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Abstract. Previous work in modeling dynamic fracture has assumed the crack will propagate along predefined mesh lines 
(usually a straight line). In this paper we present a finite element model of mixed-mode dynamic crack propagation in which 
this constraint is removed. Applying linear elasto-dynamic fracture mechanics concepts, discrete cracks are allowed to 
propagate through the mesh in arbitrary directions. The fracture criteria used for propagation and the algorithms used for 
remeshing are described in detail. Important features of the implementation are the use of triangular elements with quadratic 
shape functions, explicit time integration, and interactive computer graphics. These combine to make the approach robust 
and applicable to a broad range of problems. 

Example analyses of straight and curving crack problems are presented. Verification problems include a stationary crack 
under dynamic loading and a propagating crack in an infinite body. Comparisons with experimental data are made for 
curving propagation in a cracked plate under biaxial loading. 

1 Introduction 

Dynamic fracture deals with fracture under conditions where inertia must be included in the problem 
formulation. This occurs either under dynamic loading or in the case of static loading as a rapidly 
propagating crack runs through a structure. In mixed-mode propagtion the crack is not confined 
to propagate in a straight line but may curve under the influence of asymmetric loading. 

Since Yoffe's (1951) analysis of a fixed length crack moving across a plate, analytical solutions 
have been obtained for several specific crack propagation problems. Among these are Broberg's 
(1960) crack starting from zero length and extending at constant velocity and Nilsson's (1972) semi- 
infinite crack propagating at constant velocity in a strip. (See Sih and Chen (1977) for a more 
comprehensive compilation.) 

Freund (1972 a, b; 1973, 1974) developed the general solution for a cracked infinite body initially 
in static equilibrium. At a certain instant, the crack begins to move. A main result of his analysis is 
a relation between the dynamic stress intensity and the initial static condition 

K = k (v) Ks (a), (1) 

where Kis the dynamic stress intensity, k (v) is a universal function of crack velocity (v) and material 
properties, and Ks(a) is the static stress intensity obtained at the current crack length (a) using the 
initial static stresses in the body as loads on the crack face. The universal function, k (v), has a value 
of one at zero crack velocity, and a value of zero at the Rayleigh wave speed, cR. Freund also proves 
that the solution for a crack with non-uniform velocity can be developed as the limit of a series of 
time increments, with constant velocities in each increment. 

Although specific analytic solutions are useful, solutions for general problems can only be 
obtained using numerical techniques (usually finite element or finite difference methods). Some of 
the numerical approaches include work by Kobayashi, Emery, and Mall (1976) where nodal release 
is used to model crack propagation; the analysis by Jung, Ahmed, Kanninen, and Popelar (1981), 
also using nodal release; the use of a translating singularity element by Nishioka and Atluri 
(1980a, b); and the finite difference work of Chen and Wilkins (1977). Additional recent work on 
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dynamic fracture includes that of Koh and Haber (1986) using a mixed Eulerian-Lagrangian model 
and that of Valliapan and Mufti (1985) using quarter-point elements at the crack tip. A summary 
of numerical methods is given in a paper by Atluri and Nishioka (1985)• In all these cases, the crack 
has been constrained to propagate in directions specified a priori• 

The remainder of this paper is divided into five sections• In Sect. 2 the solution for stresses, 
displacements, and velocities around a moving crack will be discussed• In Sect. 3 the finite element 
approximation will be summarized• The implementation of these concepts will be shown in Sect. 4. 
In Sect. 5 we compare numerical results with analytical solutions for stationary and moving cracks, 
and in Sect. 6 we present the application of the model to biaxial loading experiments• 

2 Dynamic linear elastic fracture mechanics 

2.1 Asymptotic solution 

In this work, dynamic fracture will be approach in a manner analogous to that used in static linear 
elastic fracture mechanics. The asymptotic solution for stresses, velocities, and displacements around 
the crack tip will be given in terms of stress intensity factors and the current crack velocity. 

There are several approaches to obtaining the displacement and stresses around a moving crack, 
including use of a complex stress function (Radok 1956) or asymptotic arguments (Freund and 
Clifton 1974). Alternately, we can develop the solution without using complex functions by looking 
for the steady state solution with respect to coordinates (x,y) moving at the crack tip (1986). As 
shown by Achenbach and Bazant (1975) and by Freund and Clifton (1974), this solution is also 
valid for transient cracks in the limit as r ~ 0. The following relations are then obtained for the 
displacements, velocities, and stresses around a moving crack (X, Y, and Z are stationary coordinates, 
v is the crack velocity)• 
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For Mode II, 
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Fig. 1 a and b. Circumferential stresses around a mode I crack, a crack velocity zero; b crack velocity 0.99 c R 
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The above stresses and displacements are the same as presented by Nishioka and Atluri (1983) (they 
did not include velocities). 

The effect of crack velocity is illustrated in Fig. 1, which shows the circumferential stresses 
around a moving Mode/crack .  In this figure, the circumferential stress is proportional to the height 
of the plotted surface above the X - Y  plane. As noted by Yoffe, at a velocity of about 0.6 cR the 
maximum stress at a constant radius no longer lies ahead of the crack, but has maxima offthe crack 
axis. 

These asymptotic equations provide the link between the finite element solution (which has a 
length scale the size of the elements) and the process zone (which has a much smaller length scale). 
We do not attempt to directly model the process zone, but assume that equal K fields imply equal 
fracture processes at the crack tip. 

2.2 Propagation criteria 

Given a fracture process described by the stress intensities and the crack velocity, it is necessary to 
formulate criteria to predict crack velocity and propagation direction. In this work, a curve relating 
crack velocity and critical stress intensity is used. Fig. 2 illustrates this curve for 4340 steel. The 
assumption of a unique curve was made for algorithmic convenience, it is not a necessary assumption. 
The initiation and arrest stress intensities are assumed to equal KID (or gdic) at zero crack velocity. 
More complex relations could be used. All that is necessary is that, based on past history and the 
present state at the crack tip, a critical stress intensity for the current time is available. 

An analogy can be made between the critical stress intensity curve and plasticity. Just as the 
stress remains on the yield surface during plastic straining, the stress intensity will lie on the KID (v) 
curve during crack propagation. If the stress intensity is increasing, the crack velocity will increase. 
If the stress intensity is decreasing, the crack slows to remain on the curve. If the crack speed reaches 
zero, arrest has occurred. 

In plasticity theory, a general stress state is often characterized by a scalar quantity for compari- 
son with uniaxial material data. Similarly, in dynamic fracture the effects of K1 and KII must be 
combined for comparison with KID (V). The simplest way this can be done is by equating circumferen- 
tial stresses. The maximum circumferential stress due to the combined/<i and K n is calculated and 
compared to the value calculated using K~D (v) at the same crack velocity and radius. Because only 
the singular solution is used in this evaluation, the radial distance chosen for the evaluation does 
not affect the propagation criteria (Sect. 4.2). 

The crack propagation direction also depends on the current stress intensities and crack velocity. 
There are at least three competing theories for predicting crack growth direction in mixed-mode 
static fracture: maximum circumferential stress, minimum strain energy density, and maximum 
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energy release rate. Experience using the different theories in quasi-static analysis show that, from 
a practical standpoint, they are equivalent. The reason is that cracks curve in an attempt to propagate 
in Mode L The same effect is seen in dynamic crack propagation experiments (Rossmanith 1983). 
Since the maximum circumferential stress criterion is easiest to implement and is intuitively reason- 
able, this method of predicting crack propagation direction was chosen. 

3 Finite element approximation 

In the finite element method, we divide the body into discrete elements, assume the form of 
displacements over each element, assemble the resulting global equations, and solve for the unknown 
accelerations. The accelerations are integrated in time to obtain velocities and displacements, 
developing a time history of the solution. The present approach closely follows that used by Key, 
Beisinger and Krieg in the HONDO code (1978). Since this approach has been used extensively, 
Bathe (1982) or Belytschko and Hughes (1983), only features pertinent to the present implementation 
will be mentioned. 

The finite element approximation is obtained by assuming displacements are functions of the 
values at the nodes surrounding the element 

u = N ua, (5) 

where u a are the nodal displacements and N is a shape function matrix. Substituting this approxima- 
tion into the weak statement of equilibrium and using the same interpolation functions for tractions 
gives, 

Numel t t e21 {stS N T N d S t a - v ~  B T D B d V H a -  I QNTNdVila =0.  (6) 
= ve 

where D relates the stresses to the strains, B relates strains to displacements, and ta are surface 
tractions. 

For the elements surrounding the crack tip (which is moving), the time derivative of Eq. (5) 
includes derivatives of the shape functions. These terms are functions of crack velocity and acceler- 
ation in combination with nodal velocities and displacements. Because of their pairing, these terms 
are small and have not been included in Eq. (6). 

Assembling the element contributions, we obtain the global stiffness matrix (K), the mass matrix 
(M), and the load vector (f), 

Mii~  = f - -  K u  a 

We can now solve for the nodal accelerations, 

i ia= M - l ( f  - K u a ) .  

(7) 

(8) 
If the mass matrix is diagonal, the inverse to obtain the accelerations is trivial. The following 

algorithm is used to evaluate Eq. (8) (note that the solution is obtained at the element level, no 
global matrices are actually assembled): 

(1) Zero the force vector; 
(2) Accumulate all external forces into this vectors; 
(3) Loop through each element and add the internal forces to the external force vector; 
(4) Calculate the current acceleration using the unbalanced nodal forces and the nodal masses. 

The central difference scheme is used to integrate the accelerations. The velocity is assumed to be 
constant during a time increment. Using difference approximations for the velocities and acceler- 
ations, we obtain, 

iin = M - l ( f  - K u n )  

~n+1/2 = lgn-1/2 + l/2(Atn-1/2 + z~lgn+ l/2)iin 

Un+l --- lgn + Aln + l/21gn + l/2, (9) 
where n indicates the time step. 
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This scheme uses the current state (u~, ti~ 1/2) to obtain future velocities and displacements. Since 
no matrix inversion is necessary, the solution can be obtained for relatively large problems at many 
time steps within reasonable computational times. This makes it possible to use small time steps 
(also required for stability) and to follow stress waves in the structure. A second major advantage 
is that this approach places no requirements on the order in which nodes or elements are numbered, 
making it ideal for problems in which the mesh is changing during the course of the analysis. These 
two considerations make explicit time integration a natural choice for dynamic crack propagation. 

The type of element must also be chosen. Three considerations lead to the use of the quadratic 
six-noded triangular element. A major consideration is incorporating the singular solution for 
displacements around the crack tip. This can be easily done by shifting the side nodes of the six- 
noded element to the quarter-point positions (Barsoum 1977; Henshell and Shaw 1975). A second 
consideration is the ease of automatically remeshing around the crack tip as the crack propagates. 
Meshes are generally easier to generate using triangular elements than quadrilateral elements. 
Finally, experience with the quadratic six-noded element has shown that it performs well in elastic 
analyses. 

4 Implementation 

4.1 Calculation of K1 and KH 

Given a finite element solution at an instant in time, several options are available to calculate K~ 
and Kn. These include the dynamic J integral, virtual crack extension, and fitting of the crack tip 
stresses or displacements to the asymptotic solution. It is desirable to calculate the stress intensities 
using parameters that are close to the crack tip so that rapid changes in stress intensity can be 
captured. Because of its ease of implementation and because it provides a local measure of crack 
tip response, the displacement correlation method is used. As implemented in its simplest form, 
nodal displacements on the crack face are used with Eqs. (2) and (3) to obtain the stress intensities. 

4.2 Crack tip velocity and propagation direction 

Incremental forms of the propagation criteria must be developed. The condition for crack initiation 
is, 
o-~aax > o-0Dmax (lO) 

where ob ~ax is the maximum circumferential stress calculated using the current stress intensities and 
max is the circumferential stress using the critical stress crack velocities (zero for initiation) and ao~, 

intensity at the same crack velocity (the same radius is used in both calculations). This test is only 
made when the crack is stationary either because it has not propagated or because it has previously 
arrested. 

If the crack is propagating, the difference between the maximum circumferential stress and the 
critical circumferential stress is used to determine if the crack should accelerate or decelerate. The 
change in crack velocity is assumed proportional to the difference between the stresses, 

[-,.max ,.max-] 
= A [  7° - y 0 , |  (11) 

max L ~r0~ J 

or in incremental form, 

F max max 1 A v = A  a0 - a 0 ~  (12) 
m a x  k aoD _] Ate+l~2, 

where A is a constant that controls the time period over which the velocity changes. A value of A = 
CR/0.25 X 10 -6 sec is used in the present calculations and gives good results; however, experiments 
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on crack tip acceleration could provide a more physically meaningful value. The behavior of this 
constant can be evaluated after an analysis by examining how well the calculated stress intensities 
remain on the specified KID (V) curve. 

To aid in staying on this curve, a predictor using the current slope of the KI/) (v) curve is added 
to Eq. (12) 

[ max 1 0"0D AV 
o'pax - -  (romDax - -  5 V  - A t n + l / 2 ,  (13) 

Av = A max 
GOD 

This predictor recognizes that increasing velocity can change the critical stress intensity. Solving for 
Av, we obtain 

I ( /  5a0nax ) l l  (O'~nax - O'0r~ax)l A + 
Av= 1/ 1 + a0~ × 8v At,+1/2 A ~r~ x j~, ,+1/2.  (14) 

Equation (14) allows us to increment the crack velocity in the same manner that the accelerations 
were used to increment the nodal velocities. Crack arrest occurs when the new velocity is less than 
or equal to zero. 

This algorithm is different from others in the literature (Jung, Ahmad, Kanninen and Popelar 
1981; Nishioka and Atluri 1980a) in that it does not directly force the crack velocity to lie on the 
KtD (v) curve. Instead, this occurs naturally as a consequence of the fracture process. The algorithm 
encounters no difficulty with a flat (constant) KID (v) curve. 

The crack tip propagates in the direction of maximum circumferential stress. The crack tip is 
moved every time step. 

4.3 Transfer of data between meshes when the crack tip is moving 

Because of inertia, the dynamic solution represents an evolving history, and whenever the mesh is 
changed, this history must be preserved. This is accomplished by transferring data from the old 
mesh to the new mesh. 

Three situations arise when regard to transferring data and incrementing in time: 
(1) The first case is when the mesh is not changing, but the solution is being incremented in time. 

This is the standard finite element situation and is represented by Eq. (9). For this case, time 
derivatives are used to increment the solution. 

(2) The second case occurs when the solution is not being incremented in time but when the 
mesh is being changed, for example, when remeshing to correct element distortion. In this case, 
spatial derivatives are used to obtain nodal values at the new node positions. 

(3) The last case occurs when both the solution is being incremented in time and the coordinates 
of the nodes are being changed. Both time and spatial derivatives are necessary to update nodal 
quantities. This case occurs when the crack is propagating. 

During the solution, displacements (and velocities and stresses) are functions of position and 
time. As an example, for the X displacement, 

Ux = ux(X, Y, t) (15) 

The time derivative of the displacement is, 

dux/dt = (SUx/SX)(SX/St) + (Sux/O Y)(O Y/at) + (Sux/St) (16) 

or in incremental form, 

aux = (SUx/~X) a x  + (~u~/~ Y) a Y + (~ux/~t) at .  (17) 

Equation 17 is a more general form of Eq. 9, which describes the central difference scheme. 
Spatial derivatives in Eq. (17) could be evaluated and used to find the change in nodal velocity. 

An equivalent way to do this incrementally is to save the mesh data for the current time and then 
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to interpolate the current mesh data to the new nodal position. Subtracting the nodal value at the 
old position from the value at the new position gives the increment in displacement due to moving 
the node, 

(~Ux/aX) A X  = Uxlx + Ax - uxlx.  (18) 

This approach is more natural for finite element analysis where we readily have the shape functions 
available for interpolating mesh data. The time derivative term of Eq. (17) is calculated using the 
standard time integration scheme. Then, for the nodes that have moved, the change in displacements 
due to the spatial gradients is added. A similar procedure is used to update velocities, but with the 
singular velocities substracted before the interpolation and then added in after interpolation. Nodal 
masses are recalculated each time step. 

It is important to note that there is no attempt to force the stress intensity to be a specified value 
in the next time step. The stress intensities follow from displacement correlation with the updated 
nodal displacements. 

4.4 Moving the crack tip and automatic remeshing 

Using the relations developed in Sect. 4.2, the crack tip node and corresponding quarter-point nodes 
are moved in each time step. This process is illustrated in Fig. 3 for straight and curving cracks. As 
the tip moves, a point is reached where the mesh becomes excessively distorted. This distortion both 
introduces errors into the finite element calculation and causes the time step to drop. Since the time 
step is tied to the element size, a major requirement for the remesh scheme is that it generate new 
elements that are of similar size to the elements in the vicinity of the crack tip. This means an element 
splitting algorithm is not satisfactory. Instead, a scheme was chosen where elements around the 
crack tip are deleted and new ones generated in the local region. Fig. 4 illustrates the remesh process, 
for which the steps are: 

(1) Using a radius based on local element size, a center for remeshing is defined by projecting 
ahead of the crack tip. This projection allows the crack to propagate about one element length 
before remeshing is again necessary (Fig. 4 b). 
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Figs. 3 and 4. 3a, b Method used to move crack tip in mesh; a straight crack; b curving crack. 4a-d Automatic remeshing 
around crack tip; a before remeshing; b after deleting elements; c quarter point elements added; d new mesh 
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(2) All elements within a distance of twice the radius are deleted (Fig. 4b). If necessary, the 
boundary is smoothed. Data is saved for all the deleted elements. 

(3) A rosette of quarter-point elements is added around the crack tip (Fig. 4c). 
(4) If needed, nodes are added to the annulus between the quarter-point elements and the 

boundary. 
(5) The annulus is filled with elements (Fig. 4d). The algorithm used is the modified Suhara- 

Fukuda algorithm described by Shaw and Pitchen (1978). 
(6) Data is transferred from the old mesh to the new mesh. Since the problem is fixed in time 

and only the mesh is being changed, the shape functions are used to interpolate the velocities and 
displacements of  the new nodes. In general, element stresses and strains would also need to be 
interpolated; however, since an elastic material is assumed, the new values can be calculated directly 
from the displacements. In addition, nodal masses are recalculated to correspond to the new mesh. 

Experience shows this algorithm to be quite reliable. If problems are encountered, the user is 
given the option of interactively remeshing. 

Deleting and adding elements and nodes implies the data describing the problem must be 
changed. The data base uses a connectivity list for each element and nodal positions for each node. 
To prevent the data base from expanding as the problem progresses, lists of  "dead" elements and 
"dead" nodes are maintained. When new elements are added, they are put in the positions of the 
"dead" elements. If no "dead" elements are available, the new elements are added to the end of the 
element list. The same is done for nodes. This procedure keeps the size of the data base about 
constant. The ability to add and delete elements without regard for bandwidth (because of the 
explicit scheme) greatly simplifies the bookkeeping process. 

4.5 User interaction 

Interactive computer graphics is essential for reliable analysis of  mixed-mode dynamic fracture. 
Because elements are continuously being added and deleted, the topology of the problem is always 
changing. It is difficult to develop algorithms that allow arbitrary remeshing in all instances of crack 
propagation. Instead, the approach taken has been to develop a remeshing algorithm that handles 
most cases, but allows the user to modify the mesh when necessary (such as initiating a crack from 
a surface). Interactive graphics makes this user control possible. 

Interactive graphics also gives the analyst powerful tools with which to evaluate intermediate 
and final results. Examples include the use of line plots to evaluate convergence by examining stress 
continuity across elements and the use of projected stress plots to follow wave propagation through 
the structure. 

5 Verification problems 

5.1 Sudden appearance o f  a stationary crack in an infinite medium 

The first verification problem is the sudden appearance of a crack in a body under an initial state 
of stress. By superposition, this is equivalent to a stationary crack subjected to a step plane 
wave (either dilational or shear) traveling normal to the crack face. The problem has been solved 
analytically by Thau and Lu (1971). Their solution was obtained using the generalized Wiener-Hopf 
technique and is valid from the time the wave reaches the crack until the time required for a 
dilatational wave to travel from one tip to the other and return (two P-wave crack-width transit 
times). 

Finite element solutions were obtained with two meshes: a fine mesh shown in Fig. 5 (only the 
upper half of  the mesh is shown) and a coarse mesh using the same pattern but with one-quarter 
the number of  elements. Material properties were E = 30 x 106 lb/in 2, v = 0.25, and ~ = 0.0008 lb- 
sec2/in 4. This results in wave speeds cl = 2.1213 × 105 in/sec, c2 = 1.2247 × 105 in/sec, and cR = 
1.1126 x l0 s in/sec. The calculation was performed by specifying and initial stress of  o- r -- 1000 lb/ 
in 2 for the Mode/ana lys i s  and o-xr = 1000 lb/in 2 for the Mode Hcase. Plane strain conditions were 
assumed. 
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Fig. 5. Mesh used for sudden appearance of crack in an infinite region 
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Results for the Mode I loading are shown in Fig. 6. In this plot, time is normalized by the time 
for a dilatational wave to traverse the length of the crack, and the stress intensities are normalized 
by the static value. The correlation between finite element results and analytical results is good. The 
finite element results show some oscillation, with the finer mesh giving improved results. 

Fig. 7 shows corresponding results for shear loading. For this case, the correlation of finite 
element results with analysis is not as good as for the Mode I case, but still satisfactory. 

5.2 Propagating crack in an infinite medium 

In previous studies, verification of crack propagation calculations has been performed by approxi- 
mating steady state solutions or by approximating Broberg's solution for a crack propagating from 
an initially zero length. Because of these approximations, the comparisons are uncertain. By using 
Freund's solution (Eq. 1) for a crack propagating in an infinite medium, we can develop a simple 
verification problem with which numerical results can be unambiguously compared. 

Using Eq. (1), analytic solutions can be obtained either for the case where the crack velocity 
history is specified and the stress intensity is calculated ("generation" studies) or for the case where 
the stress intensity is specified and the crack velocity history is obtained ("application" studies). The 
former is a direct application of Eq. (1), while the latter involves an integration of the crack velocity. 
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Eq. (1) was derived for an infinite body but applies to a finite body until the arrival of reflected 
waves. 

Freund's  solution requires as input the initial static stresses on the crack axis ahead of  the crack. 
The simplest problem for which an analytic solution is available is that for a static semi-infinite 
crack in an infinite body. For  this problem, the static asymptotic ~ solution (Eqs. (2) and (3) with 
zero velocity) can be used to obtain traction boundary conditions which make the finite body act 
as though it is infinite. If  this is done, the stresses ahead of  the crack given by the asymptotic solution 
can be used as input to Freund's  analysis to calculate Ks(a). For this particular problem, the 
parameter K s (a) is constant and equal to the initial static value, independent of crack length. As a 
consequence, if a constant crack velocity is specified, the analytic solution is a constant dynamic 
stress intensity (Eq. (1)), or inversely, if a constant critical stress intensity is specified, the resulting 
crack velocity will be constant. 

Figure 8 shows the mesh used to model  the "infinite" problem. Results will be presented for a 
fine mesh and a course mesh. Both used the same mesh pattern, but the diameter was 2.5 inches for 
the fine mesh and 5.0 inches for the coarse mesh. Traction boundary conditions on the outer surface 
corresponding to a static stress intensity of Kz = 1000 psi-in 1/2 were applied. Material properties 
were the same as for the previous example. The problem was first brought  to initial static equilibrium 
and then either the crack velocity or critical stress intensity was specified. When the velocity was 
specified, the critical stress intensity was calculated as the dependent  variable. When the critical 
stress intensity was specified, the crack velocity was calculated. 

In the first analysis, the crack velocity was specified to be 0.4 of the Rayleigh wave speed (crack 
velocity = 44504 in/sec). Figure 9 shows the crack tip opening displacement profiles at the initial 
static condition and after the crack has propagated. The stress intensities during the propagation 
are shown in Fig. 10. The calculated initial static equilibrium stress intensity is 987 psi-in 1/2, while 
the exact value is 1000 psi-in ~/2. Based on Freund's  analysis, the stress intensity corresponding to 
the specified velocity should be 725 psi-in 1/2. 

The results for a specified stress intensity are shown in Fig. l 1. The specified stress intensity is 
725 psi-in s/z, corresponding to a velocity of 4450 in/sec. Figure 11 b shows the at tempt of  the finite 
element solution to maintain the calculated stress intensity on the specified stress intensity curve. 
This calculation is a more severe test of the algorithm's capability than the analysis with a specified 
velocity, since errors in the stress intensity are magnified when calculating the velocity (Sect. 4.2). 
Finally, Fig. 12 shows the energy partitioning during crack propagation with a specified velocity. 
As it should, the total energy remained nearly constant. The energy balance for the analysis with a 
specified stress intensity was essentially identical. 

After each remeshing the results show a short transient in stress intensity and crack velocity, 
with the magnitudes of the errors about the same for either the fine or coarse mesh. Remeshing 

b 

* :  Crock face 

I I  

9 

Figs. 8 and 9. 8Mesh used for analysis of"infinite" body. 9a, b Displaced mesh plots with velocity specified (magnification = 
4000); a displacements at static equilibrium; b after 25 x 10 -6 sec. 
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changes the finite element approximating functions around the tip and thus introduces some error. 
Since the quarter-point node displacements are used to calculate the stress intensity for both meshes, 
the physical point used for the evaluation is closer to the crack tip in the fine mesh. Thus the 
magnitude of the error is about the same for both meshes. The results could probably be improved 
by evaluating the stress intensity using displacements at a fixed radius rather than a radius that 
changes with the mesh. 

6 Analysis of crack curving under biaxial loading 

To demonstrate the application of the model to a mixed-mode problem, we will examine experiments 
performed by Dadkhah (1984) and reported by Hawong, Kobayashi, Dadkhah, Kang and Ramulu 
(1985). In the experiments, a centrally-cracked Homalite 100 plate was subjected to biaxial loads. 
Depending on the biaxial load ratio, the fracture propagated in different directions. Measured data 
included the load on the plate and photographs from a 16 spark-gap camera. This allowed the stress 
intensity during propagation and crack position to be obtained directly. 

Figure 13 shows the test specimen which was loaded by four hydraulic cylinders attached by 
grip plates and miscellaneous hardware that totaled 7.4 lb weight for each of four cylinders. The 
load was applied rapidly over a time of about 40 x 10 .6 sec, as shown in Fig. 14. The test which 
will be analyzed had a biaxial load ratio of 1.6. That is, the load in the X direction was 1.6 times 
the load in the Y direction. The crack was initially aligned along the X axis, so if the crack deviated 
from the symmetry line, there was a strong tendency for the crack to turn. Although the test 
specimen was loaded as symmetrically as possible, the initial crack propagation angle was 5 degrees 
off the symmetry axis. The reason for this unsymmetric response is not known. 

Coarse and fine meshes were used in the calculations, with the fine mesh shown in Fig. 15. Plane 
stress assumptions were used, with the density of the outer edge elements increased to account for 
the mass of the loading fixture. In the analysis some initial asymmetry must be supplied or the crack 
will propagate symmetrically. The asymmetry was supplied by orienting the crack tip elements at 
initial angles of 5 or 10 degrees. The thickness of the specimen was 0.646 inches. Material properties 
of Homalite 100 are E = 0.619 x 10 6 lb/in 2, v = 0.357, and 0 = 0.000112 lb-sec2/in 4. The properties 
give plane stress wave speeds of c 1 = 79600 in/sec, c 2 = 45100 in/sec, and c R = 41600 in/sec. The 
specified KID (v) curve is shown in Fig. 16. This data was obtained independently from the present 
test (Metcalf and Kobayashi, 1986). 
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Displacement results are shown in Fig. 17 through 19 for the fine mesh with the crack tip 
elements given an initial angle of 5 degrees. Figure 20 compares the calculated crack paths to 
experiemental data. The path is relatively insensitive to the change in initial angle from 5 to 10 
degrees. Agreement between the computed and experimentally observed trajectories is good, with 
the calculations falling between the observed values for the left and right cracks. 

The computed stress intensities as a function of time are shown in Fig, 21. One item of significance 
is the ratio of Mode H to Mode I stress intensity. The Mode H stress intensity is about a factor of 
ten lower than the Mode I value. This confirms that a relatively small value of Mode H is sufficient 
to turn a crack significantly. A comparison of calculated and measured stress intensities is given in 
Fig. 22. The calculated values are again bounded by measured results for the left and right sides of 
the crack, with the Mode H components being much smaller than the Mode I values. 

7 Conclusions 

This paper has presented a finite element model of  mixed-mode dynamic fracture where discrete 
cracks are allowed to propagate in direcitons not chosen a priori. Important features are the use of 
triangular elements with quadratic shape functions, explicit time integration, and interactive cam- 
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puter graphics. These features make it possible to reliably remesh as the crack propagates and allow 
the singularity at the crack tip to be modeled. The algorithms for predicting crack velocity and 
propagation direction allow a general specification of the critical stress intensity. 

Verification of the model was performed by analyzing two problems: the sudden appearance of 
a stationary crack in a stressed body and the propagation of a crack in an infinite body. It is 
recommended that this infinite body problem, for which an exact analytical solution is available, 
be used for verification of numerical models. 

The analysis of the biaxially loaded plate illustrates the application of the model to mixed-mode 
propagation. Good correlation was obtained with the available data for crack trajectory and 
observed stress intensities. This analysis demonstrates that only a small Mode H component is 
sufficient to significantly curve the crack path. 

These results (and others Swenson (1985); Swenson and Ingraffea (1986)) show that the relatively 
simple assumptions used for propagation criteria are sufficient for a relatively broad range of 
dynamic fracture problems. These criteria are the use of maximum circumferential stress for the 
crack propagation direction and the use of a Kw (v) curve for critical stress intensity. 
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