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Summary. Every family of languages, recognized by nondeterministic L(n) 
tape-bounded Turing machines, where L(n)>_ log n, is closed under comple- 
ment. As a special case, the family of context-sensitive languages is closed 
under complement. This solves the open problem from I-4-]. 

Introduction 

This paper presents a new method of simulating nondeterministic Turing 
machines. The method forces every accepting computation of a nondeterministic 
Turing machine to examine all reachable configurations of the simulated nonde- 
terministic Turing machine working on an input word w. It is important that 
the simulating machine does not use more space than the original Turing 
machine. Using the new method we have proved that every family of languages, 
recognized by nondeterministic L(n) tape-bounded Turing machines for L(n)>_ 
log n is closed under complement. As a special case the closure of context- 
sensitive languages under complement follows. The method was first used in 
[5] to solve this open problem from [4], but it was found to work for more 
general families of languages (see [6]). This result has been obtained independent- 
ly by Neil Immerman (see [2], [3]). 

The model of Turing machine we are going to deal with is the nondeterminis- 
tic Turing machine with one input tape and one work tape infinite in one 
direction. This paper considers following definition of nondeterministic tape- 
bounded Turing machines (see [1]). 

Definition 1. A nondeterministic Turing machine is said to be L(n) tape-bounded 
when it uses at most L(n) squares of its work tape for every input word of 
length n. 

This definition slightly differs from the other definition used, which requires 
L(n) to be space constructible and the existence of an accepting computation 
which uses at most L(n) work tape squares. The definition used in this paper 
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defines slightly wider class of nondeterministic tape-bounded machines. For  con- 
structible L(n) the families of languages defined by these two kinds of tape- 
bounded machines are identical. 

The main result follows: 

Theorem 1. Let L be a language, recognized by an L(n) tape-bounded nondetermin- 
istic machine T, where L(n) >_ log n. Then there exists an L(n) tape-bounded nonde- 
terministic machine T', recognizing the complement E of L. 

Proof: Informal construction of the machine T': 
Let us presume, that T' starts to work on an input word w of length n. 

Let K denote the set of all configurations of T. Let us choose an ordering 
of the set K, in which configurations with short non-empty work tape sections 
are ordered before configurations with longer non-empty work tape sections. 

Obviously not all configurations from the set K are reachable. Let S be 
the subset of all configurations reachable from w. T accepts w if and only if 
S contains a configuration with an accepting state. The machine T' will deter- 
mine if the input word w is in E by checking all configurations in S and will 
accept w if and only if it does not find any configuration with an accepting 
state of T. 

Let us suppose that T' knows the number of the elements of S (denoted 
by card S) and the largest element of S according to the chosen ordering (denoted 
by max S). Then T' enumerates the set S as follows: it starts to enumerate 
all elements from K in the chosen ordering beginning with the first configuration 
and ending with max S. For  every configuration k that occurs in this enumeration 
of K, the machine T' nondeterministically simulates T on the input word w. 
If T' reaches the configuration k, then T' has a witness that the configuration 
k belongs to S. 

However, there is a problem: during this process machine T' might not 
select for all k in S a correct sequence of steps leading to k. We shall "force" 
T' to simulate a computation reaching k if it exists, as follows: T' counts all 
configurations which it finds to be in S and after completing the enumeration 
compares this number with card S. If T' has overlooked at least one configura- 
tion belonging to S, the number of the configurations counted will be inevitably 
lower than card S, since T' cannot count any configuration that is not in S. 
In such cases T' rejects. If the number of all configurations counted is identical 
with cardS, then T' is guaranteed that S has been correctly enumerated. If 
no accepting configuration has been found in S, then T' accepts. 

It remains to show how T' determines max S and card S in space L(n). 
Let Si be the set of all configurations reachable by T working on the input 

word w in at most i steps of computation. Obviously SoC_S1c_...c_S and for 
some j < card S, S i = S holds. 

The set So only contains the initial configuration of T with the input word 
w, which therefore equals max So and card So = 1. When T' knows max Si and 
card Si, it determines max Si+ 1 and card S~+ 1 as follows: First T' sets the counter 
of the configurations included into Si+l to the value card Si thus counting all 
configurations from S~. Then T' enumerates the set S~ in the same way as 
described above - with the help of max Si and card S~. The procedure verifying 
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that a configuration belongs to Si differs slightly, since T' simulates at most 
i steps of T. For each configuration from S~ the machine T' enumerates all 
configurations that can be reached by T in one step of computation. Thus 
T' gets all configurations from Si+ 1 so it can easily determine max Si+ 1. How- 
ever, the situation concerning card S~ § 1 is more complex. 

Let k0 be a configuration from S, and k a configuration that can be reached 
by T from k o in a single step. Although k definitely belongs to Si+l, T' cannot 
simply include it in the total count, since k might also belong to Si or it might 
be reachable in a single step from some configuration preceding ko in the chosen 
ordering. In both cases k has already been included in the total count, so T' 
must not count it again. For this reason T' enumerates in another track of 
its work tape the set S~ again, and compares each of its members with the 
configuration k. At the same time it forms from every configuration belonging 
to Si and preceding ko in the chosen ordering all configurations that can be 
reached in a single step of T and compares them with k. If identity does not 
occur in any case, T' includes k into the total count. In this way the machine 
T' secures that every configuration is counted exactly once. 

The above described process is carried out as long as Si§ 1 ~-Si. For some 
j <  card S, S j+l = S t must hold. The set S t then contains all configurations reach- 
able by T while working on then input word w; i.e. Si=S. The values max Sj 
and card Sj evaluated by T' are therefore max S and card S. 

Notice, that if L(n)> log n, the above described simulation can be realized 
in O (L(n)) space. 

This informal description of T' is presented in more detail in the Appendix. 
The above result can be restated in the following form: 

Corollary 1. The family of languages recognized by L(n) tape-bounded nondetermin- 
istic Turing machines, where L(n)>_ log n, is closed under complement. 

Since the family of context-sensitive languages is equal to the family of lan- 
guages recognized by L(n) tape-bounded nondeterministic Turing machines for 
L(n)= n (see [1], [4]), the following special case is obtained: 

Corollary 2. The family of context-sensitive languages is closed under complement. 
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Appendix 

A more detailed informal description of the work of T' is presented here using common programming 
language notation. 

begin 
! index:-O; max:=init; card.-:l;  
2 maxl:=init; cardl :=l ;  
3 repeat 
4 newconf,--false; 
5 checksum :=0; 
6 for confO:=first to max do 
7 begin 
8 sim,=init; countstep:=O; step:=guessstep; 
9 while (countstep<index) and (step>O) do 

10 begin 
11 execute(sim,step); eountstep:=countstep + 1; 
12 step :=guessstep; 
13 end; 
14 if confO = sire then 
15 begin 
16 checksum ,=checksum + 1; 
17 for step:=l to m do 
18 begin 
19 eonf,=eonfO; execute(conf, step); 
20 occurs:= false; 
21 checksum1 :=0 
22 for confl ,=first to max do 
23 begin 
24 sim :=init; eountstep,=O; stepl ,=gues~step; 
25 while (stepl > O)and(countstep < index) do 
26 begin 
27 execute(sim,stepl); eonntstep :=eountstep + 1; 
28 stepl :=guessstep 
29 end; 
30 if eonfl = sim then 
31 begin 
32 checksuml ,=cbecksuml + 1 ; 
33 if conf= confl then occurs,=true; 
34 if confl < confO then 
35 for stepl ,=1 to m do 
36 begin 
37 eonf2 :=confl; execute(eonf2,stepi); 
38 if conf = conf2 then occurs,= true 
39 end 
40 end 
41 end; 
42 if ebecksuml < card then reject; 
43 if not occurs then 
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44 begin 
45 newconf:=true; 
46 if conf>  max1 then m a x l  ,=conf; eardl  ,=cardl  + 1 
47 end 
48 end 
49 end 
50 end; 
5 t if  checksum < card then reject; 
52 index ,=index + 1; max  : = m a x l ;  card ,=eardl  
53 until not newconf; 
54 occurs:=false; 
55 cbecksum.*=O; 
56 for confO~=first to m a x  do 
57 begin 
58 sim~=init; step:=guessstep; 
59 while step>O do 
60 begin 
61 execute(sim,step); 
62 step ,= guessstep 
63 end; 
64 if confO = sim then 
65 begin 
66 checksum :=checksum + 1; 
67 if accepting(confO) then occurs:=true 
68 end 
69 end; 
70 if checksum<card  then reject; 
71 if occurs then reject else accept 

end. 

The meaning of the symbols used is following: 
1. Constants :  

first - denotes the first configuration of T in the chosen ordering 
inlt - denotes the initial configuration of T 
m - denotes the max i mum number  of applicable steps 

2. Variables: 
max, maxl ,  confO, conf, confl, eonl2, sim 

- represent one of the configurations from the range 
first. . ,  max  S 

index, card, cardl ,  checksum, ehecksuml,  counstep 
-- represent integer numbers  from the range 

0. . .  card S 
step, s tepl  

- represent integer numbers  from the range 
0 _ . m  

newconf, occurs 
- boolean variables 

3. Functions:  
guessstep 

- -  a n o n d e t e r m i n i s t i c  function which provides a number  from 1 to m of a selectable step 
which is to be executed during the simulation (or 0 to signal the end of the simulation) 

aeeepting(eonf) 
-- boolean function which gives the value true if eonf is an  accepting configuration 

4. Procedures: 
execute(conf, i) 

-- executes the i-th applicable step on the configuration conf 
reject - rejection of the input word 
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accept -- accepting of the input word 

A brief comment to the program: 
In lines 1-53 the values max S and card S are evaluated~ The evaluation of max S~+ x and card St + 1 

from the values max St and card Si is carried out in lines 5-51. The variable conf0 runs through 
all configurations. In lines 8-13 a number of steps of T is nondeterministically simulated to test 
whether conf0 belongs to Si, If conf0 belongs to S~, all configurations reachable from coal0 in one 
step of computation are enumerated in conf in line 19. Before the inclusion into S~+ 1 every configura- 
tion is tested in lines 20-42 whether it has already been included into S~+~. The variable confl 
again runs through all configurations. The simulation of T is carried out in lines 24-29. In line 
33 conf is compared with every configuration from S~. If eonfl is in the chosen ordering before 
confO, then in lines 35-39 eonf is compared with all configurations that are reachable in one step 
of computation. If conf has not been included into S~+I, the variables newcaaf, max1 and r  
are updated in lines 44-47. 

In lines 54-71 the set S is searched for an accepting configuration. The simulation for testing 
whether confO belongs to S is carried out in lines 58-63. Every configuration is tested in line 64. 
If no accepting configuration has been found, the input word is accepted (line 71). 


