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H O W  C A N  W E  T E A C H  A P P L I C A T I O N S  O F  

M A T H E M A T I C S ?  

I. INTRODUCTION 

The purpose of this presentation is to discuss something of  the relationship 
between applications of  mathematics and the teaching of  mathematics. 
While we shall not  attempt a precise definition of  applications of  mathema- 
tics, it is clear that the phrase connotes a connection of mathematics with 
something else. More than that, there is the implication that this is a useful 
connection, that something of  'practical' value might be expected to come of  it. 

Now how does the student become involved in applications of  mathema- 
tics? Throughout most of  his education, mainly through problems in his 
textbooks, problems that have come to be known as 'word'  problems. We 
therefore wish to analyze such problems - to see what is right and what is 

wrong with the problems we use. 

II. IMMEDIATE USE OF MATHEMATICS IN EVERYDAY LIFE 

We begin with the most obvious, and least controversial, applications of 
mathematics, namely, immediate uses in everyday living. It is important to 
realize that not  just arithmetic but also algebra, geometry, probability, 
statistics and in fact most of  elementary and secondary mathematics, are 
likely to come up. Such everyday applications may be either exact or ap- 
proximate in character. When we check the computation of  the sales tax, 
when we try to figure out how much paint it will take for the living room, 
when we refigure a recipe for a different number of people, when we try to 
build or to move a bookcase, or buy a rug of  the right size, or win a little 
money at poker, or plant tomatoes, we are forever using mathematics in 
everyday life. Problems of this kind quite naturally will also appear in our 
textbooks. Here are some examples of  perfectly sensible everyday problems 

taken from random texts that happen to be in my office. I 

Mr. Twiggs changed the price of potatoes in his store from 44 c a pound to 3 pounds for 14 c. 
(a) Did he raise or lower the price? 
(b) How much was the increase or decrease per pound? 

A large sandbox with a base 10 ft. long and 9 ft. wide is built in a park. A dump truck 
carrying five cubic yards of sand is emptied into the box. If the sand is leveled off, what 
is its depth? Give the answer both in feet and in inches. 
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A boy has 24 ft. of wire fence to make a rectangular pen for his pet rabbit. He plans to 
use all the fence in making the pen. Could he make a pen 12 ft. long and 12 ft. wide? 
Whyor  why not? Could he make a pen 8 ft. long and 3 ft. wide? How about 8 ft. long and 
4 ft. wide? Give five examples of lengths and widths he could use for his pen. 

In all the discussions about applied mathematics no one has ever questioned 
the value of such problems. They are realistic and perfectly reasonable. We 
only wish that there were more, and a much greater variety of them. 

III. PROBLEMS THAT USE WORDS FROM EVERYDAY LIFE AND 

PRETEND, IN VARYING DEGREES TO BE A P P L I C A T I O N S  

The next class of  problems in our textbooks, perhaps the most abundant 
of all, are those that use words from everyday life outside of  mathematics 
to make the problem sound good. The key feature of  all these problems is 
that a certain amount of  translation from English to mathematics is required 
before you start, and the point presumably is to practice such translation 
along with practicing the subsequent mathematical technique. The state- 
ment of  such problems rarely questions the honesty and genuineness of the 
connection to the real world, but the connection is often false in one or 
more ways. Some examples: 

An electric fan is advertised as moving 3375 cubic feet of air per minute. How long will 
it take the fan to change the air in a room 27 ft. by 25 ft. by 10 ft.? 

Tile trouble with this is that it pretends that all the old air in a room is 
removed before any new air comes in. Air simply does not behave in this 
way. There is, in fact, considerable intermixing and dilution of  the old air 
by the new. Have you ever noticed how long it takes even a powerful fan 
to get the smell of a burnt pot  of  beans out of  the kitchen? The answer to 
the problem is at best a lower bound. 

The next examples are taken from Dr. J. M. Hammersley, Bulletin of the 
Institute of Mathematics and its Applications, October 1968. They are exami- 
nation questions. 

Question A16. The mean survival period of daisies after being sprayed with a certain 
make of weed killer is 24 days. If  the probability of survival after 27 days is �88 estimate 
the standard deviation of the survival period. 

Professor Hammersley comments on this as follows: 

Now, is the candidate expected to apply some cookbook meflaod which assumes that 
survival times are normally distributed; or is he to try to make his mathematical model 
realistic? If the latter, then he will have to remember that the distribution is a mixture of 
two components - the lifetimes of daisies which escape all effects of the spray and of those 
which do not - and neither of these two distributions are likely to be normal; and he is 
up against some pretty awkward mathematics. The question hardly suggests that the 
examiner has extensive experience of constructing mathematical models. 
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Professor Hammersley's next example and associated comments, are the 
following: 

In the S.M.P. Ordinary Level paper we have some multiple choice questions, and the 
candidate has to encircle the letter or letters corresponding to any correct answer. Question 
16 runs as follows: 

"Passengers are allowed 40 lb. of luggage free of charge; any amount  in excess of 40 lb. 
is charged at 3d. per lb ."  I f  Wlb .  is the weight of  the luggage ( W i s  an integer) and C 
shillings is the cost, the regulation quoted above is equivalent to 

(a) C = 3 ( W + 4 0 ) ;  (b) C =  �88 
(c) C = 4 0 + 3 W ;  (d) c = k w - 4 0 .  

Since all four choices are false, how does the examiner distinguish between a candidate 
who answers the question correctly and one who does not  at tempt it at  all? The notable 
point about  this question is that  there is no need to scrutinize the individual coefficients 
in these formulae; all the formulae are linear, and therefore obviously false since the 
situation is non-linear. 

The same spirit of objection applies to all the pipes of various diameters that 
empty and fill tanks and swimming pools, to railroad schedules, accurate 
to the nearest second, for constant-velocity infinite-acceleration trains, to 
all the factories with linear production costs and known customer response 
to price, and many other stereotypes. Some of these problems perhaps 
contain a kernel of truth, and provide answers of some qualitative validity. 
If an attempt were made to discuss their relation to reality, and to be honest 
with the student generally, they might be acceptable. However, one of the 
first points about which to be honest with the student is the precision of the 
data. Rough and approximate calculation is not only excellent mathematical 
practice, but may, in fact, be the only justifiable response to the approxima- 
tions made in obtaining the mathematical model of reality which the problem 
represents. 

IV. PROBLEMS THAT USE W O R D S  FROM OTHER D I S C I P L I N E S  

The second main group of applications of mathematics, besides those to 
everyday life, are those to scientific or engineering disciplines, and, perhaps 
less commonly, to other scholarly fields. The same troubles that beset 
applications to everyday life recur in these other situations. 

'Word' problems that pretend to come from other scholarly or engineering 
disciplines tend, once again, to be exercises in translation and in the sub- 
sequent mathematical techniques, and the reality of the application is often 
neglected. 

To find out  how far to tunnel through a hill, a surveyor lays out  A X =  100 yards, B Y =  80 
yards, C X =  20 yards, and C Y =  16 yards. He finds, by measurement, that  Y X =  30 yards. 
How long is the tunnel, AB? 
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A ~ B  

The  a s sumpt ion  tha t  A, B, C, X and  Y are  all  in a p lane  should  pe rhaps  be 

s ta ted;  the  p r o b l e m  requires  it, b u t  i t  is p r o b a b l y  reasonable .  The  only 

difficulty is tha t  i f  the  l and  on  the near  side o f  the  hi l l  is flat, no  one wou ld  

d r e a m  o f  bu i ld ing  a tunnel!  

A m o r e  suspect  example  is the  fo l lowing  al leged app l i ca t ion  o f  combi -  

na to r i a l  r eason ing  to  l inguist ics:  

It is a rule in Gaelic that no consonant or group of consonants can stand immediately 
between a strong and a weak vowel; the strong vowels being a, o, u; and the weak vowels 
e and i. Show that the whole number of Gaelic words of n + 3 letters each, which can be 
formed ofn consonants and the vowels aeo is (2(n + 3)t)/(n + 2) where no letter is repeated 
in the same word. 

The  contex t  o f  Gae l i c  o r t h o g r a p h y  here is real ly  ques t ionab le ;  doesn ' t  i t  

ma t t e r  whether  the  resul t ing word  is p ronounceab le ,  and  is there  real ly  an  

a rb i t r a ry  number  o f  consonan t s?  H o w  large is the  Gae l ic  vocabu la ry  o f  such 

w o r d s ?  

A n o t h e r  example ,  which  was specifically in tended  to show the app l i ca t ion  

o f  ma themat i c s  to  science, is the  fo l lowing:  

The specific weight of water (s) at a temperature t~ is given by the equation: 

s = l  + at -t- bt~ + ct 3 ( f o r 0 ~ 1 7 6  

where t=temperature in degrees centigrade, a = 5 . 3 x 1 0  -5, b=- -6 .53  x10 -n, c =  
= 1.4 • 10 -8. 

At which temperature will the water have the maximum specific weight ? 
Solution: (ds)/(dt)  = a + 2bt  + 3ct ~. When (ds)/(dt)  = 0, t = 4.09 ~ 
Since the second derivative, (dZs)/(dt ~) = 2b 4-6ct ,  is negative in the above-mentioned 

range (0 < t < 100 - all temperatures at which water is liquid - under pressure conditions) 
s is a maximum when t = 4.09. 

N o w  i t  is perfect ly  poss ib le  tha t  for  fu ture  purposes ,  one  might  wan t  a 

cubic  a p p r o x i m a t i o n  to  the  exper imenta l  curve p lo t t ing  the  specific weight  

o f  water  aga ins t  t empera ture .  I t  would ,  o f  course ,  be much  more  excit ing 

i f  we h a d  some phys ica l  in tu i t ion  lead ing  us to  the  reasonableness  o f  a 

cubic,  and  i f  a, b, and  e, had  an  in teres t ing in te rpre ta t ion .  However ,  i t  is 

un l ike ly  tha t  the cubic  a p p r o x i m a t i o n  to the  real  da ta ,  or  any  o ther  analyt ic  
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fit, would be used to find the maximum specific weight - you would certainly 
refer to the original data for that. Eyeballing the experimental points will 
give a far better guess for the location of  the extremum than fitting a cubic 
over a very big range and then differentiating it. Of  all the purposes for 
which you might use a cubic approximation to the specific weight of  water, 
locating the point near 4~ of  maximum density is perhaps the least likely. 

It  is probably not immediately relevant, but I should like to mention at 
this point a saying due to R. W. Hamming: " I f  the design of this airplane 
depends on the difference between the Riemann and the Lebesgue Integral, 

I don ' t  want to fly it." 

v .  P R O B L E M S  OF W H I M S Y  

At the far end of  typical textbook problems that are made to look like ap- 
plications are problems which can best be described as pure whimsy. These 
will use words from daily existence or from other disciplines, but it will be 
quite clear to everyone that no real application is intended. In my experience, 
mathematicians love these kinds of  problems better than any other kind. 
The function of  such problems, and there are many of  them in our textbooks, 
is not quite clear. Perhaps they serve to bring a tolerant smile from a weary 
student, or to distract him momentarily from an otherwise dreary lesson 
by diverting the imagination to some more pleasant scene. They provide 
comic relief in the Shakespearean sense, and probably do a lot of  good - 
although not as applied mathematics. Here are some examples: 

Two bees working together can gather nectar from 100 hollyhock blossoms in 30 minutes. 
Assuming that each bee works the standard eight-hour day, five days a week, how many 
blossoms do these bees gather nectar from in a summer season of fifteen weeks? 

In working on a batch of 100 blossoms, one of the bees stops after 18 minutes (just to 
smell the flowers), and it takes the other bee 20 minutes to finish the batch. How long 
would it take the diligent bee to gather nectar from 100 blossoms if she worked all by 
herself? 

Sometimes such problems can have considerable mathematical interest. For 
example, at his summer school for secondary school students in 1966, 
Professor Kolmogorov gave the following problem (I do not have his exact 

phrasing): 

A bee and a lump of sugar are located at different points inside a triangle. The bee wishes 
to reach the lump of sugar, while traveling a minimum distance, under the requirement 
that it must touch all three sides of the triangle before coming to the sugar. What is the 
shortest path? 

In this series of apiarian problems no actual relation to the real world is 
implied. The stories serve to introduce some simple algebra problems on 
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the one hand, or a highly ingenious and educational geometry problem on 
the other. 

~qI. G E N U I N E  A P P L I C A T I O N S  I N  R E A L  L I F E  

The applications of  mathematics that we have examined so far, whether 
genuine or false or whimsical, have all been simple specific problems whose 
solution required only the direct translation of the story into mathematical 
terms and the application of standard mathematical technique. Actual ap- 
plications of mathematics, of course, are often not as simple as that. Rather 
than beginning from a specific problem, we will probably be given a messy 
fuzzy situation which we are trying to understand. It may often be more 
difficult to find the right problem to solve than to solve the problem after 
you have found it. For  example, consider the simple question, 'What is the 
best way to get from here to the airport?' The difficulty begins with trying 
to understand what you mean by 'best'. I f  you have a rented car and are in 
no particular hurry, then probably you mean minimum distance. Under 
other conditions, you might well mean minimum expected time. Depending 
on the time of  day you might be satisfied with a reasonably short drive, but 
require the minimum number of intersections at which you do not have the 
right of  way. You may also wish to take into account the annoyance or the 
danger or the police patrol on any particular route. Have you ever been in 
the area before, and what is your probability of  getting lost on a non- 
standard path? 

If  you are late because of bad weather, is the airplane also likely to be 
late? After talking to a number of  people I personally have reached the 
conclusion that they mean, by the 'best' route to an airport, the route not 
with minimum expected time but with minimum variance in time. People 
are willing to put  up with a longer average time if the spread is small. 

Supermarkets are a wonderful source of  real situations which are subject 
to useful mathematization, and I recommend that mathematicians frequently 
do the family shopping so that they may see these problems. When a product 
comes in several sizes, which is the cheapest? The immediate level of this 
question can be answered by simple arithmetic. There may, however, be 
other angles. I f  you buy too large an amount  is it likely to become spoiled, 
stale or moldy before you finish it? If  you get a free bath towel with one size, 
and a free dish towel with another, which is really cheaper? And the extra 
large roll of  paper towels is no good to you if it is too fat to fit the kitchen rack. 

An excellent exercise in applications of mathematics may be achieved by 
forming a group of  students into a firm of junior consultants for an hour. 
Here is an example of  how this might be used. In most supermarkets you 
typically find one check-out line labeled 'express lane', for n packages or 
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less. When I experimented with this pedagogic technique, the students, in 
their experience, had found n to vary between 5 to 15. Obviously, if a number 
varies this much, people do not  understand what it should be. The problem, 
therefore, is to find out how many packages you ought to allow in an express 
lane. The group of  students had a wonderful time with this. First of  all, 
what is the express line for? Obviously you want to make the most money 
for the stockholders, but how do you do that? Do you want to minimize 
the average waiting time? If  so, do you mean average per package or average 
per customer? Do you want to minimize the expected maximum waiting 
time? Do you wish to minimize the probability that the wait exceeds 10 
minutes, or any other number you care to choose? Next, if  you have agreed 
on what you are trying to accomplish, how do you make a mathematical 
model? What is the relationship between check-out time and the number of  
packages2 Is it good enough to assume a linear relation? Obviously, such a 
straight line would not go through the origin. However, if the number of  
packages is sufficiently large, a second sack will be needed. Perhaps a dis- 
continuous, piece-wise linear function should be used! Is it sufficient to 
assume a deterministic model for check-out time, or is a probabilistic de- 
scription necessary? How should the model differ between supermarkets 
that weigh produce at the check-out position and those that weigh and price 
at the produce counter? Next, what do you say about the arrival behavior of  
the customers? How far apart  are they likely to be? There are, of course, 
many other questions that might come up. These will be hotly debated by 
the students. The hour will go very fast. 

There are innumerable situations in everyday life that can lead to similar 
mathematical questions. Can you build a perfect cubical box out of  six 
identical pieces of  lumber? What  is the best strategy for raking leaves on a 
lawn? If  you wash a pile of socks and hang them up on a line in the base- 
ment, what are the chances of finding a pair adjacent to each other? What  
is the best distance for spacing cars in a tunnel? Given the pattern of  the 
traffic lights in New York City, what is the quickest way to walk between 
two locations? It is quite clear that not every situation of this sort will be 
formulated successfully into a precise mathematical problem, not to mention 
one that the students can already solve. Furthermore, you will not  be sure 
at the beginning what kind of  mathematics will result. Nevertheless, it is 
terribly important for students to have practice in seeing situations in which 
mathematics might be helpful, and in trying their hand at formulating useful 
problems. In fact, one of  the most valuable lessons which comes from trying 
real applications of  mathematics is that finding a problem that is 'right' for a 
particular fuzzy situation is itself a real mathematical achievement. This is 
important  in the classroom not only because it is the honest truth, but also 
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because it helps to de-emphasize the 'answer' as the sole goal of mathematics, 
and helps to shift emphasis toward mathematical structure and process. 

In the couse of practicing mathematization from real life, students will, 
incidentally, discover that for some situations mathematics is quite ir- 
relevant. This too is very valuable. 

VII. GENUINE A P P L I C A T I O N S  TO OTHER DISCIPLINES 

Applications of mathematics to other scientific, scholarly, and engineering 
disciplines follow very much the same pattern. Once again, there are situa- 
tions whose understanding needs to be improved. Once again, formulating 
the right mathematical problem is likely to be half the battle. It is important 
to realize that situations to be mathematized will arise from many different 
disciplines. Besides physics, which has long been recognized as a major 
field of application of mathematics, all branches of engineering, all the other 
physical sciences, as well as the social and biological sciences, are nowadays 
leading to interesting mathematics. For example, biologists make models of 
the prey-predator cycle and attempt to analyze the spread of epidemics, as 
well as continuing to develop the more familiar theory of mathematical 
genetics. Engineers apply topology to printed circuits, probability to random 
vibrations, and modern optimization techniques to production and inventory 
control, as well as using lots of differential equations. 

Even lawyers sometimes get into serious mathematics. The following is an 
extract from Section 217, on the taxability of reimbursed moving expenses, 
of the current (1969) Internal Revenue Code: 

(a) Deduction Allowed - There shall be allowed as a deduction moving expenses paid or 
incurred during the taxable year in connection with the commencement of work by 
the taxpayer as an employee at a new principal place of work .... 

(c) Conditions for Allowance - No deduction shall be allowed under this section unless - 
(1) the taxpayer's new principal place of work - (A) is at least 20 miles farther from 
his former residence than was his former principal place of work, or (B) if he had no 
former principal place of work, is at least 20 miles from his former residence. 

Where are all former residences satisfying these conditions? How is the 
problem different between air miles and highway miles? 

It is crucial that mathematics problems which claim to be applications of 
mathematics to other disciplines be honest applied mathematics. This means 
that the relationship between the mathematical model and the situation in 
the outside world that is being mathematized must be dearly understood. 
It is rather ridiculous to just say some words from another discipline, and 
then exhibit some equation which you claim is relevant. How did you find 
it? What approximations did you make in obtaining this equation? How 
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will you tell whether the mathematical  conclusions are meaningful in the 

original real-world situation? 
Here  is an example in which the process of  creating the mathematical  

model for the physical situation is perhaps insufficiently explored: 

The reaction of the body to a dose of a drug can be represented by the following function: 

where C = a positive constant, R = the strength of the reaction (for example - ff R is the 
change in blood pressure, it is measured in mm mercury, ff R is the change in temperature, 
it is measured in degrees, and so on), D = the amount of the drug. 

We will assume that whenever the drug is administered, the concentration of the drug 
already in the body is insignificant; for if there is already a certain concentration of the 
drug in the body, the reaction will depend upon this initial concentration (Weber-Fechner 
Law). 

D is defined in the range of 0 to C. (In other words, C is the maximum amount that 
may be given.) 

Find the range of dose for which the medicine has maximum sensitivity, in other words, 
where there is the greatest change in R for a small change in D, or equivalently where 
R' (D) is at a maximum. 

The equation in this problem is certainly suspect, i f  only because unfamiliar. 
What  led you to believe that  this relation is true? How does the functional 
fo rm arise f rom first principles2 What  exactly do you measure, and why? 
How can the units possibly work out right? What  kinds of  useful under- 
standing can be derived f rom such a model? A lot needs to be said to make 
this example into good applied mathematics.  

Even applications of  mathematics in classical physics frequently suffer 
f rom being badly presented as applied mathematics.  I t  is an unfortunate 
fact that  in much of  our physics teaching the relation between the phenom- 
ena that  we are trying to understand and the corresponding approximate 
mathematizat ion has been lost in the shuffle. People tend to start a derivation 
in physics by writing down the mathematical  equation and going on f rom 
there. The student is typically not given the opportunity to participate in 
making the abstraction f rom the physical reality to the mathematical  model.  
Why not? I t  is of  course possible to argue that  the particular mathematiza-  
tion has been familiar for many  years, that  it is well known that  it works 
very well and that  it is a waste of  time to rederive it. Similarly, it is sometimes 
argued that  it is a waste of  t ime to worry about  existence and uniqueness for 
solutions of  the resulting differential equations since this is after all obvious 
physically. The trouble with these arguments is that  they are not good 
physics but just  bad applied mathematics. The student has as much right 
to participate in the derivation of  the mathematical  model and in checking 
the degree of its validity as he has to repeat any experiment in order to 
satisfy himself of  its validity. 
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Take for example, the old and familiar example of the motion of a pen- 
dulum. We assume frictionless suspension, weightless inextensible string, 
no air resistance, and point concentration of mass. Perhaps we should make 
an attempt to estimate the influence of these approximations, but at least 
we have mentioned them to the student, and appealed to his personal 
experience to make the neglect of these factors appear plausible. Part of the 
way through the derivation, however, we make the further approximate 
assumption that we may replace sin0 by 0 because '0 is small'. The student 
has no 'physical feeling' for this approximation, and we owe him an op- 
portunity to see how much of a mistake we make in the period - especially 
since it can easily be done within the student's knowledge of analysis at this 
stage. I f  we define T 1 as the period obtained with the replacement of sin0 
by 0, and 7"2 as the period without this approximation, then, if ~ is the 
maximum angle, 

i S  ~ T1 = 2 n x / / ~  = 4 x / / ~  --02 

0 

On the next page, we shall show that 

_02)  sin~ ( 2~) (~2 e ~ < 2 c o s 0 - 2 c o s e ~ < ( e 2 - 0 2  ) 1 - ~ s i n  ~ , 

so that both upper and lower bounds on the error are easy. 
Therefore 

_ _  _ _  ( ~ y / 2  1 - coso~ T2-- T1 <~ - 1.  

12 ~ r~ \sTnn~/ 

In particular, for example, if a = 6 ~ 

T2- T1 
0.00045 ~< - -  ~< 0.0009. 

T1 

A grandfather's clock 5 feet long, with a maximum swing of 6 inches of the 
tip, is to be designed. Is the approximate period Ta good enough? The 
above formulas show that the error is between 0.6 and 1.2 rain in a day, 
which is not  good enough. A more precise formula is used for designing 
clocks. 
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The above inequalities are both proved from the fact that (sinx)/x has a 
local maximum at x =  0. 

s inx sin c~ 7z 
- - -  > ~ - - ,  Ix] ~< ~ ~<- 

x cr 2 

f sin ct s i n x d x ~ > - -  x d x  

0 0 

sin 0~ (~2 
2(cos 0 - cos~) i> - -  - 02) (1) 

0~ 

sin y sin ~/2 
- - - / > -  lyl < y ' 

2 X X 2 
1 - c o s x = 2 s i n  ~ > 2 ~ s i n 2 ~ / 2 ,  [x[ ~<~. (2) 

Integrate from 0 to x: 

4x a sin 2 ~/2 
2 sin x ~< 2x - - 3 ~2 

Integrate from 0 to ~: 

2 cos 0 _ 2 cos ~ <~ (a2 _ 02) (1 sin2 ~/230~ 2 (c~ 2 .ql_ 0 2 ) )  

~< (~2 __ 02) (  1 sin~(z/2). 

VIII .  C O N C L U S I O N  

We have made an attempt to classify problems that are intended to give the 
student the feeling that he is applying mathematics, and we have seen some 
of the difficulties in making these problems realistic. Much work remains to 
be done to make real applications of mathematics an integral part of the 
classroom experience. It is important to realize however, that formulating 
the 'right' problem in a situation outside of mathematics is creative activity 
much like discovering mathematics itself. Thus our continuing efforts to 
bring the discovery method to the classroom naturally go hand-in-hand with 
attempts to bring genuine applications to the classroom. The two efforts 
reinforce each other, and both 'are  essential for a complete and honest 
presentation of mathematics in our schools. 

Bell Telephone Laboratories, Inc. 
lllurray Hill, N.J. 
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t References are, in most  cases, simply not  available, because they were chosen essentially 
at  random;  the books, in turn, were sent to me by publishers who were kind enough to 
overlook my lack of a regular teaching appointment.  My apologies in advance to any 
authors, editors, and publishers whose favorite problems may be treated a bi t  unkindly in 
the sequel. 


