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Abstract. The mechanism and purpose of coronary athero- 
sclerotic calcification remain unknown. However, evidence 
reviewed here suggests that calcification is not passive pre- 
cipitation or adsorption, but instead is organized and regu- 
lated. Gla containing proteins and other proteins normally 
associated with bone metabolism appear to play an impor- 
tant role in this process. A variety of studies are currently in 
progress in our laboratory which we hope will provide a 
more comprehensive understanding of processes leading to 
coronary calcification as well as prognostic data useful in 
clinical cardiologic practice. A clearer understanding of the 
nature and significance of coronary calcification may well 
pave the way toward new interventions to protect myocar- 
dium and minimize the morbidity and mortality associated 
with coronary artery disease. 
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The First 250 Years 

Just after the turn of the 18th century and within a few years 
of the first descriptions of coronary atherosclerosis, calcified 
coronary arterial lesions were recognized aqd described by 
Bellini and Thebesius [1, 2]. For over 200 years thereafter 
" . . .  [Coronary arterial] calcification was considered to be 
the very essence of coronary sclerosis" [2]. Virchow noted 
that vascular calcification was similar to bone formation and 
described calcified atherosclerotic coronary lesions as "an 
ossification, and not a mere calcification" [3]. In the 20th 
century, however, coronary calcification was accorded a 
much less important role [4-6], as it was realized that cho- 
lesterol metabolism and other factors played a major role in 
atherogenesis. With the development of coronary angio- 
graphic techniques, coronary calcification was noted but 
was considered a manifestation of the later stages of the 
degenerative process of atherosclerosis [7-9]. This view re- 
suited in part from the poor resolution of the radiographic 
imaging techniques of the time which had a low sensitivity 
for the detection of calcium. 
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Thus, atheroscterotic calcification has come to be com- 
monly regarded as a passive process of adsorption or pre- 
cipitation, merely an ancillary effect of advanced atheroscle- 
rotic degenerative processes. However, recent evidence to 
be reviewed here challenges this view and suggests that Vir- 
chow's depiction of atherosclerotic calcification as " . . .  an 
ossification, and not a mere calcification" [3] may have been 
much more accurate. Atherosclerotic calcification may be 
organized, regulated, and may even have purpose. 

Coronary Calcification: Natural History 

Stary has found that atherosclerotic calcification begins as 
early as the second decade of life just after fatty streak for- 
mation [10]. However, calcific deposits are found more fre- 
quently and in greater amounts in elderly individuals and in 
more complex lesions [10]. Stary's electron microscopic ev- 
idence supports the matrix vesicle theory according to which 
hydroxyapatite, the predominant crystalline form of calcium 
deposits [11], is formed primarily in vesicles that pinch off 
from arterial wall cells analogous to the way matrix vesicles 
pinch off from chondrocytes in developing bone [12-17]. 

However, early small calcium deposits are also observed 
within extracellular lipid-rich accumulations of debris whose 
origin is uncertain [10]. Hirsch et al. [18] used a fluorescent 
cholesterol probe, scanning electron microscopy, and en- 
ergy-dispersive X-ray microanalysis to demonstrate a very 
close spatial association between unesterified cholesterol 
and hydroxyapatite. Thus, there may be more than one 
mechanism of calcium deposition in atherosclerosis. 

Furthermore, calcification appears much earlier in ath- 
erosclerotic lesion pathogenesis than previously thought. 
High resolution noninvasive imaging studies using digital 
subtraction cinefluorescopy (DSC) [19-21] and ultrafast 
computerized tomography (UFCT) [6, 22-24] have lent sup- 
port to this notion. These studies and autopsy data [10, 24] 
have demonstrated calcification just after the appearance of 
fatty streaks. 

Biochemistry: The Gla Proteins 

At present, the biochemical sequence of events leading to 
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Table 1. Known Gla proteins, site of synthesis, and known or pro- 
posed function 

Site of 
Protein Synthesis Function 

Prothrombin Liver Coagulation 
Factor VII Liver Coagulation 
Factor IX Liver Coagulation 
Factor X Liver Coagulation 
Protein C Liver Fibrinolysis; 

modulation of 
coagulation 

Protein S Liver Fibrinolysis; 
modulation of 
coagulation 

Protein Z Liver Coagulation 
Bone Gla protein Bone; Atheroma ? Bone metabolism; 

(BGP) osteocalcin bone calcium 
transport ? 

Plaque Gla protein Atheroma ? Calcium transport 
(PGP) in atheroma? 

Matrix Gla protein Heart, epithelium, Bone metabolism, 
(MGP) bone, & many calcium transport 

tissues; ubiquitous in atheroma? 

atherosclerotic calcification is not well understood. How- 
ever, several poorly characterized proteolipids have been 
isolated from calcified atherosclerotic lesions [25-27], and 
recently attention has focused on a unique class of proteins 
known as Gla-containing proteins. 

Gla (gamma carboxyglutamate) is an unusual amino acid 
residue whose only known function is to bind calcium [28- 
30]. In vitro, these residues strongly inhibit precipitation of 
calcium salts [31] and hydroxyapatite crystal growth [32]. 
Gla proteins bind weakly to calcium ions; the dissociation 
constant for bovine bone Gla protein (BGP), for example, is 
2-3 mM [33, 34]. However, Gla proteins have a very high 
affinity for hydroxyapatite, with a dissociation constant for 
BGP of the order of 10-7 molar [35-37]. Gla proteins thus do 
not interfere with normal calcium homeostasis as they are 
not calcium chelators, but if precipitation of calcium occurs, 
available Gla-containing proteins would be expected to bind 
to the precipitate. Decarboxylation of Gla residues to glu- 
tamyl residues greatly diminishes the affinity of Gla- 
containing proteins for hydroxyapatite [36, 37]. 

Two classes of Gla-containing proteins are known to ex- 
ist. One class is synthesized in the liver and circulates in 
plasma; a second class of Gla proteins is synthesized primar- 
ily in bone and to a lesser extent in soft tissues [28, 30]. The 
Gla proteins of hepatic origin participate in coagulation and 
include prothrombin, factor VII, factor IX, factor X, protein 
C, protein S [28], and protein Z [38, 39]. Two nonhepatic Gla 
proteins have been well-characterized thus far. Although 
their precise function is unclear, they both appear to be in- 
volved in calcium metabolism in bone [28, 30]. These two 
proteins have been designated bone Gla protein (BGP or 
osteocalcin) [40-44], and matrix Gla protein (MGP) [30, 43, 
45]. A third nonhepatic Gla protein, structurally unrelated to 
any other known Gla protein, has been isolated from calci- 
fied atherosclerotic plaque, and has been designated plaque 
Gla protein (PGP) [46--48]. A fourth putative Gla protein 
called atherocalcin was isolated from calcified atheroma 
[49], but was later found to consist of BGP complexed to 
albumin [50] (Levy & Howard unpublished; cited in [50]). 
Table 1 shows the known Gla proteins, their location of syn- 
thesis, and known or proposed function. 
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Gla Proteins and Vitamin K Metabolism 

Gla residues in Gla-containing proteins occur as a result of a 
posttranslational modification catalyzed by a vitamin K-de- 
pendent enzyme, gamma-glutamate carboxylase, which car- 
boxylates the gamma carbon of specific glutamyl residues 
[28]. Vitamin K in its hydroquinone form participates as an 
essential cofactor in this reaction [51, 52], and is oxidized to 
an epoxide by an epoxidase. Carboxylase and epoxidase ac- 
tivity may be due to a single enzyme [53]. 

Vitamin K in its epoxide form is then reduced first to a 
quinone and then back to the hydroquinone by reductases 
[28]. The hydroquinone can then participate in another redox 
cycle with the carboxylase, and thus as long as redox cycling 
can continue, a supply of vitamin K quinone is not needed. 

Coumarin derivatives such as warfarin inhibit the reduc- 
tases which catalyze vitamin K quinone and epoxide reduc- 
tion [54]. There is, however, an alternate source of vitamin 
K hydroquinone to drive the carboxylation reaction under 
conditions of warfarin inhibition. An NADH-dependent re- 
ductase can reduce vitamin K quinone, but not the epoxide, 
to vitamin K hydroquinone in a reaction that is not inhibited 
by warfarin [55], so that as long as there is a constant supply 
of vitamin K quinone, normal carboxylation proceeds and 
functional Gla containing coagulation factors are produced. 
If vitamin K is administered concomitantly with warfarin to 
rats, normally carboxylated Gla-containing coagulation pro- 
teins are produced and normal coagulation times are ob- 
served [30, 56] (Fig. 1). 

Although vitamin K supplementation during anticoagu- 
lant therapy provides a cofactor for carboxylase-catalyzed 
synthesis of functional Gla-containing coagulation factors, 
no such effect has thus far been observed in nonhepatic tis- 
sues where the synthesis of other Gla proteins such as BGP 
takes place [28, 30, 57]. In both animals and humans, treat- 
ment with warfarin decreases plasma levels not only of Gla- 
containing coagulation factors but also of BGP [57]. How- 
ever, carboxylated BGP is apparently not produced when 
vitamin K supplements are added to a warfarin regimen and 
bone levels of BGP drop precipitously [30, 56, 58, 59]. 

Function of Gla Proteins in Normal Arterial Wall 

Gamma-glutamate carboxylase has also been identified in 
many nonhepatic tissues, including arterial intima [28, 60- 
62]. Vermeer's group has reported that carboxylase activity 
in normal arteries is three times that found in atherosclerotic 
arteries [61, 62]. 

The presence of gamma-glutamate carboxylase activity 
and MGP mRNA in normal vessel wall [60], and the high 
serum levels of PGP in normal subjects compared with pa- 
tients with atherosclerosis [47] suggests that normal arteries 
produce Gla proteins. However, current techniques have not 
demonstrated these proteins in normal vessel wall. Vermeer 
has speculated that these proteins are produced in normal 
intima where they prevent hydroxyapatite precipitation. As 
no hydroxyapatite is present, Gla proteins do not bind to the 
wall and instead diffuse into the vascular space and are ex- 
creted [28, 46--48]. It should be noted that this notion is 
based on in vitro observations of the behavior of Gla pro- 
teins. How these proteins actually behave in vivo is un- 
known, and their physiological function in vivo in athero- 
sclerotic lesions is also a matter of speculation. 

Atheroma, Atherosclerotic Calcification, and Gla Proteins 

We suggest that Gla proteins may be actively related to ath- 
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Fig. 1. The gamma-glutamyl carboxylase reaction and the vitamin K 
redox cycle. Vitamin K quinone is the form of vitamin K that is 
absorbed from the blood and circulates in plasma. NADH- 
dependent K-reductase is present in liver but has not been found in 
nonhepatic tissue. K-reductase and KO-reductase are inhibited by 

vitamin K quinona 
coumarin derivatives such as warfarin; they may be the same en- 
zyme. The NADH-dependent K-reductase is not inhibited by war- 
farin. The identity of the thiol reductant is unknown, but may be 
cysteine residues or dithiothreitol [28]. 

erosclerotic calcification. Although the function of the three 
nonhepatic Gla proteins is unknown, Vermeer and cowork- 
ers [28, 46--48] have suggested that PGP may be synthesized 
continuously and may transport calcium out of the vessel 
wall, thus preventing calcium deposition. The finding that 
gamma-glutamate carboxylase activity in normal arteries is 
three times higher than in atherosclerotic arteries [61, 62] is 
consistent with this suggestion. Decreased gamma-glutamate 
carboxylase activity in diseased arteries would result in de- 
creased synthesis of functional Gla-containing proteins and a 
corresponding decrease in the capacity to transport calcium 
out of the vessel wall, thus resulting in increased calcium 
deposition. If  for any reason calcification should occur, lo- 
cally available Gla proteins would bind to the resulting hy- 
droxyapatite. This could explain why Gla proteins can be 
isolated from calcified lesions [29, 46--48, 60] but not from 
normal vessel wall, whereas carboxylase activity, and by 
inference Gla production, is higher in normal than in dis- 
eased arteries. 

Although adsorption of Gla-containing proteins from se- 
rum cannot be entirely excluded, this seems unlikely given 
the presence of MGP mRNA [60] and gamma glutamate car- 
boxylase activity [28, 61, 62] in the vessel wall. Moreover, 
adsorption of serum Gla-containing coagulation proteins of 
hepatic origin to calcified atherosclerotic lesions does not 
occur [47, 48]. Finally, levels of PGP in the serum of patients 
with coronary artery disease or atherosclerotic peripheral 
vascular disease are very low (or even nondetectable) com- 
pared with normal subjects [63]. As coronary arterial calci- 

fication seems to occur exclusively in diseased arteries and 
is absent in normal vessel wall [1, 9, 64-67], there may be a 
mechanistic link between pathological processes leading to 
calcification and those leading to atherosclerosis. It is con- 
ceivable, for example, that atherosclerotic processes inhibit 
the synthesis and/or activity of gamma-glutamate carboxyl- 
ase, thus perhaps explaining why atherosclerotic arteries 
contain only about 30% of the carboxylase activity found in 
normal arterial segments [62]. Alternatively, it is also con- 
ceivable that cells in atherosclerotic lesions synthesize less 
carboxylase. 

Atheroma and Bone: A New Twist  on an Old Idea 

Recent autopsy data have demonstrated the presence of cal- 
cification in all of 34 atherosclerotic, and in none of  14 nor- 
mal arterial segments [24, 68]. Energy-dispersive X-ray mi- 
croanalysis revealed that this calcium was in the form of 
hydroxyapatite [11, 68]. Immunohistochemical staining for 
osteopontin (a ph0sphorylated calcium-binding glycoprotein 
involved with bone matrix metabolism [69, 70]) demon- 
strated excellent colocalization of  osteopontin with calcifi- 
cation [24, 68]. Diffuse calcium and osteopontin staining was 
seen throughout each plaque, with more intense staining at 
the outer perimeters. There was no osteopontin or calcium 
staining observed in any of the normal segments. Similar 
results were seen [71] when these sections were also stained 
for bone sialoprotein, another bone matrix protein. Although 
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adsorption from circulating proteins cannot be completely 
ruled out, it is thought that these proteins are most likely 
produced locally, and recently this same group has induced 
cultured smooth muscle cells from porcine carotid arteries to 
synthesize large amounts of osteonectin and procollagen 
type I, moderate amounts of bone sialoprotein, and smaller 
amounts of BGP and osteopontin [72]. Cultured human aor- 
tic smooth muscle cells demonstrated somewhat different 
immunohistochemical results, staining positively for bone 
sialoprotein and osteopontin, moderately for the matrix pro- 
tein osteonectin, and minimally for BGP and the proteogly- 
cans biglycan and decorin [73]. Though most of this data 
must at this point be considered preliminary, these results 
are nevertheless intriguing. Other investigators have found 
osteopontin mRNA expression in newborn rat aorta [74] and 
injured rat carotid artery, and it has recently been shown 
that osteopontin mRNA expression is greatly increased in 
proliferating vascular smooth muscle cells in culture [75]. 
Giachelli et al. have also noted a striking association of os- 
teopontin with calcific deposits in human coronary artery 
lesions obtained post mortem as well as in human carotid 
endarterectomy specimens [76]. 

Further evidence that bone proteins are involved in ath- 
erosclerotic calcification has recently been provided by Bos- 
trom et al. [77] and Watson et al. [78] at UCLA. Calcified 
human carotid endarterectomy specimens obtained during 
surgery were found to express bone morphogenetic protein 
2a (BMP-2a), an osteoblastic differentiation factor [77]. Cal- 
cification was primarily located at the base of the plaque 
specimens, but was also present in scattered locations 
throughout each lesion. Cells isolated from these lesions and 
grown in culture formed nodules, generated matrix material, 
formed multifocal calcifications (demonstrated by Alizarin 
red S and von Kossa histochemical staining techniques), and 
expressed BMP-2a. Electron microprobe analysis demon- 
strated calcifications to be composed of calcium and phos- 
phate in a molar ratio similar to that of hydroxyapatite, lm- 
munofluorescent and immunohistochemical techniques de- 
termined that the ceils were neither endothelium nor smooth 
muscle cells, but had many of the characteristics of pericytes 
[77]. This same group has also reported preliminary results 
suggesting that these cells are present within the intima of 
normal bovine and human arteries and seem to increase in 
number as the arteries become atherosclerotic [78]. More- 
over, they appear to function in many ways like osteopro- 
genitor cells: they produce alkaline phosphatase, express 
BMP-2a mRNA, and secrete BGP. These findings lend cre- 
dence to the idea that atherosclerotic calcification is not 
merely passive adsorption but instead is an organized, reg- 
ulated process similar in many respects to bone formation. 

Does Atherosclerotic Calcification Have Purpose? 

Why do atherosclerotic arteries become calcified? Though 
coronary calcification has in the past been regarded as a 
passive process of adsorption or precipitation, evidence re- 
viewed here suggests that this may not be the case. If it is 
true that coronary calcification is an organized, regulated 
process, then to what end is this organization and regulation 
directed? Does calcification serve some functional role? 

The mechanism of myocardial infarction is thought to 
involve sudden rupture of weakened atheromatous plaque 
followed by acute thrombosis [7%81]. Although the mecha- 
nism of plaque rupture is incompletely understood, a variety 
of biomechanical forces are thought to play a major role 
[82-90]. Though fracture mechanics, particularly in morpho- 
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logically heterogeneous materials such as atherosclerotic 
plaque, is a subject of daunting complexity, tensile strength 
seems to be one important factor, and it has recently been 
shown that local variations in circumferential stress in ath- 
erosclerotic arteries are associated with the location of 
plaque rupture [82]. The angiographic severity of a lesion has 
been shown to be a poor predictor of its likelihood to rupture 
[91, 92], and, consistent with this, increasing stenosis sever- 
ity of itself does not significantly increase circumferential 
stress [93]. 

A phenomenon familiar to angiographers is the formation 
of coronary collateral vessels [94-96]. As the blood supply 
through a major epicardial coronary artery becomes com- 
promised by atherosclerotic obstruction, other coronary ar- 
teries often form small vessels which feed the threatened 
myocardium. If the obstruction becomes complete, the mag- 
nitude of collateral flow may even be sufficient to prevent 
infarction. The formation of coronary collaterals thus serves 
a protective function and has survival value. 

Hypotheses 

We speculate that coronary arterial calcification may, in a 
manner analogous to collateral formation, represent an at- 
tempt to protect threatened myocardium by strengthening 
weakened atherosclerotic plaque prone to rupture. Calcified 
lesions and fibrotic hypocellular lesions are much stiffer than 
cellular lesions [90], and biomechanical data suggests that 
calcified areas are unlikely to be associated with sites of 
plaque rupture [82]. In vivo evidence of the relative stability 
of calcified lesions has been obtained using intravascular 
ultrasound [97]. Thus, perhaps coronary calcification might 
represent an attempt by the arterial wall to stabilize and 
strengthen itself, thereby minimizing the risk of plaque rup- 
ture. The strategy of collateralization may be successful pro- 
vided there is sufficient time for extensive collateral growth 
to occur prior to total occlusion of the vessel. The same may 
be true for calcification. For example, if a plaque develops a 
heavily calcified cap, it is about five times stiffer than a 
cellular lesion or normal vessel wall and very resistant to 
rupture [84, 90]. In the short term this may lead to increased 
stress near the junction of the cap with the adjacent intima, 
and it is here where plaque rupture often Occurs. However, 
with more extensive calcification and fibrosis of the vessel, 
these weak points may be eliminated and risk of rupture 
correspondingly decreased. This may in part explain the high 
frequency of calcification in older populations [9, 19, 98,99]; 
that is, extensive atherosclerotic calcification may actually 
have survival value. This may also help explain why the 
presence of calcification is not an ideal prognostic indicator 
in a heterogeneous population (Detrano et al., in prepara- 
tion). Only when extensive calcification has occurred is the 
vessel rendered resistant to rupture, and early or intermedi- 
ate stages of calcification may actually enhance plaque vul- 
nerability to rupture. 
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