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Abstract. A mathematical model of the motion of la- 
hars is presented. Lahar flows and travel speeds are cal- 
culated using a kinematic wave model which equates 
gravitational accelerations to frictional losses. A Chezy- 
or Manning-type law of friction is assumed, in which 
lahar flow rate is a simple power function of lahar 
depth, multiplied by another simple power of the chan- 
nel slope. Use of the model requires knowledge of es- 
sentially only one parameter which appears to be rela- 
tively insensitive for flows down a given channel. Vari- 
able channel slope effects are removed by a longitudi- 
nal scaling which applies to all flows down a given 
channel. For lahars generated by a single explosive 
event it is unnecessary to perform numerical calcula- 
tions to predict lahar flow and travel time, but for la- 
hars produced by multiple sources in which different 
lahar flows are interacting, numerical calculations ap- 
pear necessary. The model is applied to all recorded la- 
har flows from Mt. Ruapehu, and satisfactorily de- 
scribed all lahar flows generated by a single explosive 
mechanism. Such flows depend essentially only on total 
lahar volume. The 1968 Mt. Ruapehu lahar, generated 
by a series of smaller eruptive mechanisms, was mod- 
elled as the interaction of seven point sources of fluid 
originating from positions mathematically extrapolated 
up the mountain. Good agreement was obtained be- 
tween the predicted times of formation of these 1968 
lahars, and the times of greatest seismic amplitude. 

Introduction 

Eruptions from volcanoes containing crater lakes often 
produce lahar flows. The water in the crater lake can be 
displaced either by surges that spill over the sides of the 
crater; by collapse of the crater wall; or by hydrother- 
mal or magmatic explosions that eject crater contents 
into the air. In all of these cases, crater water will be 
deposited on the side of the volcano, where it can melt 
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nearby ice and snow, thereby increasing the flow, as 
well as transporting solids such as ash, mud, pumice 
and stones. The resulting fluid flow of liquid and solids 
down the volcano is called a lahar, quantification of 
which is the aim of this paper. 

There is no clear definition in the literature of a la- 
hat. Lahar flows are usually confined to valleys or 
channels, and so are primarily driven by gravity. Lahars 
have been defined (Pierson I985) as 'volcanic mudflows 
or debris flows' comprising of 'dense, viscous slurries 
of poorly sorted gravel, sand, mud, and water.' Lahars 
are sometimes referred to (Pierson and Scott 1985) as 
'volcanic debris flows'. Recent accounts of debris flows 
are by Pierson (1986) and Okuda et al. (1980), while 
mudflows have been discussed recently by Janda et al. 
(1981) and Cummans (1981a, 1981b). Alternatively, vol- 
canic flows may comprise a sequence of different flows 
such as a landslide-debris flow-flood wave sequence 
(Gallino and Pierson 1985), or as an evolutionary flow 
from debris flow to hyperconcentrated flow (Pierson 
and Scott 1985). 

This paper does not consider 'debris flows', which 
can contain up to about 20% by mass (40% by volume) 
of water. Debris flows have been analysed by Takaha- 
shi (1980, 1981) as a flow in which solid-solid forces 
produce Bagnold stresses that essentially balance the 
gravitational forces. The term 'lahar' used in this paper 
refers loosely to a hydraulic type of flow down a volca- 
no, in which turbulent liquid (and solid) frictional 
forces essentially balance gravitational forces. 

Lahars are a serious hazard at volcanoes, first be- 
cause large and dangerous flows can develop rapidly, 
and second because the high liquid content enables la- 
hars to travel long distances and present a danger for 
many tens of kilometres in valleys draining the volcano. 
During the early phase of lahar flow about the summit 
of the volcano, many of the heavy and large solids set- 
tle from the flow and deposit on the upper reaches of 
the volcano, leaving clear evidence of the lahar. Some- 
times these deposits on the upper parts of the volcano 
are referred to as the lahar. However, in this paper we 
shall understand the lahar to refer to the fluid flow of 
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both solids and liquids occuring down the volcano, and 
we shall ignore the deposition which occurs in the up- 
per reaches of the volcano. 

This paper discusses only data from the active an- 
desitic New Zealand volcano Mt. Ruapehu, situated 
approximately at 39 ~ 17'S, 175~ I'E. The geology of Mt. 
Ruapehu and its ring plain is described in a facies 
model by Hackett and Houghton (1989). A crater lake, 
fed mainly by melting summer snows, occupies the 
crater at the summit of Mr. Ruapehu approximately 
2566 m above sea level. Lake volume has fluctuated be- 
tween zero, during the eruption in 1945 when a spread- 
ing tholoid displaced the lake water, to its maximum 
recorded value of order 107 m 3 between 1948 and 1953. 
Lake bathymetry has been described by Dibble and 
Christoffel (1966), and Hurst and Dibble (1981). The 
present size of the crater lake is of the order 7 x 106 
m 3" 

The larger eruptions from Mt. Ruapehu between 
1861 and 1959 have been recorded by Gregg (1960), 
and later eruptions by Latter (1985). At least seven 
(1861, 1889, 1895, 1903, 1925, 1969, 1975)of these large 
eruptions produced lahars in the Whangaehu valley; 
three eruptions (1895, 1969, 1975) produced lahars on 
the northwest slopes; and outwards collapse of an ice 
wall generated another lahar in 1953. 

The first published eye-witness observation of a Mt. 
Ruapehu lahar occurred on 13 December 1859, when a 
lahar washed out the newly constructed Whangaehu 
bridge. According to an observer, (O'Shea 1954). 'The 
flood came down at about 6 am and in little more than 
two hours it subsided, leaving large masses of ice, snow 
and mud . . . .  the ice and snow were remarkably com- 
pact; very black, and emitting a strong sulphurous 
smell'. 

The largest known lahar from Mt. Ruapehu, on 
Christmas Eve, 1953, probably was generated by col- 
lapse of the ice wall about the crater lake and swept out 
the Whangaehu rail bridge, causing 151 deaths. The 
volume of the lahar was so large principally because 
more water was stored in the crater lake then than 
since. An eruption in 1945 had deposited an ash and 
debris barrier restricting lake outflow, so the depth of 
the crater lake built up to approximately 7 m above its 
usual level. The 1953 lahar is discussed in the Report of 
the Board of Enquiry into the Tangiwai Railway Disas- 
ter (Turner 1954) by Paterson (1980) and by Weir 
(1982). 

The 1975 lahar was seen by Mr JB Martin, who was 
located at a bridge 14.3 km downstream from the Tan- 
giwai SH 49 bridge. He reported (Paterson et al. 1976) a 
rapid rise in waterlevel, reaching a peak in several min- 
utes, with a surging and turbulent flow. The water was 
black and oily in appearance, with a strong sulphurous 
smell. Assorted debris was carried along ahead of the 
peak flow, and large boulders could be seen being 
tossed around and carried partly in suspension. A small 
wooden farm bridge (Stracken's Bridge), 6.5 km down- 
stream of State Highway 49, was swept away by the la- 
har. 

Although many small lahars from Mt. Ruapehu 

have been discovered in hydrographic records, as well 
as being observed during periods of small hydrother- 
mal eruptions in the crater lake, we shall discuss only 
the 13 recent and major lahars detailed in Table 1. 
Available information includes in most cases: the time 
of eruption repsonsible for lahar generation; the dis- 
charge with time of the lahar at various fixed positions 
about the volcano; topography of the lahar flow path; 
and estimates of lahar volume as inferred from changes 
in crater lake volume. (Changes in crater-lake volume 
can be less relevant to debris flows, where small 
amounts of water can initiate a large volume of largely 
solid flow.) 

The Whangaehu, Whakapapa and Manganui-a-te- 
ao are the three main rivers draining Mt. Ruapehu (Fig. 
1). The large loss of life caused by the 1953 lahar 
prompted the installation of a water-level device in the 
Whangaehu river channel about 12 km upstream of the 
rail bridge, to provide an early warning system for fu- 
ture lahars. Subsequently, a stage recorder was also 
placed downstream of the railbridge in the Whangaehu 
channel, and a continuous trace of river stage versus 
time has been available in the Whangaehu channel for 
all subsequent lahars. Additional stage recorders have 
been installed in the Whakapapa and Manganui river 
channels. Raingauges have been installed at Makotuku 
and Te Porere, yielding estimates for background chan- 
nel flows, which would have occurred in the absence of 
any lahar flow. Seismic records for the period of inter- 
est were provided by a seismometer installed at the 
Chateau, and between 1968 and 1975 by another seis- 
mometer near the summit of Mt. Ruapehu (Dibble 
1969). 

The cross-section of lahars depends, of course, on 
channel cross-section. Near the summit, lahar flows of 
up to 8 m have been inferred from lahar deposits. 
O'Shea (1954) states that the lahar producing the Tangi- 
wai disaster was 3-m deep and 30-m wide. Lahar stage 
is measured directly, and the associated lahar flow is 
then estimated by analogy with the corresponding be- 
havior of river water at that point. 

Most of the previous work on Mt. Ruapehu lahars 
has been of a descriptive nature, with little quantifica- 
tion. However most of the hydrographic records have 

Table 1. Selected Ruapehu lahars 

Date Channel Volume (m 3) 

24. 12. 1953 Whangaehu 1900000 
26. 4. 1968 Whangaehu 740000 
22. 6. 1969 Whangaehu 67000 
22. 6. 1969 Manganui 24000 
22. 6. 1969 Whakapapa 117000 
8. 5. 1971 Whangaehu 41400 

16. 5. 1971 (0100) Whangaehu 72000 
16. 5. 1971 (0920) Whangaehu 57600 
19. 5. 1971 Whangaehu 18180 
24. 4. 1975 Whangaehu 1800000 
24. 4. 1975 Manganui 600000 
24. 4. 1975 Whakapapa 900000 
2. 11. 1977 Whangaehu 130000 
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Fig. 1. Positions of lahar recording sites about Mt. Ruapehu. The 
dotted line denotes the main railway line north, the heavy lines are 
main roads about Mt. Ruapehu, and the thin lines are the main 
streams draining Mt. Ruapehu. Stage recorders are shown as solid 
circles at the Tokiahuru Confluence, the Whakapapa Footbridge, 
and at Ashworth on the Manganui-A-Te-Ao River 

been combined into a theory (Weir 1982) applicable to 
lahars generated from a point source of fluid. The main 
results are given in the next section. 

The main aim of this paper is to extend that theory 
to include cases where initial point sources of fluid are 
interacting. This occurred in the 1968 lahar, which was 
not accompanied by a large eruption. The 1968 lahar is 
analysed in detail in this paper so as to complete the 
analysis for Ruapehu lahars. In addition to being ap- 
plicable to lahar flows, the theory developed in this pa- 
per will also apply to any geophysical flow of finite vol- 
ume in which the kinematic wave hypothesis is approx- 
imately true. For instance, the results of this paper will 
apply to any isolated flow of liquid, gas or solid in 
which the gravitational force is approximately balanced 
by frictional losses in such a manner that the flow of 
conserved mass is a functio~ of flow depth. 

Kinematic Wave Theory for isolated lahars 

The expression 'Kinematic Wave Theory' (KWT) was 
coined by Lighthill and Whitham (1955) to describe 
types of flows in which the dominant mechanism deter- 
mining propagation of the fluid was an empirical rela- 
tionship connecting fluid discharge and fluid depth, 
which, together with conservation of fluid mass, allows 

the resulting flow to be calculated from a first order hy- 
perbolic equation. Different applications of KWT have 
been described by Whitham (1979) and Weir (1983). 

Kinematic wave theory does not provide a complete 
description of the various flow processes that are occur- 
ring, since it requires an empirical assumption connect- 
ing discharge and depth. Such a relationship will not 
hold in general and is, at best, approximate. Conse- 
quently, predictions obtained using KWT reflect, in a 
certain sense, only averaged information and a compro- 
mise that is attractive in geophysical applications where 
precise details of the flow are not often available. 

The physical conceptualisation assumed for lahars 
in this paper, and incorporated into KWT as the lahar 
discharge-depth relationship, is that the gravitational 
force is exactly balanced by frictional forces. Accelera- 
tions of fluid are ignored, and so instantaneous steady 
flows are assumed. This assumption breaks down at the 
front of a flow wave, or lahar. In particular, the front of 
a lahar moves, at any given time, with almost uniform 
velocity, although the depth of lahar varies from zero at 
the front of the lahar to a maximum value some dis- 
tance behind the front of the lahar. This violates the 
assumption in KWT that a discharge-depth relationship 
holds. 

This difficulty is usually overcome in KWT by ig- 
noring the forward part of the lahar, where a 'shock' is 
fitted. At a forward shock, lahar depth is assumed to 
increase instantaneously from zero to some non-zero 
value. This allows the discharge-depth relationship to 
hold in KWT. Similarly, in regions where fluid acceler- 
ation is important, it is likely that other shocks may re- 
quire construction, by allowing for instantaneous rises 
in lahar depth. Shock construction follows naturally 
from the mathematical formulation, by requiring that 
lahar depth be single-valued, except at a shock. 

The application of KWT to lahars is attractive, 
since the precise nature of such lahars is uncertain. In 
addition to the complexities associated with the flow of 
liquid and solid comprising the lahar, there are also dif- 
ficulties resulting from the complex topography chan- 
neling the flow, and uncertainties associated with lahar 
formation. Such considerations suggest a compromise 
such as KWT which captures the main features of the 
flow, without introducing many unknown factors of 
secondary importance, and without requiring excessive 
computation. 

The central equations of KWT for lahars state 
mathematically the conservation of mass, 

ah + a q = 0 (1) 
St ~x 

and a flux law relating lahar flow q to lahar depth h, 

q = a ( x ) h  k (2) 

where x is distance and t time (since the corresponding 
time of lahar formation). Flow q, which has units of 
m2s -1, denotes the actual flow per unit width of chan- 
nel. We assume that for each lahar there is a constant 
value of k. 

Equation 2 approximates the flow as a function of 



384 

Table 2. Scaled distances  and k values  for W h a n g a e h u  
lahars 

Date  Eruption z k 
t ime 

22. 6. 1969 0032 15 816 1.31 
8. 5. 1971 1555 15416 1.25 

16. 5. 1971 0100 15170  1.24 
16. 5. 1971 0920 11689 1.37 
19. 5. 1971 1812 15571 1.23 
24. 4. 1975 0359 15789  1.31 
2. 11. 1977 1351 11881 1.47 

flow depth and channel properties. The function se- 
lected previously, and used in this paper, is a power- 
law akin to the Manning-Law or Chezy-Law for hy- 
draulic flows, and the function a(x) allows for such fac- 
tors as longitudinal variations in channel width, rough- 
ness and channel slope. It has been shown (Weir 1983, 
Eq. 13) how to construct a scaled distance, z, in order 
that a(x) transforms into a constant. Then the charac- 
teristics become straight lines in z - t  space, satisfying, 

dh 
- -  = 0 (3) 
dt 

dz dq (4) 
dt dh 

and so h and q(h) are constant along each characteris- 
tic. 

The values of k indicates how strongly flow de- 
pends on lahar depth. For water flows, k is typically 
about 1.7; for mud-flows k can be as high as 3 (Gol'din 
and Lyubashevsky 1966); while Table 2 shows that k 
varies between 1.2 and 1.5 for Mt. Ruapehu lahars. 

It has been proved (Weir 1983) that lahars of finite 
volume that are generated over a finite interval of  time 
tend to a limiting self-similar profile with increasing 
time. In particular, the spatial distribution of lahar 
fluid tends to evolve to an essentially common, though 
time-dependent profile, independently of the initial dis- 
tribution of lahar fluid. Self-similarity refers to the 
long-time mathematical property of lahar profiles, 
which depend essentially on the single variable zt -~, 
rather than on both of the variables z and t separately. 
Self-similarity tends to develop because information 
concerning the initial conditions travel with the charac- 
teristic speed in Eq. 4, which is faster than the speed of 
the fluid. Thus the detailed nature of the initial shape 
of the lahar tends to be lost with time. Except for the 
1968 lahar, all Mt. Ruapehu lahars considered in this 
paper have effectively attained such a limiting profile 
by the time they reach their corresponding stage record- 
er. 

One of the main results obtained for such self-simi- 
lar lahars (Weir 1983) is that the largest discharge Q oc- 
curs at the front of the lahar, and satisfies, 
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Fig. 2. Plot o f  ca lculated and measured  laher peak  f lows  about  
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where at time t, Q is the largest (shock) discharge in 
units of m3s- 1, and Vis total lahar volume in m 3. m test 
of Eq. 5 is given in Fig. 2, using k-- 1.234 and is shown 
to be approximately valid over three orders of magni- 
tude. 

A second main result for such self-similar lahars 
(Weir 1983) is that the average travel time, since flow in- 
itiation, for lahars satisfies, 

z = t ~ (6) 
Vk- 1)1 

where z is the scaled distance associated with the posi- 
tion of the stage recorder, and A (in units m 2 s -1) is 
total lahar volume V per unit channel width. The varia- 
ble z is a constant that depends on the position of the 
stage recorder and the nature of the lahar channel. A 
test of Eq. 6 is given in Fig. 3, which shows that the 
arrival time for such lahars can be predicted reasonably 
accurately. Note from Eq. 6 that since k is greater than 
unity, the average speed of lahars decrease with time. 
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Average lahar speeds are found by dividing the travel 
distance of  the lahar by the arrival time in (6). 

Equations 5 and 6 provide the main quantifications 
needed for such lahars - namely how large are the re- 
sulting flows, and how long after flow initiation do 
such flows strike. These results are particularly interest- 
ing because results involving time t and flow q are inde- 
pendent  of  the longitudinal scaling (z). 

The volumetric flow per unit channel width q was 
shown to satisfy 

q = k-  ~ (7) 

where z is the scaled longitudinal distance (Weir 1982). 
Previous work proceeded by fitting the decay of  lahar 
discharge at a fixed point as a function of  time since 
flow initiation, using Eq. 7, which yielded a value of  k 
for that lahar. Then the value of  z was evaluated from 
Eq. 7. Values of  k and z thus found are shown in Table 
2. The consistency of  this approach is demonstrated by 
the close agreement between modelled and measured 
shock flows and arrival times, predicted in Eqs. 5 and 
6. 

Finally, the mathematical transformation o f x  into z 
was chosen so that the posit ion-dependent function 
a(x) transforms into a constant a*;  namely, 

a* = k  -k (8) 

The exceptional 1968 lahar 

The original hydrograph of  the 26 April 1968 lahar is 
reproduced in Fig. 4. This lahar is exceptional in three 
respects. First, the initial flow took approximately one 
hour  to reach maximum discharge. This is in contrast to 
the other lahars discusssed in the previous section, 
which, according to hydrograph records, took only sev- 
eral minutes to reach maximum discharge. The only 
eye-witness account for the rise in a Ruapehu lahar 
flow, by Mr. Martin (Paterson et al. 1976) observing the 
1975 Whangaehu lahar, also suggests that the peak flow 
was reached within a few minutes of  the initial onset of  
the lahar. 

Second, the hydrograph shows that the flow does 
not decrease monotonically with time, as occurred for 
the examples discussed in the previous section, but has 
seven individual flow peaks within the hydrograph. 
This suggest that the 1968 lahar formed from either a 
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Fig. 4. Plot of measured lahar depths (m) at the Tokiahuru Con- 
fluence for the exceptional 1968 lahar, vs time in parts of days 

source of  fluid distributed over several hours, or else 
originated from a series of  point sources of  fluid that 
coalesced before arrival at the Tokiahuru Confluence. 

Third, there was no single triggering event responsi- 
ble for the 1968 lahar. Instead, there was seismic activ- 
!ty over a period of hours. A description of  seismic ac- 
tivity at Mt. Ruapehu over this period is given in Table 
3, and the seismic power chart (Dibble 1969) is repro- 
duced in Fig. 5. Note that all o f  the lahars discussed in 
the previous section could be associated with a single 
formation time, the correctness of  which is demon- 
strated by the success of  the theory in the previous sec- 
tion. 

These three exceptional properties of  the 1968 lahar 
clearly indicate that the theory in Weir (1982), which 
assumed a single delta function source of  fluid at a par- 
ticular time, and a dry river valley, cannot be applied 
directly to the 1968 lahar. The aim of  this section is to 

Table 3. Seismic activity at Mt. Ruapehu 26 April 1968 

Time Magnitude Description 

NZST Richter 

12:36 2.2-2.3 
01:16 3.5 
07:49 3.5 
09:36 3.1 
15:30 2.3 

9 hours of strong volcanic tremor 
Volcanic earthquake sequence, suggesting eruption 
Volcanic earthquake sequence, suggesting eruption 
Volcanic earthquake sequence, suggesting eruption 
Volcanic earthquake sequence, suggesting eruption 
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T a b l e  4. Components of the 1968 Lahar 

Peak flow Tokiahuru Hydrograph Equation 4 
confluence time 

m3s-~ 26-27 April Volume m 3 Volume m 3 
1968 

45.6 1930 138 200 174 800 
(265 600) 

28.6 2039 109 300 135 800 
23.0 2155 105 100 111900 
18.7 2327 93 000 93 000 
12.0 0129 30 700 65 000 
11.2 0221 71700 66 300 
7.5 0652 64 800 41600 I .  . �9 �9 �9 . . I -  

Fig. 5. Plot of measured seismic power at Mt. Ruapehu, on 26 
April 1968, as a function of time (dots every 4 h), from Dibble 
(1969) 

extend the earlier theory so as to apply to the 1968 la- 
har. Kinematic Wave Theory is applied to the 1968 la- 
har, by assuming seven delta functions of source fluid 
at the summit of Mt. Ruapehu. Then a fully numerical 
approach was used which seeks a distribution of  source 
fluid at the summit of Mt. Ruapehu which approxi- 
mately yields the measured flows at the Tokiahuru 
Confluence. 

The analytical approach described in the previous 
section was successful primarily because, for all o f  the 
lahars discussed, there was an obvious seismic event re- 
sponsible for the lahar, and so the time t since the lahar 
formation was available. For  the 1968 lahar, however, 
there was no clear time of  lahar formation, and in addi- 
tion the decay of flow at the Tokiahuru Confluence was 
non-monotonic  with time, so the above procedure for 
determining k and z required modification. 

The approach adopted in this paper  proceeded by 
observing that values of k and z in Table 2 fall into two 
groups. The first and largest group has mean z and k 
values of 15 552 and 1.27. This k value is close to the 
value found in Fig. 4, as an average value for Whan- 
gaehu lahars, of  1.234. The computer  run using 15 552 
and 1.234 was denoted by Model 1. Similarly when the 
second group's average values, 11785 and 1.42 were 
used, the corresponding run was called Model  2. 

A computer  program was written to solve Eqs. 1, 2 
and 9. The program calculates the variation of  depth at 
the Tokiahuru Confluence resulting from a particular 
initial depth profile at Crater Lake. This initial depth 
profile was adjusted until the final depth profile closely 
fitted the actual hydrograph shown in Fig. 4. The initial 
depth profile consisted of  seven isolated sources of  wa- 
ter of  different volumes, as given in Table 4. 

For mathematical convenience, the height of  Mt. 
Ruapehu was extended, and seven isolated delta func- 
tion sources of  water of  different volume and position 
were simultaneously placed on this imaginary exten- 
sion. This formulation allows the 1968 lahar to evolve 
from a given initial condition, rather than by specifying 
a source of  water at the rim of  the crater. Physically, 
water is ejected from the lake as a function of  time. Our 

aim is to adjust the initial condition, until the water 
flowing down the imaginary mountainside from the 
seven sources approximately matches the physical 
source at the crater rim. 

The Whangaehu channel clearly increases in width 
down Mt. Ruapehu. This can be allowed for by modify- 
ing the scaling function a(z) in Eq. 2, but since such a 
scaling function is not known precisely, we have made 
the simplifying assumption that the Whangaehu chan- 
nel has a constant width of  60 m. 

During the 1968 lahar flow, heavy rainfall was oc- 
curring, which is added to the lahar contribution to 
yield the total recorded channel flow. Since the back- 
ground rainfall was almost constant during the period 
that the 1968 lahar reached its peak flows and then es- 
sentially decreased to zero flow, we simply subtracted 
the inferred contribution from rainfall , and denoted the 
remainder as the total contribution from the lahar. Of  
course, the rainfall contribution to channel flow will 
vary (in some unknown manner) down Mt. Ruapehu as 
the effective drainage area increases and depending on 
rainfall intensity with position, but we have ignored 
such effects and discussed only the lahar flow. 

A discharge-depth law for the lahar was inferred for 
the remaining lahar flow. The discharge-depth law used 
by hydrologists to infer flows in the Whangaehu river at 
the Tokiahuru Confluence is, 

q~ = 2.48 H~765 (9) 

where total flow per unit width q, has units of  m 2 s -  1 ; 

channel width w is 60 m; and H, is the total depth of  
water from both lahar and rainfall in the channel. Then, 
subtracting the background flow inferred for rainfall, 
the remaining flow per unit channel width q in the 
channel was related to the difference H in total channel 
flow depth minus the background depth, and yielded a 
relationship closely approximately by, 

0 21 n 1~636 (10) q =  . 

Interestingly, the power of  1.1636 in Eq. 10 is close to 
the inferred Model  1 k value from Fig. 3 of  1.234, which 
relates to an average 'k' value obtained using travel 
times for the Whangaehu channel. Note that Eq. 10 re- 
lates inferred lahar flow to inferred lahar depth at the 
Tokiahuru Confluence,  whereas Eq. 2 refers to lahar 
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propagation betwen the summit of Mt. Ruapehu and 
the Tokiahuru Confluence. Further, whereas the coeffi- 
cient of 0.21 in Eq. 10 contains contributions from such 
factors as channel slope, and is therefore position-de- 
pendent, the coefficient a* in Eq. 8 has such position- 
dependence scaled out. 

The calculations used the scaled lahar depths h, 
which are different from the dimensional depths H in 
Eq. 10. Transformations between h and H are achieved 
through q, flow per unit width, which is independent of 
longitudinal scaling. The two main differences between 
the present approach and the earlier work is, first, no 
analytical solutions are available, necessitating numeri- 
cal calculations; and second, the shock condition be- 
comes, 

ds Aq 

dt - Ah (11) 

where Aq and Ah are respectively the changes in flow 
and scaled lahar depth at the shock. Equation 11, to- 
gether with the condition that both q and h are constant 
along characteristics, allows Eq. 1 for lahar flow to be 
solved. 

The depth of flow at each point in space and time 
was found by calculating the appropriate characteristic 
through that point. The program follows each lahar 
component from its position at the starting time until it 
reaches the Tokiahuru Confluence. It outputs the 
height of water to be expected as a function of time, for 
comparison with the hydrograph. It also compares the 
mass of water present at the beginning and at the end, 
to check for mass conservation. The final mass is re- 
quired to be within 6% of the initial mass. Note that 
other volcanic flows, such as debris flows, may not con- 
serve mass, and may increase their total volume by 
picking up sediment by as much as a ten-fold in- 
crease. 

Each lahar component was fitted sequentially, us- 
ing trial and error to find the appropriate values of 
starting locations and starting heights. All lahar compo- 
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Fig. 6. Plot of calculated lahar flows (m 3 s- 1) at Crater Lake as a 
function of time (s) for k equalling 1.42 and z equalling 11785 
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Fig. 7. Plot of modelled input lahar depths (m) above Mt. Ruape- 
hu, at zero time, vs scaled distance for k equalling 1.42 and z at 
the Tokiahuru Confluence equalling 11785. These lahar profiles 
have evolved after 100 s from delta function profiles 

nents are assumed to have originated from a delta func- 
tion source of fluid, which formed 100 s before the ini- 
tial time in the computer program. The 100 s delay was 
chosen to avoid the infinite lahar depths which follow 
from using delta function sources of fluid. A negative 
starting location means that at the starting time the la- 
har component had not reached the crater rim. Al- 
though the initial shape of the earliest lahar compo- 
nents has some influence on the shape of the corre- 
sponding final lahar component, (because the lahar 
component has not lost all of its memory of its original 
shape), for reasons of simplicity, we did not allow for 
variable initial shapes (by allowing the initial values of 
'k' to vary), even though this did give improved fits to 
the hydrograph. The later lahar components are less 
sensitive to their initial shape, as would be expected 
(since they travel the furthest). Fitting of later lahar 
components did not affect the fits obtained for earlier 
lahar components. 

Finally, once the kinematic wave equation has been 
solved, and the scaled initial lahar depths found, the 
initial flows and depths at the summit of Mt. Ruapehu 
are found. 

Figure 6 plots the calculated flows at Crater Lake 
obtained from the numerical Model 2 using k and z val- 
ues of respectively 1.42 and 11 875. The initial depths of 
lahar, chosen to produce an approximate fit to flows at 
the Tokiahuru Confluence, are shown in Fig. 7. The ne- 
gative distances indicate that these positions have been 
extended beyond Mt. Ruapehu. 

Seismic power at Mt. Ruapehu for 26 April 1968, is 
indicated in Fig. 5. A description (J. H. Latter, personal 
communication) of Fig. 5 is given in Table 3. The onset 
of seismic activity at about 1236 h is clear on Fig. 5, 
while the subsequent individual peaks between about 
1600 and 2200 h, which we suggest later are responsible 
for the first six tahar components in the 1968 lahar, are 
also clear. The final peak is suggested later as responsi- 
ble for the seventh lahar component. 
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Fig. 9. Time (s) vs scaled distance plot of calculated characteris- 
tics for the seven model lahar components with k equalling 1.42 
and z equalling 11785 

The numerically calculated flows at the Tokiahuru 
Confluence are shown in Fig. 8, when the Model 2 val- 
ues of  k and z (1.42 and 11785) are used. These mod- 
elled flows were chosen by varying the initial fluid 
sources at the summit of Mt. Ruapehu to correctly 
match the measured peak lahar component  flows. In 
general, the first three lahar components decrease with 
time more rapidly than the measured flows. 

A plot of  the characteristics in the time and scaled 
distance plane is shown in Fig. 9. The 'physical '  range 
of  z is between 0 and 11 785 (the position of  the Tokia- 
huru Confluence). Negative values of  z denote posi- 
tions extended above Mt. Ruapehu, while time refers to 
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Fig. 10. Comparison of seismic times at Mt. Ruapehu and infer- 
red source times at Mt. Ruapehu of lahar component formation. 
The x-axis represents time in hours of seven of the largest peaks in 
the seismic record. The y axis represents lahar component forma- 
tion times predicted by the model. The line is y = x ,  i.e. perfect 
correspondence. The dots show Model 1 values, while the aster- 
isks show Model 2 values 

seconds since the formation of  the first lahar compo- 
nent at about 1600 h NZST. 

The first and second characteristics intersect at a z 
value of  about 21000. From then on a modified treat- 
ment of  characteristic propagat ion is needed, since 
both lahar components will have coalesced. Indeed, if 
the model had been run sufficiently long, all of  the la- 
har components would have coalesced into a single 
wave, with only one forward shock. This occurs because 
deeper fluid travels faster than shallower fluid, and so 
deeper fluid moves to the front of  the lahar. However, 
such coalescences can be ignored in this paper, since 
these occur downstream of the Tokiahuru Confluence. 

A comparison of  modelled times of  lahar formation 
at Mt. Ruapehu and times of  seismic activity is given in 
Fig. 10 and Table 5. The modelled lahar formation time 
was chosen as the time the corresponding lahar shock 
reaches the crater rim, whereas times of  seismic activity 
were obtained from Fig. 5. There is a good correlation 
between modelled source times and seismic activity for 
both models, but particularly for Model 2. 

Table 5. Estimated formation times (NZST) for the 26 April 1968 
lahars at Crater Lake. The analytic estimates are calculated using 
the model values for k and z, and assuming no interaction be- 
tween lahar components. The seismic estimates have a reading er- 
ror of 10 min 

Model 1 Model 2 

Analytic Numerical Analytic Numerical Seismic 

1457 1457 1557 1557 1600 
1501 1527 1515 1623 1629 
1608 1621 1617 1714 1705 
1733 1756 1733 1829 1825 
1903 1915 1818 1957 1938 
1919 2009 1808 2048 2105 
2418 2351 2356 2410 2407 
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Discuss ion 

A general theory applicable to hydraulic lahar flows 
has been presented. Comparison of modelled and meas- 
ured flows and travel times have been shown graphical- 
ly. 

The theory presented above does not involve expli- 
cit consideration of lahar depths of flow. In principle, 
depths can be calculated from the discharge-law in Eq. 
2, but when this is done, calculated flow depths are too 
large. This failure represents an inconsistency in the 
theory. From a practical viewpoint, this problem can be 
avoided by using Eq. 10, which yields 'reasonable' esti- 
mates for lahar depths. Of course, while this yields con- 
sistent estimates for all lahar quantities, it does not re- 
move the inconsistency within the theory, which is pri- 
marily due to the difference between Eq. 10, which re- 
lates to a particular point, and Eq. 2 which is an aver- 
age over all points. 

Lahars possibly do not propagate as cold water 
does, so that inferring lahar flows from lahar depths on 
hydrographic records using Eq. 9 could lead to incon- 
sistencies. However, it is unlikely that estimated flows 
differ by an order of magnitude from actual flows, 
since the total lahar volumes of several of the Whan- 
gaehu lahars agree within about a factor of two with 
total changes in Crater Lake volume. Consequently, we 
have accepted Eq. 9 in the absence of an alternative. 

A difficulty also arises from the slow build-up, of 
about one hour, to maximum flow. During this time 
about 127 000 m 3 of lahar fluid has passed the Tokia- 
huru Confluence, which is comparable to the volume 
we assosciated with the first lahar component. We have 
simply ignored this fluid, since there is no obvious way 
in which it can be included into our model of lahar 
component arrivals. 

Many of the criticisms above arise largely because 
of lack of knowledge about lahar formation and trans- 
port. Perhaps the remarkable feature of this work is 
that, given so little information, the maximum lahar 
discharge at a given point, the subsequent decay with 
time of discharge at that point, and lahar travel time 
from Mt. Ruapehu could be described satisfactorily. 
This is particularly important in discussing future lahar 
hazards from such volcanoes, since it seems likely that 
the conditions surrounding their formation and trans- 
port will be extremely uncertain. Simple theories such 
as given above are then valuable, since they provide a 
robust method for estimation of discharges and travel 
times. 

Figures 3 and 2 show the success of KWT in de- 
scribing travel times and lahar discharges about Mt. 
Ruapehu for lahars generated by single seismic events. 
Modelled and actual formation times of components of 
the 1968 lahar, as given in Table 5 and plotted in Fig. 
10, suggest that Model 2 is superior to Model 1. The 
near coincidence of the times for Model 2 strongly 
suggests that these seismic events coincided with the 
corresponding lahar formations. 

However, Fig. 8 shows that the fit between meas- 
ured and modelled flows at the Tokiahuru confluence 

gives good agreement for lahar-component heights and 
arrival times, but is rather poor in describing lahar de- 
cay, especially for the first two lahar components. An 
improved fit in lahar component decay could have been 
achieved by modifying the input function to include 
non-delta function sources, but this approach was not 
pursued. 

We conclude that the early source of lahar fluid re- 
sulted from an extended period of flow at the crater. 
This view is supported by the slow rise in lahar flow for 
the first components, and also from the seismic record, 
which shows a period of exceptionally strong tremor 
with an absence of substantial seismic shocks (J. H. 
Latter, personal communication). It is possible that the 
early components of the 1968 lahar resulted from uplift 
or shallowing of the crater lake floor, which is known 
to have changed between 1965 and 1970 (Hurst and 
Dibble 1981) from an average depth of 47 m to 28 m. 

The theory above has considered only lahars from 
Mt. Ruapehu. Of course, lahars are common elsewhere 
(Neal 1976; Legowo 1981), and the theory above may 
be applicable to other volcanoes. In addition, the the- 
ory need not be restricted only to lahar flows, but may 
also apply to compact finite volume flows, for example 
of poisonous gas, in which the gravitational force is es- 
sentially balanced by a frictional depth-dependent 
force. For gas flows, the equations corresponding to 
Eqs. 2 and 9 would re required. 

Finally, the theory has benefited from the excellent 
hydrographic records of lahar flows, and the corre- 
sponding excellent seismic record from Mt. Ruapehu. 
How does one proceed in the absence of such records ? 
There is probably not best approach to adopt, but since 
this question is likely to arise in a number of important 
field examples, we shall briefly address it here, al- 
though we emphasise that our tentative answer is essen- 
tially untested, and highly speculative. 

If no relevant records of lahars exist, then the scal- 
ing z used above will be unavailable, and it may be best 
to use standard distances. Also, the value of k used 
above (1.42) will be untestable. One choice for k is to 
guess a value based on river flow. Suppose the river hy- 
drogaph suggests, at some point, 

q = a H  k (12) 

where a and k are constants, q is flow per unit width, 
and H is flow depth. Then, following the approach in 
Weir (1983), for a finite-volume self-similar flow, 

H = k-1 (13) 

where x and t denote (unscaled) distance and time. 
From Eq. 13, the first arrival time of the lahar, T, satis- 
fies, 

x k {w(k- 1)) k-1 (14) 
T = - ~ \  k V  

while the peak flow satisfies Eq. 5. 
Naturally, this approach is expected to yield a 

crude approximation to lahar behavior. For example, 
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a p p l y i n g  Eqs. 12 a n d  14 in an  a t t emp t  to p r ed i c t  the  
m a x i m u m  r e c o r d e d  f low f rom Mt. R u a p e h u  in 1953, 
a n d  us ing  Eq.  9 ( a = 2 . 5 ;  x = 5 1 4 0 0 ;  k = 1 . 7 6 ;  
V--  1 900 000; w = 60) to de t e rmine  the  u n k n o w n  p a r a m -  
eters,  y ie lds  r e a s o n a b l y  g o o d  es t ima tes  for  l a h a r  dep th s  
(1.4 m) a n d  t ravel  t imes  (8917 s), bu t  u n d e r e s t i m a t e s  the  
p e a k  f low by  a b o u t  a fac tor  o f  3. This  fac tor  o f  th ree  is 
e ssen t ia l ly  the  ra t io  in the  d i f fe ren t  k -  1 fac tors  resul t -  
ing f rom c h o o s i n g  1.76 in s t ead  o f  1.31 for  k. W h e t h e r  
such  fac tors  o f  3 a re  c o n s i d e r e d  i m p o r t a n t  will  c l ea r ly  
d e p e n d  on  h o w  wel l  o the r  m o d e l  p a r a m e t e r s  (such as 
l a h a r  vo lume)  are  known.  
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