
Acta Informatica 26, 279-284 (1988)

�9 Springer-Verlag 1988

The Method of Forced Enumeration
for Nondeterministic Automata

R6bert Szelepcsbnyi*
Department of Theoretical Cybernetics, Faculty of Mathematics and Physics, Komensky University,
Mlynskg dolina F l, 842 15 Bratislava, Czechoslovakia

Summary. Every family of languages, recognized by nondeterministic L(n)
tape-bounded Turing machines, where L(n)>_ log n, is closed under comple-
ment. As a special case, the family of context-sensitive languages is closed
under complement. This solves the open problem from I-4-].

Introduction

This paper presents a new method of simulating nondeterministic Turing
machines. The method forces every accepting computation of a nondeterministic
Turing machine to examine all reachable configurations of the simulated nonde-
terministic Turing machine working on an input word w. It is important that
the simulating machine does not use more space than the original Turing
machine. Using the new method we have proved that every family of languages,
recognized by nondeterministic L(n) tape-bounded Turing machines for L(n)>_
log n is closed under complement. As a special case the closure of context-
sensitive languages under complement follows. The method was first used in
[5] to solve this open problem from [4], but it was found to work for more
general families of languages (see [6]). This result has been obtained independent-
ly by Neil Immerman (see [2], [3]).

The model of Turing machine we are going to deal with is the nondeterminis-
tic Turing machine with one input tape and one work tape infinite in one
direction. This paper considers following definition of nondeterministic tape-
bounded Turing machines (see [1]).

Definition 1. A nondeterministic Turing machine is said to be L(n) tape-bounded
when it uses at most L(n) squares of its work tape for every input word of
length n.

This definition slightly differs from the other definition used, which requires
L(n) to be space constructible and the existence of an accepting computation
which uses at most L(n) work tape squares. The definition used in this paper

,~ This research was supported by the grant SP2V I-1-5/08

280 R. Szelepcs6nyi

defines slightly wider class of nondeterministic tape-bounded machines. For con-
structible L(n) the families of languages defined by these two kinds of tape-
bounded machines are identical.

The main result follows:

Theorem 1. Let L be a language, recognized by an L(n) tape-bounded nondetermin-
istic machine T, where L(n) >_ log n. Then there exists an L(n) tape-bounded nonde-
terministic machine T', recognizing the complement E of L.

Proof: Informal construction of the machine T':
Let us presume, that T' starts to work on an input word w of length n.

Let K denote the set of all configurations of T. Let us choose an ordering
of the set K, in which configurations with short non-empty work tape sections
are ordered before configurations with longer non-empty work tape sections.

Obviously not all configurations from the set K are reachable. Let S be
the subset of all configurations reachable from w. T accepts w if and only if
S contains a configuration with an accepting state. The machine T' will deter-
mine if the input word w is in E by checking all configurations in S and will
accept w if and only if it does not find any configuration with an accepting
state of T.

Let us suppose that T' knows the number of the elements of S (denoted
by card S) and the largest element of S according to the chosen ordering (denoted
by max S). Then T' enumerates the set S as follows: it starts to enumerate
all elements from K in the chosen ordering beginning with the first configuration
and ending with max S. For every configuration k that occurs in this enumeration
of K, the machine T' nondeterministically simulates T on the input word w.
If T' reaches the configuration k, then T' has a witness that the configuration
k belongs to S.

However, there is a problem: during this process machine T' might not
select for all k in S a correct sequence of steps leading to k. We shall "force"
T' to simulate a computation reaching k if it exists, as follows: T' counts all
configurations which it finds to be in S and after completing the enumeration
compares this number with card S. If T' has overlooked at least one configura-
tion belonging to S, the number of the configurations counted will be inevitably
lower than card S, since T' cannot count any configuration that is not in S.
In such cases T' rejects. If the number of all configurations counted is identical
with cardS, then T' is guaranteed that S has been correctly enumerated. If
no accepting configuration has been found in S, then T' accepts.

It remains to show how T' determines max S and card S in space L(n).
Let Si be the set of all configurations reachable by T working on the input

word w in at most i steps of computation. Obviously SoC_S1c_...c_S and for
some j < card S, S i = S holds.

The set So only contains the initial configuration of T with the input word
w, which therefore equals max So and card So = 1. When T' knows max Si and
card Si, it determines max Si+ 1 and card S~+ 1 as follows: First T' sets the counter
of the configurations included into Si+l to the value card Si thus counting all
configurations from S~. Then T' enumerates the set S~ in the same way as
described above - with the help of max Si and card S~. The procedure verifying

Nondeterministie Automata 281

that a configuration belongs to Si differs slightly, since T' simulates at most
i steps of T. For each configuration from S~ the machine T' enumerates all
configurations that can be reached by T in one step of computation. Thus
T' gets all configurations from Si+ 1 so it can easily determine max Si+ 1. How-
ever, the situation concerning card S~ § 1 is more complex.

Let k0 be a configuration from S, and k a configuration that can be reached
by T from k o in a single step. Although k definitely belongs to Si+l, T' cannot
simply include it in the total count, since k might also belong to Si or it might
be reachable in a single step from some configuration preceding ko in the chosen
ordering. In both cases k has already been included in the total count, so T'
must not count it again. For this reason T' enumerates in another track of
its work tape the set S~ again, and compares each of its members with the
configuration k. At the same time it forms from every configuration belonging
to Si and preceding ko in the chosen ordering all configurations that can be
reached in a single step of T and compares them with k. If identity does not
occur in any case, T' includes k into the total count. In this way the machine
T' secures that every configuration is counted exactly once.

The above described process is carried out as long as Si§ 1 ~-Si. For some
j < card S, S j+l = S t must hold. The set S t then contains all configurations reach-
able by T while working on then input word w; i.e. Si=S. The values max Sj
and card Sj evaluated by T' are therefore max S and card S.

Notice, that if L(n)> log n, the above described simulation can be realized
in O (L(n)) space.

This informal description of T' is presented in more detail in the Appendix.
The above result can be restated in the following form:

Corollary 1. The family of languages recognized by L(n) tape-bounded nondetermin-
istic Turing machines, where L(n)>_ log n, is closed under complement.

Since the family of context-sensitive languages is equal to the family of lan-
guages recognized by L(n) tape-bounded nondeterministic Turing machines for
L(n)= n (see [1], [4]), the following special case is obtained:

Corollary 2. The family of context-sensitive languages is closed under complement.

Acknowledgement. The author of this paper would like to express his gratitude to Branislav Rovan
for his kind help and advice during the preparation of this paper.

References

1. Hopcroft, J.E., Ullman, J.D.: Formal languages and their relation to automata. Reading: Addison-
Wesley 1969

2. Immerrnan, N.: Nondeterministic space is closed under complementation. Proceedings of the 3 rd
Annual Conference Structure in Complexity Theory, 14-17 June 1988, Washington D.C. (also
TH Report YALEU/DCS/TR 552, July 1987)

3. Immerman, N.: Descriptive and computational complexity. (unpublished manuscript, 1987)
4. Kuroda, S.Y.: Classes of languages and linear-bounded automata. Inf. Control 7, 207-233 (1964)
5. Szetepcs6nyi, R.: Context-sensitive languages are closed under complementation, TR Komensky

University, April t987 (in Slovak)

282 R. Szelepcs6nyi

6. Szelepcs~nyi, R.: The method of Forcing for nondeterministic automata. Bull. Eur. Assoc. Theor.
Comp. Sci. 33, 96-100 (i987)

Received November 10, 1987/July 6, 1988

Appendix

A more detailed informal description of the work of T' is presented here using common programming
language notation.

begin
! index:-O; max:=init; card.-:l;
2 maxl:=init; cardl :=l ;
3 repeat
4 newconf,--false;
5 checksum :=0;
6 for confO:=first to max do
7 begin
8 sim,=init; countstep:=O; step:=guessstep;
9 while (countstep<index) and (step>O) do

10 begin
11 execute(sim,step); eountstep:=countstep + 1;
12 step :=guessstep;
13 end;
14 if confO = sire then
15 begin
16 checksum ,=checksum + 1;
17 for step:=l to m do
18 begin
19 eonf,=eonfO; execute(conf, step);
20 occurs:= false;
21 checksum1 :=0
22 for confl ,=first to max do
23 begin
24 sim :=init; eountstep,=O; stepl ,=gues~step;
25 while (stepl > O)and(countstep < index) do
26 begin
27 execute(sim,stepl); eonntstep :=eountstep + 1;
28 stepl :=guessstep
29 end;
30 if eonfl = sim then
31 begin
32 checksuml ,=cbecksuml + 1 ;
33 if conf= confl then occurs,=true;
34 if confl < confO then
35 for stepl ,=1 to m do
36 begin
37 eonf2 :=confl; execute(eonf2,stepi);
38 if conf = conf2 then occurs,= true
39 end
40 end
41 end;
42 if ebecksuml < card then reject;
43 if not occurs then

Nondeterministic Au tomata 283

44 begin
45 newconf:=true;
46 if conf> max1 then m a x l ,=conf; eardl ,=cardl + 1
47 end
48 end
49 end
50 end;
5 t if checksum < card then reject;
52 index ,=index + 1; max : = m a x l ; card ,=eardl
53 until not newconf;
54 occurs:=false;
55 cbecksum.*=O;
56 for confO~=first to m a x do
57 begin
58 sim~=init; step:=guessstep;
59 while step>O do
60 begin
61 execute(sim,step);
62 step ,= guessstep
63 end;
64 if confO = sim then
65 begin
66 checksum :=checksum + 1;
67 if accepting(confO) then occurs:=true
68 end
69 end;
70 if checksum<card then reject;
71 if occurs then reject else accept

end.

The meaning of the symbols used is following:
1. Constants :

first - denotes the first configuration of T in the chosen ordering
inlt - denotes the initial configuration of T
m - denotes the max i mum number of applicable steps

2. Variables:
max, maxl , confO, conf, confl, eonl2, sim

- represent one of the configurations from the range
first. . , max S

index, card, cardl , checksum, ehecksuml, counstep
-- represent integer numbers from the range

0. . . card S
step, s tepl

- represent integer numbers from the range
0 _ . m

newconf, occurs
- boolean variables

3. Functions:
guessstep

- - a n o n d e t e r m i n i s t i c function which provides a number from 1 to m of a selectable step
which is to be executed during the simulation (or 0 to signal the end of the simulation)

aeeepting(eonf)
-- boolean function which gives the value true if eonf is an accepting configuration

4. Procedures:
execute(conf, i)

-- executes the i-th applicable step on the configuration conf
reject - rejection of the input word

284 R. Szelepcs6nyi

accept -- accepting of the input word

A brief comment to the program:
In lines 1-53 the values max S and card S are evaluated~ The evaluation of max S~+ x and card St + 1

from the values max St and card Si is carried out in lines 5-51. The variable conf0 runs through
all configurations. In lines 8-13 a number of steps of T is nondeterministically simulated to test
whether conf0 belongs to Si, If conf0 belongs to S~, all configurations reachable from coal0 in one
step of computation are enumerated in conf in line 19. Before the inclusion into S~+ 1 every configura-
tion is tested in lines 20-42 whether it has already been included into S~+~. The variable confl
again runs through all configurations. The simulation of T is carried out in lines 24-29. In line
33 conf is compared with every configuration from S~. If eonfl is in the chosen ordering before
confO, then in lines 35-39 eonf is compared with all configurations that are reachable in one step
of computation. If conf has not been included into S~+I, the variables newcaaf, max1 and r
are updated in lines 44-47.

In lines 54-71 the set S is searched for an accepting configuration. The simulation for testing
whether confO belongs to S is carried out in lines 58-63. Every configuration is tested in line 64.
If no accepting configuration has been found, the input word is accepted (line 71).

