analysis 

of  the mathematics taught to younger school children and their understanding 

of  it. This has been followed by an analysis of  the mathematics taught to 

secondary school children and by the development of  new curricula for them. 

The literature on the teaching of  mathematics to these groups of  children has 

grown to vast proportions. In all this growth, there is an area to which com- 

paratively far less attention has been directed. This is the teaching of  math- 

ematics to senior school students in sixth forms or high schools. The teaching 

of  some of  the topics for students at this level is beginning to receive more 

attention. For example the teaching of  calculus is the subject of  the recent 

book by Neill and Shuard (1982). Many other topics are still too rarely dis- 

cussed from a pedagogical viewpoint. One such topic is mathematical induction, 

the subject of the present article. Although not entirely neglected (for an 

early discussion of  some of  the pedagogical issues involved see Young (1908)) 

this topic has been chosen because it needs attention. There are unresolved 

problems concerning the teaching of  mathematical induction which should 

benefit from a careful analysis. 

Students pursuing the academic study of  mathematics to the tertiary 

or pre-tertiary levels will generally meet the method of  proof  by mathematical 

induction. Many of  these students find the method difficult to master. A 

graphic account of" the confusion that can arise in the mind of  a student whilst 

being taught the method is given by Shaw (1978). Other authors write of  the 

difficulties that arise in teaching mathematical induction, for example: 

I can honestly say that I have almost never encountered a college freshman in a rim-of-the- 
mill calculus class who really understood the concept of proof by mathematical induction. 
(Brumfiel 1974, p. 616.) 
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Wheeler (1981, p. 275) begins his discussion of induction thus: " . . .  an 
important question to ask first is: why are so many students unhappy about 
mathematical induction?" Both these authors continue by giving their particular 
teaching responses to students' difficulties in the learning of induction. There 
is, however, to my knowledge, no systematic account in print of the teaching 
of mathematical induction, of the problems that arise, of the deeper issues 
involved or of the treatments given by text books. This article aims to fill 

this gap. 
Before dealing with the more pedagogical issues it seems appropriate to 

precisely establish the nature of the method of mathematical induction, and 
what constitutes a correct proof by this method. 

2. MATHEMATICAL ANALYSIS OF INDUCTION 

The Principle of Mathematical Induction can be presented to students in a 
variety of forms. It can be expressed set-theoretically in terms of the set of all 

natural numbers which have some property. More commonly, it is expressed 
simply in terms of a property of natural numbers. Of these two similar forms 
the latter seems preferable on the grounds of simplicity, for the set of natural 

numbers satisfying a given property is secondary to the given property. 
A further variation depends on the choice of first number on which to base 

the induction. Both 0 and 1 are commonly used. Some authors, including 
Woodall (1975), use a parameter ao which can take any non-negative integral 
value. In fact, an inductive proof can begin with any integer, positive or negative. 
However, for pedagogic purposes, in my view it is best to choose a concrete 
starting point, and following most British school texts I shall take 1 as the 

starting number. 
Bearing in mind the choices that have been made, the Principle can now 

be stated: 

The Principle of  Mathematical Induction (PMI) 

If 1 has property P, and if any n having property P implies that n + 1 has 
property P, then every n has property P. 

In this formulation the variable n ranges over the set of natural numbers 
(taken to begin with 1), as the choice of letter signifies, and P is a fixed but 
arbitrary property of natural numbers. 

The principle may be expressed more briefly: If P(1) and if for all n P(n) 
implies P(n + 1), then for all n, P(n). 

Both these forms of PMI are expressed informally, as is appropriate for 
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introducing PMI to students. PMI can be expressed more formally either as 

an axiom or as a rule of inference. 

Axiomatic Form o f  PMI 

[P(1) A Vn[P(n) ~ P(n + 1)]] --, Vn P(n) 

It should be noted that this statement, which is (a reformulation of) one of 
Peano's axioms for the natural numbers, can be derived as a theorem in certain 

other systems, for example in Zermelo-Fraenkel set theory. 

Rule o f  Inference Form of  PMI 

P(1) Vn[P(n) ~ P(n + 1)1 

Vn P(n) 

As is common in the presentation of rules of inference, the premises are 
shown above the bar (solidus) and the conclusion which may be drawn is 
shown underneath. This symbolism probably derives by analogy from arithmetic 

2 
sums, for example 4 '  in which inputs 2 and 3 are combined through the 

operation of addition to give the output, or answer, 5. In both school math- 
ematics and in higher mathematics PMI is usually used as a rule of inference, 
but informally. A correct usage of PMI, also known as a proof by the method 
of mathematical induction, has the following form. There are four components: 

( t )  The statement of the theorem to be proved: VnP(n); 
(2) An explicit invocation of PMI, and two subordinate proofs; 
(3) Verification of P(1), the fact that the number one has the required 

property, known as the basis o f  the induction, 
(4) Proof of the universally quantified implication statement: 
Vn[P(n) ~ P(n + 1)], known as the induction step. The proof of the induc- 

tion step is usually carried out in the simplest possible way, first by adopting 
the assumption P(n) known as the inductive hypothesis. This is followed by 
the derivation of P(n + 1). This permits the assertion of P(n) ~ P(n + 1) and, 
finally, of Vn[P(n) ~ P(n + 1)], provided that the variable n first occurs freely 
in the inductive hypothesis. This last step, rather a logical nicety, is almost 
always taken for granted and is theoretically dispensible in a free variable form 
of PMI. To summarise, a correct proof by mathematical induction consists of: 

(1) Statement of theorem VnP(n); 
(2) Invocation of PMI; 
(3) Basis of induction (Proof of P(1)); 
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(4) Induction step, usually with derivation of P(n + 1) from inductive 
hypothesis P(n). 
These four components may be presented in any order, although some orders 
are evidently more sensible than others. A proof in which either (1) or (2), or 

both, are omitted can be regarded as an abbreviated, but still correct, proof. 

If either (3) or (4) is missing, then the proof is not correct. The presentation 

of a typical proof by PMI is as follows: 
Theorem: Vn P(n). 
Proof: by mathematical induction. 
Basis: proof of P(1). 
Inductive hypothesis: assume P(n). 
Induction step: proof of P(n + 1) from inductive hypothesis. 
[] or other marker signifying end of proof. 

Having considered the nature and the form of a correct proof by math- 
ematical induction, we move in the next section to a consideration of the 
production of such proofs by students. 

3. ANALYSIS INTO BEHAVIOURAL SKILLS 

The question addressed in this section is: what skills does a student need to 
have in order to construct correct proofs by induction? The answer to this 
will vary with the context and, in particular, depends on the theorems the 
student is expected to prove. Assuming that we are only concemed with 
the proof of routine theorems, that is theorems closely resembling results 
the student has already encountered, the question can be answered. For 
specificity we further assume that the routine results to be proved are 
algebraic identities. This assumption is justified on the grounds that, although 
problems may originate in many areas including finite and infinite series, 

number theory (especially divisibility) and geometry, the formulation of these 
results is usually algebraic. 

Given these qualifications the question is: what behavioural skills does a 
student need in order to construct proofs by mathematical induction? A correct 
proof by mathematical induction has two subsidiary proofs as components, the 
basis of the induction and the induction step, so a student needs the ability 
to construct these subsidiary proofs. In addition, he must be able to incorporate 
these two components into an inductive proof, with explicit reference to PMI. 
Thus, the ability to construct a proof of a routine problem expressed algebraic- 
ally by MI, can be analysed into the following three behavioural skills: 

(a) The ability to prove the basis of the induction. This consists of the 
ability to verify that fixed numerical properties hold for particular numbers. 



M A T H E M A T I C A L  I N D U C T I O N  177 

Under the restrictive conditions considered, this depends on the ability to 
perform substitution into algebraic expressions in a single variable. 

(b) The ability to prove the induction step. This depends on the ability to 
prove an implication statement by deducing a conclusion from a hypothesis. 

Under the restrictive conditions considered, this consists of the ability to make 
deductions from algebraic identities, which in turn depends on the ability to 
manipulate algebraic expressions and identities. 

(c) The ability to present a proof by mathematical induction in the correct 
form. This is manifested in the ability to communicate the knowledge of the 
correct form of a proof by mathematical induction in some way - be it verbal, 
written or diagrammatic. 

These, then, constitute the behavioural skills necessary for the production 
of proofs of routine algebraic results. The analysis is shown as a flow diagram 
in Figure 1. 

Abil i ty to construct correct proofs by mathematical induction of routine 
problems expressed algebraically 

Abi l i ty to present a 
proof by mathematical 
induction in the correct 
form 

Abi l i ty to prove the 
basis of the induction 

Abil i ty to prove the 
induction step 

Abil i ty to Communicate 
knowredge of the form 
of proofs by MI 

Abil i ty to verify a 
fixed property of a 
particular number 

Abi l i ty to perform 
algebraic 
substitution 

Abil i ty to construct 
proofs of implication 
statements 

Abil i ty to make 
deductions from 
algebraic identities 

f 
Ability to manipulate 
algebraic expressions 
and identities 

Fig. 1. The analysis of induction into behavioural skills. 

The above analysis is quite useful in that it reveals the behavioural skills 
inherent in the ability to construct correct proofs by induction (of routine 
algebraic problems). Teaching which follows this behavioural analysis represents 
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a considerable improvement on some of the teaching and texts of the past in 
which the method of MI is 

some strange jiggery-pokery that has to be used to prove the binomial theorem . . . .  This, 
quite literally, is the sole experience that some pupils are given of this exciting and 
powerful technique. [Wheeler (1981, p. 275).] 

Teaching which respects the behavioural analysis is not fully open to this 

criticism because both the statement of PMI and the form of a proof by 
induction are explicitly taught. In addition, the required subsidiary skills: 

algebraic substitution and manipulation, the proof of identities and, in particu- 
lar, of implication statements, are developed. Teaching guided by behavioural 
analysis should be successful with many pupils in teaching them how to con- 

struct proofs by mathematical induction of the restrictive problem types 
considered. Using the terminology of Skemp (1976) such teaching might give 
pupils an instrumental understanding of the method of proof by mathematical 
induction. However the behavioural analysis gives no indication of ways in 
which the method might be explained, rendered plausible or related to pre- 
viously acquired knowledge or concepts. Teaching with these additional goals 
aims at giving students a deeper relational understanding of the method. This 
requires a deeper conceptual analysis of the method, which is the subject of the 
next section. 

4. A CONCEPTUAL ANALYSIS OF INDUCTION 

The aim of this section is, through an analysis of induction, to differentiate 
between the different conceptual areas it relates to and presupposes. 

The analysis of induction into behavioural skills provides a starting point 
for conceptual analysis, for the concepts underlying these skills are necessarily 
contributors to the conceptual network underlying mathematical induction. 
The first concept to be separated from induction is that of implication. Both 
the concept of implication as a binary sentential connective and the concept 
of the proof of an implication statement are entailed. In addition to the proof 
of an implication, the concept of an elementary proof in general is required for 
an understanding of the method of MI, since it is a particular method of 
proof itself. This in turn rests on experience of deductions involving algebraic 
identities as a major source of elementary proofs. Algebraic identities them- 
selves also contribute directly to the subordinate proofs required by the method 
of MI. The understanding of the manipulation of algebraic identities and other 
elementary algebraic skills rests on knowledge of the conventions of algebraic 
usage and of the underlying laws (associative, distributive, commutative, etc.). 



MATHEMATICAL INDUCTION 179 

However, since these elements are of a level of complexity and abstraction 

considerably below that of the method of induction, they are presupposed 
without further ado. We have thus exhausted the conceptual areas which under- 
lie the behavioural skills. However, there remain further concepts underlying 

the method. Mathematical induction also presupposes the concept of a defined 
property of  natural numbers, for induction ranges over those numbers which 
have a fixed property. Defined properties of natural numbers arise from 
algebraic identities, but they also depend on the concept of a function, as does 
the concept of an algebraic identity. In most school contexts a function is 

represented by an explicit expression in a single variable taking on various 
values for different values of the variable. Analogously, a property of natural 

numbers is an expression (a sentence or identity in fact) in a single variable 
which takes on different truth values for different values of the variable. Out 
of the concept of a function arises a particular type of function with direct 
links to mathematical induction, the inductively defined function. This concept 

both aids the development of mathematical induction, and is itself developed 
by the link. The notion of an inductively defined function interrelates with 
another concept which is a direct contributor to mathematical induction, 
namely the concept of recurrence. This concept lies at the heart of math- 
ematical induction. It is the key feature of the induction step and of the 
successive generation of the natural numbers upon which this step depends. 
The concept of recurrence can be built on the notions of iteration and flow 
d/agram, which also aid the development of the concept of inductively defined 
function. Finally, the concepts of flow diagram, iteration and inductively 
defined function all arise from the ordering of  the natural numbers which is 
one of the major contributors to mathematical induction. 

The analysis of induction into a network of interrelated concepts is dis- 
played as a network diagram in Figure 2. 

The conceptual analysis of induction brings to light conceptual areas 
important to the understanding of induction which receive no attention 
in a purely behavioural analysis. The two major conceptual clusters thus 

revealed are: 
(i) Defined properties of natural numbers and functions. 

(ii) Recurrence and the ordering of the natural numbers. 

The first of these areas is crucial, since proofs by mathematical induction 
requires recognition, understanding and the use of properties of natural num- 
bers. The second of these areas contributes to the justificational foundation 
of the method. The justification for the method of MI, and the mechanism by 
which it works, are to be found in the well ordering of the natural numbers 
and their construction by recurring succession. 
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implication 
proof 

Recurrence induction 
Algebraic 
identities 

Inductively ) / Defined 
defined | properties 
functions , / of numbers 

teration 
Ordering of 
natural 
numbers 

Functions 

Fig. 2. Network diagram of a conceptual analysis of mathematical induction 

The conceptual analysis of mathematical induction provides a theoretical 

foundation on which the teaching of the method can be erected. However, in 

building a teaching sequence attention must also be directed to the specific 

misconceptions and conceptual difficulties which arise in the minds of students 

learning the method. This constitutes the subject matter of the following section. 

5. MISCONCEPTIONS IN THE LEARNING OF INDUCTION 

Many of the problems that students encounter whilst learning the method of 

mathematical induction are due to specific misconceptions or conceptual 

difficulties in the minds of the students. In this section six such sources of 
error and difficulty are considered. 1 

(i) There is an unfortunate ambiguity in the word 'induction'. On the 
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one hand, the inductive method is a heuristic method for arriving at a con- 

jectured generality describing a finite sequence of examples. On the other 
hand, mathematical induction is a rigorous form of deductive proof. Moreover, 

the fruits of the inductive method are often vouchsafed by the method of 

mathematical induction. That is, these two distinct methods may often con- 

cern different aspects of the same example. This ambiguity can cause a great 

deal of confusion in the minds of students who are not informed of, or fail to 

grasp the distinction between, these two types of induction. Shaw (1978) 
illustrates what this confusion can be like. To avoid this difficulty it is rec- 

ommended that the difference between the heuristic inductive method and the 

proof method in mathematical induction be carefully explained, and that the 

former method be referred to as the method of generalization or some name 

other than induction. 
(ii) One of the most common misconceptions among students is that math- 

ematical induction is "the method in which you assume what you have to 

prove, and then prove it" [Baxandall (1978, p. 85)] and that "it has a suspicious 

likeness to assuming what you have to prove!" [Mathematical Association 

(1957, p. 13)]. This is a very reasonable objection. When using the method in 

free variable form we assume the inductive hypothesis P(n), go through a 
complicated procedure and end up having proved P(n). As the student suspects, 

in other elementary deductive proofs such a procedure is illegitimate. However, 
raising this objection demonstrates that the student has no understanding of 

the structure of an inductive proof and, in particular, does not understand 
implication or the proof of an implication statement through the assumption 

of its antecedent. Two precautions can be taken to try to avoid this miscon- 

ception. First, it is essential that the student should be taught both the meaning 

and the methods of proof of implication statements. Second, as many auth- 

orities including the Mathematical Association (1957) suggest, the apparent 

circularity of the Principle of Mathematical Induction is reduced by expressing 

it in a two-variable form. For example: 

If  P(1), and if all for all k P(k) implies P(k + 1), then for all n P(n). 

In this form the variable k occurring in the inductive hypothesis is localised to 

the induction step. This makes it easier for the student to understand that the 

inductive hypothesis is only assumed for the induction step and that the 

assumption is discharged during this step. A further advantage in the two- 
variable form is that "one is able to make sensible statements such as 'if the 
proposition is true when n = k, then it is true when n = k + 1 ' "  [(Wheeler 

(1981, p. 274)]. 
(iii) The previous misconception considered, that of the apparent circularity 
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of the PMI, is a particular difficulty arising from the logical form of the prin- 

ciple. Other conceptual difficulties can also be ascribed to the logical form of 
the principle, for example, its use of quantifiers, or at least of universally 
quantified variables. An author who feels strongly on this point writes: "I am 

satisfied that the major source of confusion concerning induction is that students 

don't understand the role of the quantifier . . ." [Brumfiel (1974, p. 617)]. 
Although rather forcefully put, this claim undoubtedly has some substance 

behind it. The manipulation of free variables in deductions, the use of quan- 

tifiers and the relationship between these two areas are matters both subtle and 

abstract. It is all too easy to assume that the skills and understanding involved 

will be acquired 'by osmosis'. Such skills need to be explicitly taught 
and practised. 

The combination of universal quantification and implication, and indeed 
multiple occurrences of both, in the statement of the PMI create a further 

difficulty: the sheer logical complexity of its statement. This observation is not 

new. It was noted over 25 years ago that the form of the principle " . . .  is 

logically complicated and difficult to grasp . . ." [Mathematical Association 

(1957, p. 13)]. Perhaps one should not be surprised if students who have not 

been given practice in interpreting logically complex statements find the form 

of the PMI difficult to comprehend. The remedies to the above difficulties are 

evident: explicit teaching of the use of free and quantified variable statements 

and practice with sentences of this type and more complex types. 

(iv) A misconception that sometimes occurs is the view that one of the 

components of an inductive proof is not really essential. This is most common 

in the case of the basis of the induction. "Getting the induction started, i.e. 

verifying P1 (in most instances)- or in general Pn0- is often treated as a 

formality. That it is essential is best shown by example . . ." [Baxandall 

(1978, p. 85)]. As suggested, examples of fallacious induction arguments are 

perhaps the best way of dispelling this misconception. There are many examples 

which can be almost proved except for the basis, e.g., 2n + 1 is even. This 

remedial tactic of criticising faulty inductive arguments has a wider application 
than merely to show that all the components of an induction are essential. 
Setting as an exercise the task of finding the errors in arguments is analogous 
to the provision of non-examples to a given concept. Such a move serves to 
sharpen understanding by focusing attention on the boundaries of what 

is admissible. 
(v) A further misconception concerning mathematical induction arises 

from its exclusive use in summing finite series. It needs to be stressed "that it 
is not merely a device for proving very" special results about finite series." 
[Mathematical Association (1956, p. 10).] One author finds this misconception 
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so prevalent that "to most students arriving at university, induction means: (A) 
take an equation involving n and add something to both sides so as to produce 

a similar equation with n + 1 in place of n"  [Woodall (1981, p. 100)]. The 
remedy for this problem is obvious. Students should apply the method of 
induction to a much wider range of problems than those involving only the 
sums of finite series. An indication of the range of possible problems is given 
in Wheeler (1981), although he neglects problems drawn from geometry. 
For a monograph devoted entirely to geometrical applications of induction 

see Golovina and Yaglom (1963). A further range of exercises in induction 
may be found by consulting the appropriate sections of Avital and Hansen 

(1976), Douglas (1970), Sominskii (1961) and last, but not least, Polya (1954). 
(vi) The final conceptual difficulty to be considered is not a misconception 

as such, but a lack of understanding. Many students encountering the method 

of proof by induction wonder why this rather complex and seemingly arbitrary 
principle is adopted. Unlike many axioms and principles, mathematical induc- 
tion is neither self evident nor a generalisation of previous more elementary 
experience. Thus the introduction of the principle raises the questions; what is 
the basis of the principle? how can it be justified? Any answers to these 
questions must refer to the well ordering of the natural numbers. A typical 
explanation runs as follows. 

The natural numbers have the unique property that they can all be generated 
from a single initial number (one) by the iterated formation of successors. 
Thus the set of all natural numbers forms a (well) ordered sequence. To show 
that all natural numbers have a certain property this ordering can be exploited. 

For if the initial number (one) has the property and if it is passed along the 
ordered sequence from any natural number to its successor, then the property 
will hold for all natural numbers, since they all occur in the sequence. To justify 
this inference the Principle of Mathematical Induction is adopted as a basic 

principle or axiom of mathematics. The relationship between the method of 
induction and the ordering of the natural numbers is well illustrated by means 
of several analogies. These analogies include: 

0) The ascent of a ladder, step by step. 
(il) The transmission of a message down a line of soldiers. 

(iii) The departure of a railway train, car by car. 
(iv) The entry of a princess into all the locked rooms of a palace, given 

that she has the key to the first room and that each room contains the 
key to the next room. 

(v) The knocking down of a long line of dominos. 
This last, and perhaps best known, example contains the following analogical 
pairs. 
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Features of example 
A domino 

Linear arrangement of dominos 

Falling down of domino 

'Knock on' effect 

Knocking over of first domino 

Corresponding feature of induction 
A natural number 
Ordering of natural numbers 

Property of number 

Induction step 
Basis of the induction 

The analogy can be strikingly illustrated by means of a picture, as in Figure 3, 

or better still by a demonstration. 

Fig. 3. The domino analogy for mathematical induction 

6. ANALYSING TEXTBOOK TREATMENTS OF INDUCTION 

The previous three sections contain pedagogical discussions of mathematical 

induction from differing viewpoints. In particular, the last section contains 

explicit suggestions for the teaching of mathematical induction with a view to 

remedying or anticipating conceptual difficulties. It is intended that these 

discussions should provide a foundation on which instructional sequences 

for teaching induction can be based. In addition to informing the development 

of curriculum materials these discussions can be used as a basis for the analysis 
of, and ultimately the evaluation of, existing materials. In particular, to provide 

a set of criteria for the analysis of written materials, especially text books. This 

is the subject matter of the present section, as well as the application of these 
criteria to a selection of published texts. The subsequent evaluation of the 
texts is left largely to the reader. 

Criteria for the Analysis of Texts 

Number of pages. The number of pages devoted to induction. This is a crude 
indicator, since a ten-page treatment may be more extensive than one of 20 
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pages, depending on page size, print density and other factors. Neverthe- 
less, it gives some indication of the extent of the treatment. Included in 
the pages counted are initial discussions of generalisation and the need for 
induction, examples of proofs, and student exercises on induction. Sub- 
sequent revision exercises in induction are included, provided they are 
grouped together. 

Number of examples. The number of worked examples of proofs by the 
method of mathematical induction. 

Number of  exercises. The number of exercises provided for the student is a 
useful (though crude) indicator of the extent of the treatment. 

On Series. The number of exercises on the summation of finite series. 

On algebra. The number of student exercises which are basically algebraic. 
Applications of induction to calculus are counted under this heading. 

On number theory. The number of exercises on number theory, most com- 
monly of divisibility results. 

On geometry. The number of exercises on geometry. These either include 

diagrams or, more commonly, refer to geometric figures. 

The remaining criteria relate to qualitative features and therefore are not 
assigned a numerical value. 

Explicit form. The principle is explicitly formulated, as opposed to simply 
being used in an example, and named. 

Two-variable form. The form of induction contains two variables, one con- 
timed to the induction step and the second occurring in the conclusion. 

Faulty proof shown. One or more examples of deliberately faulty proofs by 
induction are presented, either as part of the exposition or as a 'debugging' 
exercise for the student. 

The next two criteria concern the explanatory framework used in the 
presentation of induction. 

Analogy given. An analogy, like the domino analogy, is used to give an 
intuitive understanding of the method. 
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Explanation. An explanation for the working of the method is presented, 
typically in terms of the ordering of the natural numbers. The minimum that 
is acceptable as an explanation is that the basis of an induction establishes 
P(1), and by repeated use of the induction step, P(2), P(3), P(4) . . . .  are 

successively established. 
The final subset of proposed criteria concern the treatment of the con- 

ceptual background erected prior to, or concurrent with, the introduction of 

the method. 

Proof concept. There is a general discussion of the nature and purpose of 
of proof based on elementary examples. 

Implication. There is a discussion of the meaning of this connective, and in 
particular of the ways in which an implication statement can be proved. 

Induction vs MI. A distinction is made between the heuristic method of 
induction and the deductive method of proof by mathematical induction. 
In particular, the use of the latter method as a possible way to sanction the 

fruits of the former is indicated. 
These, then, constitute the proposed criteria for the analysis of text book 

treatments of induction. Further criteria have been considered and rejected. 
Some possible criteria, for example tile explicit treatment of recurrence within 

the background conceptual framework, have been rejected as they relate more 
to the syllabus underlying the text than to the treatment of induction. Other 
possible criteria, including the distinctions between formal and verbal explicit 
statements of the principle, and between explanations and justifications of 

the method, have been rejected as too vague and subjective. 
The proposed criteria for analysing treatments of induction are applied to a 

selection of 17 texts, and the resulting information is displayed in Table I. 
The books chosen are mainly British sixth form (high school) texts. Among 
the exceptions to this are the three oldest books, all published prior to the 
Second World War, which are probably university texts. 

Table I reveals, first of all, the results of applying the analytic criteria to 
each of the texts considered. Thus the table permits the evaluation of each 
text according to its fulfilment of the criteria. Beyond this, the table permits 
a direct comparison of different texts according to the criteria used. Finally, 
the table can be used as a basis for speculation, for an examination of the 
table reveals some interesting tendencies. In the sample of texts surveyed, there 
is a loose correlation between the thoroughness of the treatment of induction 
and the modernity of the book. From the mid-nineteen-sixties onwards the 
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TABLE I 

Analysis of some textbook treatments of induction 
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Criterion Text 

a b c d e f g h i j k 1 m n o p q 

No. of pages 2 2 1 2 2 7 6 5 6 7 9 10 4 7 6 
No. of examples 2 1 1 1 1 1 2 6 4 2 1 5 4 5 4 5 1 
No. of exercises 14 20 12 5 16 16 23 59 18 9 36 19 43 10 39 27 

On series 8 15 8 5 14 16 7 20 5 9 14 15 16 6 17 26 
Onalgebra ~ 2 3 1 2 6 21 7 9 3 13 11 
Onno.  theory 4 2 3 7 18 4 10 1 8 2 9 1 
On geometry 3 2 3 6 2 2 

Explicit form X X X X X X X X X X 
Two-variable form X X X X X X X X X X 
Faulty proof shown X X X X X X X 
Analogy given X X 
Explanation X X X X X X X X X 
Proof concept E X X E X 
Implication E X X E X 
InductionvsMI X X X X X X X X X 

Key: 
a Baker and Bourne (1904), b Durrell (1932), e Brewster (1939), d Porter (1951), 
e Tranter (1953), f Backhouse and Houldsworth (1957), g Dakin and Porter (1964), 
h Snell and Morgen (1965), i Clarke (1967), J School Mathematics Project (1967), 
k Brand et aL (1969), I Parsonson (1970), m Hunter and Monk (1971), n School 
Mathematics Project (1973), o Turner (1976), P Heard and Martin (1978), 
q Sherlock, Roebuck, Heneage and Beck (1979). 
X = Treated. 
E = Treated earlier in the SMP series. 

books  devote more  pages to  induc t ion  and of ten  use more  examples  and give 

more  exercises. The  principle is explici t ly stated, there is a greater variety in 

the types  o f  exercises and more  considerat ion is given to  the m o d e  o f  presen- 

ta t ion  o f  the me thod ,  to the  explana tory  f ramework  used and to the t r ea tmen t  

o f  the  conceptua l  background,  according to the criteria employed .  To some 

extent ,  this increasing thoroughness  o f  t r ea tment  con t inued  to increase wi th  

the t ransi t ion to  the  n ine teen  seventies. 

Fu r the r  speculat ion is possible i f  the sample o f  books  is taken as represen- 

tative o f  comparable  books  published during the same period.  Given this 

assumption it seems tha t  the t r ea tmen t  o f  induc t ion  over the passage o f  t ime 

becomes  increasingly explici t ,  and is accompanied  by an increasing awareness 

o f  the under lying skills, concepts  and explanatory  background.  It  may  be 

h o p e d  that  this results in the m e t h o d  becoming  increasingly accessible to a 

broader  range o f  students.  

There is an interest ing analogy be tween  this speculated tendency  and the 
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emergence of the Principle of Mathematical Induction during the development 

of mathematics. The speculated tendency consists of increasingly explicit 

presentations of the method of mathematical induction reflecting an increasing 

awareness of the underlying pedagogical issues over the passage of time. This 

parallels in form, but follows in time, a similar increase in the explicitness of 

statements of the Principle of Mathematical Induction itself, from the time of 

Euclid to that of Peano, as documented in Ernest (1982). 

Finally, it should be remarked that the proposed criteria for the analysis 

and evaluation of textbook treatments of mathematical induction are entirely 

a priori. Needless to say, more reliable grounds for preferring one text's 

approach to another can be found by empirically testing the approaches with 

students. However, such a procedure is expensive and time consuming and 

should be preceded by an analysls similar to that above. For these reasons no 

apology is offered for a wholly theoretical study. 

This concludes the pedagogical discussion of mathematical induction. It is 

hoped it will help to inform the teaching of the topic or, at the very least, 

stimulate further debate. 

NOTE 

I I am grateful to an anonymous reviewer for suggesting a seventh source of difficulty, 
namely "the conceptual/technical difficulty of handling the vital step P(n)~P(n  + 1). 
Most encounters of students with things like P(n + 1) have been straight substitutions - 
substitutions of n + 1 for some variable in a known expression (function). But in the 
induction proof the student has to handle almost the inverse of this. For example he takes 
P(n) and adds something to it, then has to arrange the new expression to show that it is in 
fact P(n + 1). This requires getting it into the form P(x) while simultaneously 'thinking' 
of n + 1 and not x as the variable. This is really hard, in many cases, because one is not 
using the algebra to simplify but to force a correspondence to a certain model. Where 
else are students required to do this? No wonder they find it baffling." 
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