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Abstract. Valley-fill ignimbrites of the Middle 
Laacher See Tephra (MLST) in the proximal dep- 
ositional fan south of Laacher See volcano are la- 
terally continuous with fine-grained overbank-fa- 
cies deposits, 0.5-1.5 m thick, covering higher ele- 
vations and interfluves between the paleovalleys. 
The overbank deposits consist of up to 12 ash 
layers, each 4-10 cm thick, which show internal 
structures typical of ash-flow transport, such as 
poor sorting, reverse size-grading of pumice, local 
normal grading of coarse ash-sized lithics above a 
fine-grained basal layer, cross-stratification be- 
hind obstacles, and erosional unconformities. 
Thickness, median grain-size, and number of indi- 
vidual layers decrease systematically with dis- 
tance from the vent. Overbank ash layers thicken 
at the valley slopes and form discrete valley-fill 
ignimbrite flow units in the paleochannels with 
median grain size increasing from <63 p~m to 
<350 p~m. Toward the center of paleochannels, 
however, the well-defined overbank facies is ob- 
scured by mutual erosion of individual flow units. 
Overlapping data fields in ternary grain-size var- 
iation diagrams indicate the overbank facies to 
have evolved from ash flows chiefly through de- 
pletion of ][apilli and coarse ash. Overbank-facies 
ash layers do not represent dust layers resulting 
from elutr~ation clouds of ash flows (co-ignim- 
brite ash) or surge deposits developed on higher 
ground due to low concentration of solids. They 
are similar in some parameters to Taupo-type ig- 
nimbrite veneer deposits, but are interpreted dif- 
ferently. Tlhe thin, fine-grained, Laacher See ash 
layers are thought to have been deposited from 
diluted portions of the flow proceeding directly 
from the eruption column while the main pyro- 
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clastic flows were confined to the paleovalleys ra- 
diating away from the eruptive center. The wide 
distribution of the thin ash layers is attributed to 
the balance of deposition from various flow parts 
and turbulent entraining and heating of ambient 
air that sustained sufficient mobility of the diluted 
flows to spread across hills and level ground. 

Introduction 

Fine-grained ash layers interbedded with fall de- 
posits have been recognized in Plinian-type 
tephra sequences for many decades. At Laacher 
See volcano and elsewhere they were traditionally 
interpreted as slowly settled fallout dust following 
more rapid sedimentation of the underlying pu- 
mice beds with which they were believed to be co- 
genetic (e.g., Frechen 1953, 1976). More recently, 
some of the thin but widespread ash layers at 
Laacher See were interpreted to have been depos- 
ited from ground-hugging ash clouds accompany- 
ing valley-fill ash flows (Schmincke 1970, 1977). 
This interpretation was based chiefly on the poor 
sorting, fine grain size, massive structure, and es- 
pecially lateral gradation into valley-fill ignim- 
brites. Similar relationships of fine-grained ash 
layers were noted on Fogo volcano (Azores) by 
Walker and Croasdale (1971). 

Within the past 15 years, fine-grained ash 
layers interbedded with fall deposits have re- 
ceived increased attention and a number of inter- 
pretations were suggested. Few, however, have 
been described in sufficient detail to allow a clear 
distinction of different depositional processes. 

We have studied the regional distribution, 
grain size, and lithology of thin, fine-grained ash 
layers laterally passing into valley-fill ignimbrites 
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in the wel l -exposed proximal  facies o f  the 
Laacher  See t ephra  blanket.  We have tested sev- 
eral models  for  their  origin: (a) ash elutr iated 
f rom valley flows and depos i ted  as dust  layers on  
higher  g round ,  (b) surges, laterally con t inuous  
with pyroclas t ic  flows and  deve loped  due  to low 
solids concent ra t ion ,  (c) trail deposits  left  af ter  
passage o f  a pyroclas t ic  flow, and (d) lateral over- 
bank  deposit .  

Regional setting 

Laacher  See vo lcano  located  in the East  Eifel vol- 
canic field (Fig. la)  e rup ted  at least 5 km 3 (DRE)  
o f  phonol i t i c  magma  11000 years ago (Bogaard  
and Schmincke  1984, 1985). Its entire tephra  se- 
quence,  which is > 5 0  m thick near  the vent, is 
subdivided into the Lower  (LLST),  Middle  
(MLST-A,  B, and  C), and U p p e r  (ULST)  Laacher  
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Fig. 1. a Map showing the location of the Laacher See study area about 40 km south-southeast of Bonn. b Schematic illustration 
of topography south of Laacher See volcano dominated by valleys between scoria cones. Wb, Wingertsberg; KO, Krufter Ofen; 
Hk, Heidekopf; RB, Roter Berg; Eb, Eppelsberg. c, d Regional thickness distribution of the MLST-B ignimbrite around Laacher 
See (Bogaard and Schmincke 1984), filled triangles are older basanitic/tephritic scoria cones); WE profile in d indicates section 
across the Mendig paleovalley shown in Fig. 3 
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Fig. 2. Stratigraphy of proximal Laacher 
See Tephra (LST) shown as total section 
with inserts illustrating contrasts between 
overbank and valley facies. Generally, 
valley facies is dominated by ignimbrites 
of MLST-B and -C stratigraphic intervals, 
a few tens of m thick. The index map 
shows sample locations and location of 
vertical sections south of Laacher See 
volcano (LSV). MLST-B is 0.5 m thick at 
locality 1 (overbank) 

See Tephra (Fig. 2), which differ in lithology, 
magma composition, and eruptive mechanisms. 
The complex eruptive history of Laacher See vol- 
cano including initial phreatic, major Plinian-type 
convecting (LLST), alternating Plinian-type con- 
vecting and collapsing (MLST), and major phrea- 
tomagmatic (ULST) stages is recorded in various 
depositional fans of the proximal tephra series 
around the eruptive center (Schmincke et al. 
1989). 

The MLST-B submember, corresponding to 
the T1 pyroclastic-flow phase defined by Freundt 
and Schmincke (1986) north of Laacher See, is 
characterized by abundant and alternating fall 
and flow deposits south and east of the volcano. 
Plinian-type fall deposits alternating with minor 
ash-flow deposits formed widespread fans ex- 
tending predominantly to the east-northeast. A 
very fine grained ash layer, a few cm thick, is in- 
tercalated within the ash-flow deposits. Its areal 
distribution parallel to the fallout fan and grain 
size characteristics indicate that this ash was de- 
posited as dust layer from co-ignimbrite ash 
clouds dunng a pause in ignimbrite deposition 

(Schumacher and Schmincke 1987; Schumacher 
1988). 

Pyroclastic flows preferentially descended 
through passes between older scoria cones of the 
rim surrounding Laacher See basin and accumu- 
lated in paleovalleys (Fig. lb-d). Valley-fill ignim- 
brites up to 10 m thick are laterally continuous 
with thin, 5- to 150-cm-thick, compound ash 
layers covering higher grounds and interfluves 
chiefly in the Mendig Fan, the largest of five py- 
roclastic flow fans. Isopach maps of Fig. lc -d  
show the areal distribution of the MLST-B ignim- 
brite, wich is described in more detail below. 

Field characteristics 

We distinguish overbank and valley facies in the 
MLST-B ignimbrite in sections transverse to the 
direction of transport (Figs. 3, 4). The overbank 
facies up to 1.5 m thick (Fig. 4) is represented by a 
widespread ash blanket contrasting with the val- 
ley facies that consists of channelized flows with a 
cumulative thickness of 6-10 m. Both facies grade 
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Accretionary lapilli in the upper parts 
of both line-gramed ash layers 

Particle layer fills impact sags of 
blocks/large lapilli 

Lithic-enriched, fines depleted 
laminae of coarse ash 

Local density grading but generally 
incomplete flow units 

Forset-beddincl structures behind 
obstacles, or above negative steps in 
the ground 

Fig. 3. a Schematic EW-section 
across the Mendig paleovalley 
showing field relations of over- 
bank facies draping the Wingerts- 
berg and Krufter Ofen scoria 
cones and the paleovalley-fill in 
between. Vertical sections illus- 
trate depositional characteristics: 
thin, bedded ash layers (a) swell to 
about 4 m thickness in the small 
channel on the north flank of Win- 
gertsberg (b; Fig. 4); along the pa- 
leovalley margin, unit 5 and the 
pumice concentration of unit 6 
disappear (c), whereas top unit 7 
persists throughout the valley fa- 
cies. The paleovalley fill is charac- 
terized by mutual erosion of flow 
units indicated by remaining 
lenses of lithic-rich basal zones 
(d). b Detailed vertical section a, 
illustrating stratigraphic subdivi- 
sion of overbank facies 

into each other throughout a 25-50-m-wide transi- 
tion zone along the paleovalley margin (Fig. 4d). 
Local erosional unconformities between flow 
units do not allow correlation of each valley flow 
with a specific thin overbank ash layer. The strati- 
graphic subdivision was defined in the overbank 
facies and was then traced into the valley fill. 

Overbank facies 

The overbank facies is subdivided into six strati- 
graphic intervals, each of which comprisifig up to 
three ash layers (flow units; Fig. 3b). Subdivision 
into intervals is based on changes in color, grain- 
size distribution, and type of clasts. All but unit 4 
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are poorly sorted and contain small pumice lapil- 
li, lithic fragments of Devonian slates, and Qua- 
ternary basanitic-tephritic lava and scoria. Ballis- 
tic blocks and large lapilli are associated with 
well-sorted pumiceous layers such as unit 4 or one 
layer in unit 6 (Fig. 3b). 

Generally, even ash layers < 10 cm thick show 
inversely graded pumice in their upper parts; 
fine-grained basal layers and normal grading of 
flakes of country rock occur only locally (incom- 
plete flow units). Somewhat discontinuous, lithic- 
enriched laminae up to 5 mm thick are interbed- 
ded with ash layers, especially in unit 3. The lam- 
inae lack very fine ash and consist predominantly 
of particles 0.5-1 mm in size. Furthermore, topo- 
graphy-related, foreset-bedding structures occur 
behind obstacles or negative steps in the ground 
suggesting local surge deposits (Figs. 3a, 4e). 

Four discrete layers are important stratigra- 
phic markers. (1) Unit 4, composed of well- 
rounded small pumice lapilli, can be traced from 
the paleovalley margin throughout the overbank 
facies north of Wingertsberg (Fig. 3). The layer 
thickens in bomb sags. (2) The inversely graded 
pumice concentration layer in the upper part of 
unit 5. About 100 m away from the valley margin, 
the layer becomes disrupted and is represented 
largely by isolated lenses with internal clast-sup- 
ported fabric. (3) The uppermost unit 6 comprises 
two very fine-grained ash layers with accretionary 
lapilli that are separated from each other by a 
fairly well-sorted pumiceous layer. 

Despite small-scale erosion of flow units, all 
stratigraphic intervals can be traced laterally 
throughout the overbank facies and a narrow 
transitional zone into the marginal valley-fill ig- 
nimbrite. The thin-bedded ash locally rests on 
slopes as steep as 30 ~ (Fig. 4). In this marginal 
zone, erosion by subsequent flows becomes 
stronger. At some places, the pumice concentra- 
tion layer of unit 5 directly rests on the lowermost 
unit 1, as a result of erosion by the flow prior to 
the deposition of the pumice itself. No evidence 
for other erosional processes such as slumping 
into the valley is obvious. The uppermost ash 
layers of unit 6 are draped over the entire over- 
bank and marginal facies, but thicken even in 
small depressions. 

Valley facies 

Units 1 and 2 were identified in the marginal val- 
ley-fill by their greenish and faint-reddish color. 
The ash layers of units 3 through 5 could not be 

exactly correlated to the valley-fill despite pro- 
nounced grading of lithics and pumice separating 
individual flow units from each other within 
about 150 m laterally into the ignimbrite. Unit 4, 
the excellent marker horizon of the overbank 
area, is eroded by subsequent pyroclastic flows. 
In the center of the valley, erosion of flow units 
becomes still stronger, and lithic-rich basal zones, 
some with imbrication fabric of platy slate frag- 
ments (Schmincke 1977) as well as pumiceous top 
zones are reduced to variably isolated lenses (Fig. 
3). Unit 6 persists throughout the valley facies, 
mantling the deposits. Its thickness increases from 
3 cm in the overbank to about 30 cm in the pa- 
leovalley facies. Both ash layers contain abundant 
accretionary lapilli. 

Variation with distance from source 

Within the overbank facies, number, thickness, 
and grain size of ash layers decrease with increas- 
ing distance from Laacher See, while accretionary 
lapilli become more abundant. Four km south of 
the vent, only four layers persist, and at 7 km a 
single layer 3 cm thick remains. Internal struc- 
tures within 4 km from the vent include very low 
angle cross-stratification of laminae and leeside 
bedding of pumice behind obstacles. In the val- 
ley-fill ignimbrite, the thickness and bedding 
characteristics described above persist. The de- 
creasing number of ash layers in the overbanks re- 
flects the absence of overbank deposition from 
some of the valley flows emplaced farther south 
and is not due to erosion. In other words, north of 
Wingertsberg facies transition from overbank to 
paleovalley is more or less gradational. Farther 
south, the transition is more likely an abrupt 
change due to a hiatus between individual over- 
bank ash layers. 

Grain-size characteristics 

Grain-size analyses were performed on more than 
60 samples from overbank and valley facies (Fig. 
ld). We sampled the entire ash layer of overbank 
flow units, but only the ash-flow matrix from the 
central parts of individual flow units of the valley 
fill in order to determine if deposition of small la- 
pilli to ash-sized tephra was affected by topogra- 
phy. The distribution of coarse lithics and pumice 
was easily studied in the field. Tephra was disag- 
gregated by H202 and wet-sieved in 1~ intervals. 
The fines <63 txm were separated by an ultra- 
sonic sieving apparatus into fractions of 30, 15, 
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Fig. 4. a MLST-B ash-flow deposit (ca. 140 cm thick) in overbank facies on top of Wingertsberg about 300 m southeast of main 
paleochannel (Fig. 3a). Scale marked in 10-cm intervals. Thin ash layers above scale interbedded with fallout-lapilli layers are also 
pyroclastic-flow overbank deposits and thicken in paleochannels (Fig. 4e). b Thickening of MLST-B deposits in small depression 
formed by synvolcanic faulting during deposition of Lower Laacher See Tephra. e MLST-B (ca. 4 m thick) in subsidiary channel 
(Fig. 3a) laterally thinning markedly over topographic high (overbank). Phreatomagmatic ULST with breccia, sand wave, and 
massive beds in upper part of photograph. Section transverse to transport direction, d Margin of main paleochannel ca. 3 km 
southeast of Laacher See. MLST-B pyroclastic flows have eroded 2 m deep into channel in LLST fallout deposits. Overbank 
deposits to left of erosional channel are <20 cm thick. Note thickening of  thin overbank ash layers above scale from left toward 
center of paleochannel at right. Compare with overbank section in a-c. Thicker ignimbrites in upper part of  photograph (lower 
ULST) spread across leveled paleochannel on even ground, e Lenses of well-rounded pumice lapilli formed around obstacle (lithic 
block). The lenses are separated by fine-grained, accretionary-lapilli-bearing ash layers at top of  MLST-B. Similar lenses form at 
fault scarps in b 

and 5 ~m. Median diameter (Md) and Inman sort- 
ing parameters (era,) were obtained from cumula- 
tive distribution curves. 

Generally, the grain-size distribution is bimo- 
dal with modes either at 250-125 p~m or, in finer- 
grained samples, at 125-63 p~m, and the second 

mode at 15 ~tm, but at distal locations samples 
from the overbank facies tend to be unimodal 
with the mode between 30 and 63 ~tm. All samples 
are poorly sorted: Inman sorting varies between 
1.75-3.8, and median grain-size (Md) ranges from 
35 ~tm in overbank samples to about 350 Ixm in 
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the  va l ley  facies.  Gra in - s i ze  da t a  were  p lo t t ed  in 
the  Mda, versus  0 9  d i a g r a m  (Walke r  1971; Fig. 
5a). N o t  all s am p l e s  fall  wi th in  the  va r i a t i on  f ield 
f o r  ign imbr i tes ,  b u t  even  d a t a  fo r  o v e r b a n k  d e p o -  
sits s h o w  the  Mda,/cra, charac te r i s t i cs  o f  ign im-  
brites.  I n  a t e r n a r y  d i a g r a m ,  gra in-s ize  da t a  f o r m  
two  o v e r l a p p i n g  sets o f  va l ley  a nd  o v e r b a n k  fa- 

cies i nd i ca t i ng  the  c lose  r e l a t i onsh ip  b e t w e e n  the  
two  depos i t s  (Fig. 5b). 

The  v a l l e y - p o n d e d  ign imbr i t e  is coa r se  
g r a i n e d  wi th  > 10 wt% > 2 mm.  T h e r e  is a s l ight  
t e n d e n c y  fo r  g ra in  size to  d e c r e a s e  u p w a r d  in the  
ent i re  sec t ion.  N o  s ign i f i can t  v a r i a t i o n  was  f o u n d  
as a f u n c t i o n  o f  d i s t ance  f r o m  source .  T h e  over -  
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Fig. 6. Median grain size and crystal content in the 125-180-gm fraction of four individual ash layers (a fine- and a coarse-grained 
layer of units 3 and 5) related to the topography of paleovalley to higher ground. Vertical scale indicates meters below the average 
level of the overbank facies on Wingertsberg. There is a wide grain-size variation in the valley-fill decreasing with elevation. 
Throughout the overbank facies no variation is obvious. The fine-grained layer of unit 6 is distinctly lower in crystal content than 
other ash layers 
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bank facies is finer grained due to lower amounts 
of the coarse fraction with a maximum of 3 wt% 
>2  mm. Two types of ash layers were distin- 
guished within the overbank deposits: relatively 
coarse-grained layers with 1-3 wt% >2  mm and 
very fine grained layers no coarser than about 1 
mm. Median grain size generally decreases with 
increasing elevation above the paleovalley bot- 
tom, but this fining is already noticeable in the 
valley filling ignimbrite close to the valley margin 
(Fig. 6a). No topography-related, grain-size varia- 
tion was found within the overbank facies. With 
increasing distance from source, median grain 
size systematically decreases in overbank deposits 
(Fig. 7), but remains relatively constant in the val- 
ley-fill ignimbrite. 

Crystal content 

Ash-sized tephra consists of glass shards, crystals, 
and lithics. We determined the relative abundance 
of free crystals in the separately sieved 1A-q) frac- 
tion 0.125-0.18mm to test the possibility of 
dense-particle fractionation during transport. We 
chose this fine-grained fraction because of (a) the 
overall fine grain size of the ash and (b) because 
grain counting of these particle sizes under a mi- 
croscope is; relatively easy. The crystal content of 
15 samples was measured by counting about 1500 
grains under a binocular microscope. 

The amount of crystals generally varies be- 
tween 33% and 16 grain% of the amount of the 
0.125-0.18 mm fraction. Coarse-grained overbank 
ash layers with a maximum grain size > 2 mm as 
well as the ponded ignimbrite contain about 25%- 
33 grain% crystals, whereas very fine grained 

overbank layers with maximum grain size of 
about 1 mm contain only 16%-18 grain% (Fig. 6b). 
Thus, the amount of crystals of a particular frac- 
tion correlates with the grain-size distribution of  
the entire sample. There is no systematic variation 
within individual overbank layers transverse to 
the direction of transport, but with increasing dis- 
tance from source, crystal content systematically 
decreases from roughly 30 grain% north of Win- 
gertsberg about 1.5 km south of Laacher See to 
16% at 4.5 km from the vent. The decrease in crys- 
tals may be due to (a) preferential loss of heavies 
during transport, and (b) accumulation of fine vit- 
ric ash due to abrasion. Both processes may have 
operated, because even in this fine-grained frac- 
tion the general correlation of median grain size 
and crystal content is good (Fig. 7). 
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lationships. Solid line, analyzed distribution of valley-fill sam- 
ple; dotted area, variation in overbank deposits; dash-dot line, 
grain-size distribution of an average overbank sample calcu- 
lated from the valley-fill sample by depletion of varying 
amounts of tephra (see Table 1) 

Table 1. Depletion rates of coarse-grained tephra to generate 
an average overbank deposit from the valley fill 

Grain size Depletion rate 
(mm) (wt% of fraction) 

>4.0 100 
4.0-2.0 80 
2.0-1.0 67 
1.0-0.5 50 
0.5-0.25 20 
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Depositional model of Laacher See overbank 
deposits 

During the last few years, several models for the 
mode of deposition of fine-grained ash layers dur- 
ing explosive eruptions have been proposed. 
Summarized by Walker (1981), these models in- 
clude (a) pauses in eruptive activity, (b) changes 
in eruptive style such as influx of external water 
resulting in extremely fine-grained phreatomag- 

matic fallout beds, (c) flushing out of ash clouds 
by rain, (d) co-ignimbrite ash-fall deposits, and (e) 
deposits left after passage of pyroclastic flows (ig- 
nimbrite veneer deposit, IVD). 

Our studies of field relationships and grain- 
size characteristics show that the model of deposi- 
tion from co-ignimbrite ash clouds is inappro- 
priate to explain the MLST-B overbank deposits. 
They show sedimentary features typical of flow 
deposits such as inverse size grading of pumice in 
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of thin ash layers on higher ground, a Dust layer deposited 
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diagram illustrates grain-size relationships of LS overbank, 
valley facies, dust layer east of Laacher See, and data of other 
dust layers (reference data Sparks 1976; Freundt and 
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draining of tephra from the interfluves into the valleys (curved 
arrows), whereas major portions of Laacher See pyroclastic 
flows are primarily concentrated in valleys. The ternary dia- 
gram indicates similar grain-size relationships between the 
contrasting deposits 
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the upper parts of individual layers and foreset 
bedding behind obstacles. Furthermore, overbank 
ash layers are laterally continuous with the valley- 
fill ignimbrite instead of covering it. Grain-size 
characteristics also rule out the hypothesis of dep- 
osition from elutriation clouds because sorting 
parameters cry, of overbank deposits are more typ- 
ical of flow than of fall deposits (cf. Fig. 5), al- 
though some data points of co-ignimbrite ash de- 
posits (Sparks 1976) fall into the grain-size field 
of Laacher See overbank samples (Fig. 9a). Grain- 
size analysis also show both overbank and valley- 
fill deposits related to each other through enrich- 
ment/depletion of large particles not likely to oc- 
cur in a co--ignimbrite dust layer. A simple model 
calculation shows depletion of discrete amounts 
of lapilli- ',and coarse-ash-sized tephra from the 
valley-fill ignimbrite generating an average over- 
bank deposit (Table 1). The cumulative distribu- 
tion curve representing this theoretical (calcu- 
lated) deposit matches well the variation area of 
the analyzed coarse-grained overbank samples 
(Fig. 8). The relative increase in fines < 63 Ixm is 
due to the effects of constant sum. 

We conclude from this relationship that the 
grain-size decrease in the overbank facies is due 
to segregation and deposition of coarse-grained 
tephra during flow. When a pyroclastic flow with 
a uniform grain-size distribution spreads away 
from the vent, lapilli-sized tephra is deposited 
earlier from thin overbank than from thicker val- 
ley flow of higher transport capacity. Thus, in a 
cross section at any distance from the vent, coarse 
tephra is fractionated into the valley flow. Ash re- 
mained suspended in the flow and is not, or only 
little, affected by depletion due to deposition. 
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Therefore, grain-size distribution of the ash ma- 
trix of valley flows is relatively constant. This 
model implies early segregation of coarse tephra 
into the lower part of the flow, which is the chan- 
nelized portion, whereas the upper part -- the 
overbank portion -- is finer grained. The flow be- 
comes vertically graded due to buoyant forces 
within a partially fluidized flow (Wilson 1984) 
while leaving the Laacher See basin and descend- 
ing the outer slope. The bulk of coarse tephra se- 
gregated and deposited due to the high ground 
friction of the overbank flow contributing to the 
formation of coarse lag breccias within the 
Laacher See basin (Freundt and Schmincke 
1985). 

The bulk of flows, which may have been gen- 
erated from collapsing eruption columns when 
the vent was plugged by breakdown of the con- 
duit walls, left the Laacher See basin through 
passes between older scoria cones of the sur- 
rounding rim and was thus confined to valleys 
(Schmincke 1977; Bogaard and Schmincke 1984; 
Freundt and Schmincke 1986). The other portion, 
more diluted and laterally continuous with the 
valley flow, spread over the level ground south 
and east of the volcano as well as the interfluves 
between the major valleys (Fig. 10). While the mo- 
bility of the channelized portions can be sustained 
by fluidization from released gas, mobility of thin 
overbank flows largely depends on their ability to 
prevent deflation to plug flow. We attribute the 
wide distribution of the ash-flow blanket to the 
balance of deposition from various flow parts and 
expansion of the flow due to entrapped and 
heated ambient air that maintained sufficient 
fluidization and mobility to their distal end. 

Mendig 

2km 

Fig. 10. Sketch illustrating emplace- 
ment of Laacher See MLST-B ignim- 
brites originating in eruption column 
collapse. A uniformly distributed ma- 
terial spreads out radially. The bulk of 
tephra is concentrated in paleovalleys 
due to higher transport capacity of 
thick flows. Coarse tephra segregated 
out from overbank flow portions con- 
tributing to proximal lag breccias. Re- 
maining flow covers level ground and 
the interfluves. The map schematically 
illustrates the regional grain-size distri- 
bution pattern of the deposits (circles 
symbolize scoria cones) 
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The thin, lithic-enriched, fines-depleted lami- 
nae separating some flow units in the proximal 
overbank area may be interpreted as a very fine 
grained type of ground layer (Walker et al. 1981a; 
Freundt and Schmincke 1985). These, deposited 
from the flow head, indicate turbulence and pre- 
ferential loss of heavies sustaining sufficient mo- 
bility for the overbank flow lobes. The turbulent 
flow head then was maintained as a ground cloud 
depositing the distant, accretionary-lapilli-rich 
overbank facies (Schumacher 1988). Turbulence 
and traction transport are also indicated by local 
foreset bedding in the overbank deposits. Cross- 
ing irregular topography, the density and mass 
concentration of thin overbank flows diminished 
behind obstacles resulting in turbulent vortex 
cells. Deposits from such expanded, turbulent 
flow parts show cross-strata and other internal 
structures typical of surge deposits. The overbank 
deposits therefore exhibit good examples of tran- 
sition from a dense flow to an inflated, turbulent 
ground cloud, which is here explained as caused 
by the interference of the flow with surface irreg- 
ularities. Segregation is more obvious, of course, 
in the valley-fill where coarse lithic breccia layers 
form basal parts of flow units show imbrication of 
platy fragments. The pumice concentration layer 
on top of unit 5 was generated by buoyant rise 
and flotation of pumice through the flow, as is in- 
dicated by the grading of clasts. The pumice con- 
centration layer stranded along the valley margin, 
pushed aside by a velocity gradient from the cen- 
ter of the valley to the margin (see also Freundt 
and Schmincke 1986). This is a mechanism 
roughly similar to the formation of levees ob- 
served in pyroclastic flows of the 1980 Mount St. 
Helens eruptions (Wilson and Head 1981). South 
of Laacher See volcano, levee formation was inhi- 
bited, however, because pumice laterally entered 
the interconnecting overbank flow lobe that 
rafted the concentration layer until final deposi- 
tion on the flanks of Wingertsberg. 

Segregation and deposition of coarse tephra 
from thin flow lobes as well as development of 
turbulent ground clouds from the flows at greater 
distances from the vent, which is responsible for 
the wide distribution of the thin tephra blanket, 
only appears to be possible in the case of low- 
density pyroclastic flows. Freundt and Schmincke 
(1986) modelled flow behaviour of Brohltal pyro- 
clastic flows that had descended through narrow 
valleys north of the Laacher See (cf. Fig. lc) as 
Newtonian fluids with flow densities of 600-900 
kg/m 3 and flow velocities of about 30 m/s. Re- 
suits showed only poor coincidence with field re- 

lationships, so they concluded that the flows must 
have behaved as Bingham fluids. This may be 
valid for flows confined to narrow valleys, but 
conditions were different for unconfined flow 
south of the volcano. The average, loosely packed 
bulk density of the tephra from overbank and 
marginal deposits amounts to 750 kg /m 3. A rough 
estimate of flow velocities from depositional fea- 
tures (Wilson 1980; Wilson and Walker 1982) 
gives velocities of 10-30 m/s,  which agrees well 
with Freundt and Schmincke (1986). The assump- 
tion of Newtonian flow behavior of the overbank 
flow portion as a first approximation appears to 
be valid. 

Discussion and comparison to similar deposits 

Our interpretation of the mode of deposition of 
the Laacher See pyroclastic flows is based on the 
assumption that coarse material is fractionated 
into valley-confined flows, whereas more dilute 
portions of the same flows were deposited on 
overbank areas. If segregation of coarse, dense 
tephra on one hand and inflation due to incorpo- 
ration and heating of ambient air on the other 
hand play a major role in the emplacement of the 
flows, one should also consider the development 
of surges on higher ground due to low solids con- 
centration (Fisher et al. 1980). The directed blast 
deposit of the 18 May 1980 Mount St. Helens 
eruption is a good example because there are 
transitions from massive valley-fill deposits to 
bedded deposits on higher ground. The blast de- 
posit was subdivided into three major stratigra- 
phic units: from bottom to top, the basal unit A0, 
the coarse pebble-rich layer A1, and the layer A2 
enriched in ash and topped by the accretionary la- 
pilli unit (Fisher et al. 1987). A secondary pyro- 
clastic flow is intercalated beneath the accretion- 
ary lapilli unit filling depressions. Deposits gener- 
ally thicken in topographic lows where the coarse 
basal part, i.e., layers A0 and A1, is thickest and 
the pyroclastic flow unit can be identified up to 
18 km away from the vent. On ridge crests, depos- 
its are significantly thinner and the ash-rich layer 
A2 shows internal (cross-) bedding in its upper 
part, which corresponds to the former surge unit 
defined by Hoblitt et al. (1981). Grain-size analy- 
sis shows (a) a steady grain-size decrease from 
bottom to top of the total deposit at a given local- 
ity, (b) a grain-size decrease from the valley-fill to 
deposits on ridge crests, and (c) the bedded upper 
part of layer A2 (surge unit) is better sorted than 
the massive lower part of layer A2 (massive unit) 
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rather than finer grained (Hoblitt et al. 1981; 
Fisher et al. 1987; Fig. 9b). 

Products of the initial explosion of Mount  St. 
Helens were deposited during a single period of 
flow of the blast surge (Hoblitt et al. 1981; Moore 
and Sisson 1981; Waitt 1981; Fisher et al. 1987). 
The coarse layer A1 is interpreted to have been 
deposited from the surge head and is thus a type 
of ground layer deposit as defined by Walker 
(1981). The ash-rich layer A2 was deposited from 
the body of the surge. Subdivision into a massive 
lower and an internally bedded upper part is 
thought to be due to segregation processes result- 
ing in a lower mass concentration and turbulent 
flow of the upper part of the blast surge. The py- 
roclastic flows developed due to remobilization 
and downslope sloughing of tephra and are thus a 
secondary feature (Moore and Sisson 1981; 
Fisher et al. 1987). 

The valley-fill flow facies of the Laacher See 
deposits, however, is a primary feature, so a major 
flow portion entered the paleovalleys while leav- 
ing the Laacher See basin and advanced parallel 
to the overbank flow portion. Coarse lithic mate- 
rial is fractionated into the valley flow portion, 
but these breccias are interpreted as the basal part 
of ignimbrite flow units (basal part of  layer 2b, 

Sparks et al. 1973) rather than ground layers 
(Freundt and Schmincke 1986). The overbank ash 
layers are thin flow units, some incomplete, i.e., 
without the basal, lithic-rich zone showing only 
surface-related foreset-bedding structures, which 
differ from the blast-surge deposits where cross- 
bedding is self-induced (Table 2). We assume that 
both the velocity of the Laacher See flows di- 
rected toward the south from the volcano was too 
low and the solids concentration within their 
lower avalanche parts too high for surge bed- 
forms to form. This contrasts with the proximal 
facies of ignimbrites extending northward from 
the volcano, where surge deposits commonly form 
the proximal facies (Freundt and Schmincke 
1985). Furthermore, MLST overbank deposits dif- 
fer in grain-size distribution from the valley-fill, 
whereas those of the Mount St. Helens differ 
chiefly in sorting. Grain-size distribution also 
shows a gradual decrease from bottom to top of 
the blast depositional sequence which is not ob- 
served in the Laacher facies where differences oc- 
cur between individual layers irrespective of  their 
stratigraphic position -- the MLST is a multiple 
flow deposit. In summary, overbank and valley 
facies of the Laacher See appear to be more simi- 
lar in their internal bedding structures and grain- 

Table 2. Characteristics of different, thin, bedded ash deposits related to ignimbrites and covering higher ground 

Field Co-ignimbrite ash Surge deposits Veneer deposit Overbank facies 

Area Extending beyond the ig- Tephra on elevations con- Tephra on higher ground lateral continuous with valley- 
nimbrite tinuous with thicker tephra filling ignimbrite 

Bedding No Cross-strata and foreset Internal banding due to Several ash layers, multiple 
bedding fluctuation of flow flow deposit 

Grading Normally graded ash layer No Reversed size grading of pumice in the upper part of 
discrete layers due to buoyant rise 

No Mainly surface-related be- Surface-related 
hind obstacles 

No transition, cover ignim- Obscuring internal bedding Obscuring of strata, ero- 
brites in valley-fill sional disruption in the 

valley 

Cross- 
strata 

Transi- 
tion to 
ignim- 
brite 

Accre- 
tion. la- 
pilli 

Beneath the layer, decreas- 
ing amounts in distant ash 

Self-induced, partly surface 
related 

Gradation from dunes to 
massive parts 

Abundant in upper parts Not described Upper part of discrete 
layers; increasing abun- 
dance from source 

Grain 
size 

Median + '0.2 mm 2 mm 1 mm 0.063 mm 
(0.03 mm in LST) 

Sorting 1.5-3.0 2.0-3.5 2.0-3.0 
(1.5-1.9 in LST) 
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size relationships to the Taupo ignimbrite veneer 
than to the Mount St. Helens blast deposit. 

Taupo ignimbrite veneer deposit (IVD) 

The term ignimbrite veneer deposit was proposed 
for a portion of the Taupo ignimbrite, New Zea- 
land (Walker et al. 1980, 1981b; Wilson and 
Walker 1982, 1985; Wilson 1985). The thin depos- 
it, only 0.5-1 m thick over most of its extent, co- 
vers interfluves between valleys filled by a much 
thicker ignimbrite. Mantling topography, ash 
layers are deposited on slopes as steep as 30 ~ . The 
IVD shows internal bedding due to grading of pu- 
mice and lithics out to about 40 km from the vent. 
Leeside lenses behind obstacles showing internal 
cross-strata consist of well-rounded pumice. The 
IVD is laterally continuous with the valley- 
ponded ignimbrite (VPI), though bedding due to 
pumice concentration becomes less distinct in the 
valley fill. 

Based on the the grain-size characteristics, de- 
posits form two overlapping fields in a ternary 
grain-size variation diagram (Fig. 9c). The Taupo 
veneer deposit and the ponded ignimbrite show 
similar grain-size distribution patterns except for 
the smaller maximum pumice size in the veneer 
(Wilson and Walker 1982, 1985). With increasing 
distance from source, mean grain size decreases 
so that in distant areas differences between the 
contrasting facies are less obvious. Despite the 
overall finer grain size of the Laacher See depo- 
sits, overbank and valley facies show similar grain 
size differences (Fig. 9c-d). 

The Taupo tephra deposits thus resemble the 
Laacher See flow deposits in many respects, espe- 
cially field relationships: both show internal bed- 
ding due to pumice concentrations, and they 
drape irregular surfaces and laterally merge into a 
valley-fill ignimbrite. Grain size of deposits on 
higher ground compared to that in valleys are also 
similar irrespective of the overall finer grain size 
of the analyzed Laacher See deposits. 

The Taupo IVD is interpreted to have been 
deposited from the basal and trailing parts of a 
high-velocity pyroclastic flow left behind because 
of ground friction. While the basal parts slowed 
down, the upper, more mobile parts drained into 
the valleys forming the VPI (Wilson and Walker 
1985). Thus, the IVD is the uphill facies of the 
Taupo ignimbrite and the valley-fill, at least part- 
ly, resulted from secondary slumping or remobili- 
zation of tephra from the slopes. The latter is the 
principal difference to the Laacher See deposits. 

Conclusions 

Detailed studies of field relationships and grain- 
size characteristic of 0.5- to 1.5-m-thick, bedded- 
ash deposits south of Laacher See volcano show 
them to be laterally continuous with valley-fill ig- 
nimbrites totalling approximately 6-10 m in thick- 
ness. We use the term overbankfacies for the thin, 
bedded deposits on higher ground and valley fa- 
cies for the ponded ignimbrite. Internal structures 
of discrete layers of the overbank facies include 
inversely graded pumice in the upper parts and 
foreset-bedding structures behind obstacles and 
other surface irregularities. Bedding is laterally 
transitional to the much thicker valley-fill. Grain- 
size characeristics show the overbank deposits to 
be finer grained than the valley-fill. Two overlap- 
ping data sets in a ternary diagram indicate close 
relationship of both grain populations; simple 
model calculation shows that depletion of dis- 
crete amounts of lapilli- to coarse-ash-sized 
tephra generates an average overbank deposit 
from the valley-fill. 

The Laacher See overbank deposits show 
many similarities to the Taupo ignimbrite veneer 
deposit (IVD). The IVD is interpreted by Wilson 
and Walker (1982) to have been left behind after 
passage of a highly mobile pyroclastic flow. Part 
of the deposit on higher ground drained into val- 
leys forming a much thicker ponded ignimbrite 
VPI. Thus, the IVD is a pyroclastic-flow deposi- 
tionalfaeies. There is generally good correlation 
in facies relationships of valley to overbank in the 
Taupo and in the Laacher See area. Internal bed- 
ding structures of thin tephra layers are laterally 
transitional to the valley-fill. Differences such as 
cross-strata not related to topography can be attri- 
buted to the much higher flow velocity of the 
Taupo pyroclastic flow. Grain-size distribution 
patterns from valley to overbank are also closely 
similar except for the apparently finer grain size 
of the Laacher See deposits. Principal differences 
are that the Laacher See deposit is a multiple flow 
deposit, whereas the Taupo ignimbrite is derived 
from a single flow and the Taupo VPI is drained 
into the depressions from the deposits on higher 
ground, whereas the Laacher See valley-fill was 
deposited primarily from confined flow portions. 

These differences can be attributed to erup- 
tion parameters such as mass eruption rate, erup- 
tion column height, and local topography. The 
contrasting deposits in both areas are here re- 
garded as a depositionalfacies of pyroelastic flows 
rather than as a distinct types of pyroclastic rocks 
as proposed by Walker et al. (1980, 1981b). We 



Schumacher and Schmincke: The lateral facies of ignimbrites at Laacher See volcano 285 

introduce the term overbankfacies for the Laacher 
See deposits on higher ground, because the major 
flow portion is confined to the paleovalley paral- 
lel to the flow direction and a volumetrically 
small, but widespread portion covers the banks 
outside the valley. 
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