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Abstract. Androgen receptors are present at low densities in 
osteoblasts. Androgens are also metabolized in bone. 
(Non)aromatizable androgens probably induce proliferation 
of osteoblasts and differentiation. A direct effect of andro- 
gens on osteoclasts has not been demonstrated. Androgens 
may however inhibit bone resorption indirectly, by an inhi- 
bition of the recruitment of osteoclast precursors from bone 
marrow, by decreased secretion of interleukin-6 and/or pros- 
taglandin E2, and/or by an increased sensitivity of marrow 
cells or osteoblasts for bone resorption stimulating factors 
such as PTH. The recent demonstration of androgen recep- 
tors in bone marrow stromal and osteoclast-like cells opens 
new perspectives in this respect. During puberty, androgens 
stimulate bone growth both directly and indirectly. Obser- 
vations in androgen-resistant animals clearly demonstrated 
that the sexual dimorphism of bone depends on the presence 
of a functional androgen receptor. Optimal peak bone mass 
seems related to an appropriately timed androgen secretion. 
In adults, androgens are also involved in maintenance of the 
male skeleton. Androgen replacement may prevent further 
bone loss in hypogonadal men, however, it seems difficult to 
fully correct bone mass in these men. 

Osteoporosis represents a major health problem in elderly 
people [1-3]. The cumulative incidence of hip fractures-- 
although lower than in women--is still substantial in elderly 
men (17% versus 32%) [3, 4]. Estrogen deficiency is a well- 
established cause of bone loss in postmenopausal women 
and a major risk factor for both spinal and hip fractures in 
women [ 1] whereas estrogen replacement prevents bone loss 
and reduces fracture risk [5]. Although hypogonadal men 
also have a lower bone density [6-14], it is not clear whether 
lower serum androgen concentrations observed in elderly 
men predispose to osteoporosis. Moreover, it has been dif- 
ficult to provide evidence for direct androgen effects on bone 
cells [15, 16]. Nevertheless, in 1948, Allbright and Reifen- 
stein [17] were already convinced that androgen deficiency 
leads to osteoporosis and that androgen replacement im- 
proves calcium balance. Recent research supports their hy- 
pothesis: the presence of androgen receptors, androgen me- 
tabolism, and androgen effects in bone cells are now estab- 
lished. Animal studies also demonstrated androgen effects 
on both skeletal growth and maintenance. However, andro- 
gens have the unique feature that they may be converted 
within the target cell into either the nonaromatizable 5et- 
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dihydrotestosterone or into estrogens. The androgen effects 
on bone may therefore be expressed via activation of the 
androgen or the estrogen receptor. 

In vitro Evidence for Androgen Action in Bone Homeostasis 

Androgen Receptors in Osteoblasts 

Androgen, as well as other steroid receptors, is present in 
osteoblasts, as demonstrated at the protein and the mRNA 
level [18-21]. Receptor affinities are comparable with those 
of androgen receptors found in androgen target tissues such 
as the prostate. Receptor concentrations, however, are very 
low when compared with typical androgen target tissues. 
Androgen receptor characteristics in osteoblasts and osteo- 
blast-like cells are summarized in Table 1. 

Androgen Metabolism in Bone 

Osteoblast-like cells are able to aromatize androgens into 
estrogens [22, 23]. Human osteoblasts also express 5et- 
reductase activity [24]. 5-Alpha-reductase activity however, 
could not be demonstrated in rat periosteal cells, suggesting 
that testosterone and not 5a-dihydrotestosterone stimulates 
periosteal bone formation in rats [25]. Earlier studies, how- 
ever, suggested that 5a-reductase activity was present in 
crushed bones from both rat and human origin [26, 27]. 
Therefore, androgens may influence skeletal homeostasis 
both directly (as testosterone or 5a-dihydrotestosterone via 
the androgen receptor) and indirectly (after aromatization 
via the estrogen receptor). 

Effect on Proliferation and Differentiation of Osteoblasts 

Androgens stimulate proliferation of osteoblasts and osteo- 
blast-like cells in vitro according to most [21, 28-30] but not 
all studies [20]. Androgens also stimulate differentiation of 
osteoblasts as measured by an increased secretion of collag- 
enous proteins or by increased enzyme activities such as 
creatine kinase, whereas androgen effects on alkaline phos- 
phatase were not consistent [20, 28-30], However, the mo- 
lecular biology of these androgen effects on osteoblasts re- 
mains largely unknown. Androgen effects on bone cells may 
also be sex-specific: only diaphyseal bone cells derived from 
growing male rats but not from female rats respond to an- 
drogens when tested in culture [30]. Androgens may there- 
fore have direct effects on osteoblast proliferation and dif- 
ferentiation during growth in males. Androgen effects on 
osteoblast differentiation may be mediated by transforming 
growth factor-13 [20, 31] whereas their effects on osteoblast 
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Table 1. Androgen receptors in osteoblast-like cells 
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Receptor affinity 
Cell type (ref.) Origin Method Receptor number (Kd) 

Osteoblast [18] Human Nuclear binding assay Northern blot 821 -+ 140/cell nucleus NA 
SaOS3 [19] Human Cytosol binding assay 1277/cell 1.6-2.5 nM 
USO2 [19] Human Cytosol binding assay 1605/cell NA 
UMR-1060 [19] Rat Cytosol binding assay 74/cell NA 
TE85 [20] Human Cytosol binding assay Northern blot 2800/cell 0.66 nM 
MC3T3-EI [21] Mouse Whole-cell binding assay 14312 -+ 1884/cell 1.12 _+ 0.19 nM 

NA: not available. 

proliferation could be mediated by an increase of IGF-II  
receptors [31]. 

Effects on Bone Resorption in Vitro 

Androgens inhibit bone resorption directly through the de- 
crease of interleukin-6 production by osteoblasts or bone 
marrow cells [32-34], through inhibition of prostaglandin E 2 
production in tissue culture [35], through inhibition of the 
parathyroid hormone (PTH) effect on osteoblasts [36], or 
through inhibition of osteoclastogenesis [32, 33]. The pres- 
ence of androgen receptors in bone marrow strornal cells [32] 
and in osteoclast-like multinucleated cells [37] suggest that 
androgens could directly inhibit bone resorption. The in vitro 
evidence for a direct androgen effect on bone resorption is, 
however, still preliminary [38] in contrast with clear in vivo 
evidence for inhibitory effects on bone resorption (see Hu- 
man and Animal Studies). However,  inhibitory effects of 
estrogens on bone resorption seem well established in vitro 
[39-41]. As androgens may be converted into estrogens by 
skeletal aromatases [22,23,26], their in vivo effects may also 
depend upon their conversion into estrogens. Future in vitro 
studies dealing with androgen effects on bone resorption 
should therefore always compare the activity of nonarorna- 
tizable with aromatizable androgens. Figure 1 shows the dif- 
ferent pathways that androgens may use to modulate osteo- 
blasts, bone marrow cells, and osteoclasts. 

Animal Data: Skeletal Effects of Androgen Deficiency 
and Replacement 

Although skeletal effects of estrogen deficiency have re- 
ceived much more attention [42, 43], skeletal effects of an- 
drogen deficiency are also well established in animals; the or- 
chidectomized (orch) male rat is certainly the most popular 
animal model in this regard [44-57]. This model has often 
been cr i t ic ized because  r a t s - - i n  cont ras t  to h u m a n s - -  
continue to grow during their entire life-span. Therefore, the 
skeletal effects of androgen deficiency and replacement in 
rats have to be separated into effects on bone modeling (the 
combination of bone resorption and formation creating and 
shaping bone during growth) and bone remodeling (the re- 
placement of old bone by new bone in a nongrowing skele- 
ton). Skeletal growth slows down considerably in aged male 
rats: the skeleton of aged (more than 12 months old) rats 
therefore depends more on remodeling than on modeling 
[58]. Human-like remodeling also occurs in the skeleton of 
aged rats [59]. Table 2 emphasizes the most important dif- 
ferences between young growing orch rats [45-49, 53] and 
aged, nongrowing orch male rats [44, 50-52, 54-57]. In con- 
clusion, the young orch male rat may be used as a model for 
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Fig. 1. Model of stimulatory (+) and inhibitory ( - )  effects of an- 
drogens on osteoblast bone marrow cells and on osteoclasts. Pro- 
liferation of osteoblast-like cells may be enhanced by increased IGF- 
II receptors and differentiation by increased TGF-I~ secretion. Bone 
resorption may be inhibited by decreased PGE2 and IL-6 secretion 
and by decreased effects of PTH. Stromal bone marrow cells may 
provide and support differentiation of progenitor cells into mature 
osteoclasts. 

Table 2. Skeletal changes in androgen-deficient and androgen- 
resistant rats compared with normal male littermates (references from 
personal work) 

Androgen- 
deficient rats 

Young Old 

Androgen- 
resistant 
rats 

Ref. [60] [43,54] [59,60] 
Body weight ~, O 
Bone growth & modeling ~ O 
Serum IGF-I O O $ 
Serum calcium homeostasis O O O 
Total bone mass ~ ~ $ 
Cortical bone density O ~ O 
Cancellous bone density ~ ~ O 
Biomechanical properties NA O O 

: Decreases; O: Unchanged 

the study of androgen effects on skeletal growth whereas the 
aged orch male rat model may represent androgen effects on 
skeletal maintenance. 

Androgen deficiency induces a transient increase in can- 
cellous bone remodeling and an imbalance between bone 
resorption and formation in both young [46] and aged [44] 
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male rats. Imbalance between bone resorption and formation 
results in cancellous and cortical bone loss [44, 45-49, 51, 52, 
55, 56]. Whether these skeletal changes also result in biome- 
chanical incompetence is not yet clear [52, 55]. Androgen 
replacement prevents both the early increase in bone turn- 
over and late decrease of bone mass during androgen defi- 
ciency, and this without concomitant changes in bone 
growth, serum concentrations of calciotropic hormones, or 
serum IGF-I [44, 46]. 1713-estradiol also prevents bone loss 
in aged orch male rats suggesting that aromatization of 
androgens into estrogens may be involved in skeletal main- 
tenance [44]. Moreover, skeletal changes during estrogen 
deficiency in the ovariectomized rat model and in postmeno- 
pausal women are similar to skeletal changes in androgen- 
deficient rats [43, 60]. Although estrogens may play a signif- 
icant role in skeletal homeostasis, the nonaromatizable an- 
drogen 5et-dihydrotestosterone can also prevent bone loss in 
both young [46] and aged [44] orch male rats. Cortical thin- 
ning of the femoral shaft occurring during the normal aging 
of male rats [52, 55] is also prevented by androgen therapy 
[55], suggesting that the age-related decrease of serum tes- 
tosterone in aged male rats may stimulate endosteal bone 
resorption. Besides inhibitory effects on bone resorption, 
androgens have also stimulatory effects on periosteal bone 
formation in growing male rats [53]. Table 2 summarizes the 
skeletal changes in orch male rats. 

Sexual dimorphism may also explain differences in frac- 
ture incidence between sexes [1]. Studies in androgen- 
resistant rodents suggest that sexual dimorphism of the skel- 
eton depends on sex steroids [61-63]. Although postnatal 
increase of serum androgen concentrations seems most im- 
portant for skeletal morphogenesis and sexual dimorphism in 
mice [61], studies in rats demonstrate that sex steroids also 
continue to influence skeletal growth and maintenance after 
this postnatal period [30, 62, 63]. In this respect, androgens 
mainly stimulate (at least partly by direct stimulation) 
whereas estrogens inhibit skeletal growth. Testicular- 
feminized (Tfm), androgen-resistant male rats therefore have 
a female size skeleton [62]. Endogenous hyperproduction of 
estrogens [62] also prevents cancellous bone loss in mature 
Tfm androgen-resistant rats [63], again suggesting that aro- 
matization of androgens into estrogens may be an important 
metabolic pathway for skeletal maintenance. Recent data 
(Vanderschueren D. and Bouillon R, Aromatase inhibitor; 
submitted for publication), showing that administration of an 
aromatase inhibitor for 4 months induces bone loss in aged 
male rats, also confirm that aromatization of androgens into 
estrogens may explain the protective effects of androgens on 
skeletal maintenance. However, administration of the anti- 
androgen, flutamide, also induces bone loss in female rats, 
suggesting that androgens have a direct protective effect on 
the female skeleton [90]. Skeletal growth, turnover, and 
maintenance therefore seem to depend on both estrogens 
and androgens in both female and male rodents. 

Human Studies 

Hypogonadism as a Risk Factor Compared to Other 
Risk Factors 

Both spinal and hip fractures are less common in men than in 
women [1-3, 60] although many risk factors are similar for 
both sexes such as low calcium intake, low body weight, 
inactivity, heavy cigarette smoking, and excessive drinking 
whereas obesity seems protective in men as well as in 
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women [64]. Spinal osteoporosis is also associated with un- 
derlying illnesses known to affect calcium or bone metabo- 
lism such as childhood rickets, gastrectomy, intestinal resec- 
tion, the use of anticonvutsants, radiation therapy, and liver 
disease [64]. As in women, hypogonadism is also a risk fac- 
tor for osteoporosis in men [64, 65]: the prevalence of hy- 
pogonadism was fivefold increased in elderly men with hip 
fractures [65] and was present in about 5% of men admitted 
for spinal osteoporosis [64]. According to some [12] but not 
all [66] studies, spinal osteoporosis in hypogonadal men may 
also be related to poor calcium absorption and low serum 
1,25-dihydroxyvitamin D concentrations. The most impor- 
tant risk factor, however, certainly for hip fractures, remains 
aging [1-4]. Hypogonadism may also be more prevalent in 
elderly men [67] but is frequently associated with other risk 
factors such as low physical activity and low lean body 
mass. Therefore, hypogonadism is one, but only one, of the 
risk factor for osteoporosis in (elderly) men. 

Androgens and Human Growth: Interactions with the 
Growth Hormone-IGF-I Axis 

Androgens stimulate skeletal growth both directly [69, 70] 
and indirectly through stimulation of the growth hormone- 
IGF-I axis [71-75]. Indirect and direct androgen effects on 
skeletal growth have also clinical consequences for the ac- 
quisition of peak bone mass: delayed puberty was associated 
with decreased peak bone mass in men [68], suggesting that 
an appropriately timed androgen secretion is necessary for 
achieving optimal peak bone mass. Stimulatory effects of 
androgens on skeletal growth therefore seem associated with 
an increase of peak bone mass, explaining why men are not 
only taller but also have a higher peak bone mass than 
women protecting them against osteoporosis at older age. 
Moreover, these androgen effects on the acquisition of peak 
bone mass also explain why androgen replacement therapy, 
when started after closure of the growth plate, does not fully 
correct bone mass in hypogonadal men [10]. 

Bone Density in Normal Men and its Relationship 
with Androgens 

Although hypogonadism represents a risk factor for osteo- 
porosis in men, it is still not clear if there is a threshold 
concentration of serum-free testosterone associated with in- 
creased risk for osteoporosis. It is also not clear whether 
androgen replacement would prevent osteoporosis in elderly 
men although androgen replacement may decrease bone re- 
sorption [77]. Serum testosterone, however, does not corre- 
late with bone density in eugonadal adult men [78]. Serum- 
free testosterone is weakly correlated with bone density in 
elderly men [79, 80] although this was not confirmed in all 
studies [81]. Many other variables may contribute to the 
decreased bone mass of elderly, mildly androgen-deficient 
men. As discussed earlier, however, studies in aging male 
rats suggest that the age-related thinning of the femoral cor- 
tex could be prevented by androgen replacement [55]. 

Recently, estrogen insensitivity was described in a 28- 
year-old male due to a point mutation in the estrogen recep- 
tor gene resulting in a premature stop codon. [76]. This syn- 
drome was characterized by incomplete closure of the epiph- 
yses. Although the serum androgen concentration was 
normal and the free estrogen concentration increased ten- 
fold, his bone mineral density was nevertheless markedly 
decreased with biochemical indications of increased bone 
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turnover, indicating that aromatization of androgens is es- 
sential for normal bone homeostasis.  

Bone Density in Women and its Relationship 
with Androgens 

Serum androgen concentrations are posit ively correlated 
with bone density in pre- [82, 83], peri- [84]-, and postmeno- 
pausal [85-91] women. Androgen excess in women, how- 
ever, is also associated with high body mass index and low 
sex hormone binding globulin concentrations.  Increased 
bone density in hirsute women therefore may also be ex- 
plained by their higher body mass index and higher free con- 
centrations of sex steroids [83]. The protective effect of an- 
drogens on bone density in postmenopausal  women may also 
be important although some studies could not demonstrate 
any correlation between serum androgens and bone density 
in these women [86, 89]. Furthermore,  it is possible that the 
protective effects of androgens in women can be explained 
by their further local aromatization into estrogens [22, 23, 
601. 

Bone Density in Hypogonadal Men 

Hypogonadal men have a low bone density [6-14]. Both cor- 
tical and cancellous density are decreased in these men when 
hypogonad ism was p resen t  before  peak  bone mass is 
reached [10]. However,  patients with Klinefelter 's  syndrome 
only have a lower cortical bone density [8], possibly related 
to variable degrees of hypogonadism or to their chromosom- 
al abnormality. The lower cortical bone density seems diffi- 
cult to correct by androgen replacement after puberty not 
only in Klinefelter patients [8], but also in patients suffering 
from hypogonadotropic hypogonadism or in patients suffer- 
ing from hypogonadism secondary to heterogenous disor- 
ders [10, 11]. This suggests that puberty is a determining 
period for cortical peak bone mass. When hypogonadism 
occurs after reaching peak bone mass, bone turnover in- 
creases and cancellous density decreases [13, 14]. It is not 
clear what happens with the cortical bone. It is unlikely that 
bone loss in hypogonadal  men is explained simply by 
changes in calciotropic hormones although hypogonadal  
men may have a decreased calcitonin release after stimula- 
tion [92-94] or may have concomitantly low 1,25(OH)zD 
concentra t ions  and decreased  calcium absorpt ion  [12]. 
Treatment of elderly men suffering from benign prostate hy- 
perplasia with the gonadotrophin-releasing agonist Decapep- 
tyl also induces bone loss [14]. It seems therefore prudent to 
follow bone density in humans that need long-term anti- 
androgen treatment. 

Conclusions 

It is presently unclear to what extent physiological concen- 
trations of androgens express their effect via the androgen 
receptor (with or without prior 5a-reduction into DHT) or 
via the estrogen receptor (with prior aromatization). Both 
pathways can clearly be activated by administration of ex- 
ogenous sex hormones in animal models. Reduced bone den- 
sity has however been observed in rats during prolonged 
treatment with a nonsteroidal aromatase inhibitor and in an 
adult man with estrogen-receptor deficiency and subsequent 
estrogen resistance, indicating that most of the androgen ef- 
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fects on bone turnover and bone mass occur via the estrogen 
receptor. 

Whether hypogonadism increases the risk for osteoporot-  
ic fractures in men remains controversial. Hypogonadism is 
a relative rare finding in men and is due to a wide spectrum 
of disorders. However,  clinical experience shows that spinal 
fractures are unusual in men unless an underlying disease is 
present, and an undiagnosed hypogonadal disorder is cer- 
tainly one of the disorders that should be excluded in such 
circumstances. 

Androgens may also influence skeletal homeostasis in 
women although their mode of action may again be related to 
their conversion into estrogens. In postmenopausal  women, 
serum androgen concentrations may therefore have signifi- 
cant protective effects on bone mass. 

It is still unclear whether or not a gradual and partial 
decrease of sex hormone concentrations in elderly men low- 
ers their bone density or increases their fracture risk. A 
threshold concentration for serum testosterone concentra- 
tions associated with increased risk for osteoporosis is in- 
deed not established. Moreover,  bone density in elderly men 
may also be lower secondary to many intercurrent factors 
such as decreased physical activity, calcium intake, muscle 
mass,  and decreased  growth hormone- IGF- I  secret ion.  
Whether androgen replacement therapy could possibly pre- 
vent bone loss in elderly men (as is established for estrogen 
replacement in women) and even if positive, cost/benefit ra- 
tio may be doubtful. 

Finally, the understanding of how androgens improve 
bone mass and protect men against osteoporotic fractures 
may help in the development of new strategies against os- 
teoporosis. 
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