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Summary. It is argued that an appropriate model for 
the evolution of sexual investment, at least in higher 
vertebrates, may be as follows. The primary sex ratio 
is fixed at unity, parents can recognise the sex of 
individual offspring, and the returns (in offspring 
fitness) are different for the two sexes. For  this model, 
it is shown that it is evolutionarily stable to invest 
differently in sons and daughters. In particular: 

i) If for a given investment the probability of 
survival is lower for one sex, selection favours greater 
investment in that sex. 

ii) If one sex has a frequency-dependent com- 
ponent of fitness, such that individuals receiving a 
greater-than-average investment are fitter, selection 
favours greater investment in that sex. 

iii) If the sex of an offspring can be recognised 
after an investment d, it may be evolutionarily stable 
to invest only in some fraction r of the more expen- 
sive sex, and to abandon a fraction (1 - r ) .  However, 
such behaviour can evolve only if d is a small fraction 
of the total investment required per offspring. 

Introduction 

Since the time of Fisher (1930), the problem of the 
evolution of the sex ratio has been formulated as 
follows. It is supposed that the sex ratio is an evo- 
lutionary variable under genetic control, usually by 
genes expressed in a parent, but that there is some 
fixed and unvarying cost of sons and daughters. 
These assumptions may often be inappropriate. On 
the one hand, there is remarkably little evidence for 
genetic variance of the sex ratio, except in haplo- 
diploids. The data are briefly reviewed in Maynard 
Smith (1978). The most striking observations are, 
first, that there is no evidence of genetic variance of 

the sex ratio in man, despite massive amounts of 
data, and second, that the sex ratio of domestic 
poultry and cattle remains obstinately at unity de- 
spite the great economic advantages of a female bias. 
There are some clear examples of genetic variance 
(e.g. Weir 1962), but they are few and far between. 

In contrast, it seems quite possible, at least in 
higher vertebrates, that parents might be able to 
recognise the sex of their offspring, and to invest 
differently in them according to sex. The problem 
addressed in this paper is therefore as follows. Sup- 
pose that the primary sex ratio in some species is 
fixed at unity. Suppose also that parents can recog- 
nise the sex of their offspring, and that the fitness 
(survival and/or breeding success) of those offspring 
varies differently with parental investment for the two 
sexes. Will parents evolve so as to invest differently in 
sons and daughters, and if so to what extent? 

The Model 

It is supposed that an individual female invests m in 
each son and f in each daughter, and produces a total 
of n sons and n daughters, subject to the constraint 

n(rn + f )  = C, (1) 

where C is the total investment available. Fathers do 
not inves t  in their offspring (or all fathers invest 
equally). 

Suppose that typical members of the population 
invest m* in each son, and that a rare mutant type of 
female invests m in each son. The fitness of a son 
receiving investment m will depend both on m and 
m*, and will be written O(m,m*). It will also depend 
on the investment being made in females, because, 
with a sex ratio of unity, the mean fitness of males 
and females must be equal. Thus O(rn, m*) is the 
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Table 1 
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Mating Frequency Daughters 

9 d 

Sons 

Aa aa Aa aa 

Aa aa P~ 

aa Aa P~ 

aa aa 1L p1- P2 

1 C 
_ _ _  q~(f) 2 (m* + f) 

1 C 
4(f*) 2 (m* +f*) 

1 C 1 C 1 C 
2 (m* +f)  d)(f) 2 (m* +f)  tp(m*) 2 (rn*+f) tp(m*) 

1 c 1 c 1 c 
2 (m*+f*) O(f*) 2 (m*+f*) o(m*) 2 (m*+f*) 

0(~*) 

c c 
qb(f*) 0(•*) (m* +f*--~ - (m* +f*) 

fitness of a male receiving investment m (in a popu- 
lation in which typical males receive investment m*) 
relative to the fitness O(m',m*) of a male receiving 
investment m'. The differences in absolute fitness of 
males which arise because of differences in the num- 
bers of females present are not allowed for in r The 
corresponding expression for the fitness of females is 
~b(f, f*). 

An example may help to make these expression 
for male and female fitness clearer. Suppose first that 
the probability that a male surviving to become an 
adult is e(m), and of a female surviving to become an 
adult is fi(f); that is, these survival probabilities 
depend only on investment in the individual, and not 
on average investment. Suppose further that all adult 
females have equal expectations of breeding success, 
but that the breeding success of a male depends on 
the difference between the investment it receives and 
the average investment. Then ( o ( f , f * ) = f l ( f )  and 
O(m,m*)=o~(m)y(m-m*) .  Finally, if m* and f *  are 
such that c~(m*)=2fi(f*), there will be twice as many 
adult males as adult females, so each male can expect 
only half as many offspring. This last effect is not 
included in q5 and ~ but is allowed for in the way the 
recurrence equations are set up. It will be convenient 
to write the fitness functions as ~b(f) and O(m), but 
their full form must be remembered when interpret- 
ing the results. 

Let the evolutionarily stable state of a population 
be m*,f*;  that is, typical mothers invest m* and f *  
in sons and daughters respectively. Consider the fate 
of a rare mutant A such that Aa females invest m* in 
each son and f in each daughter. In one generation 
let the frequencies of Aa 9- x aa d and aa 9- x Aa d 
matings be P~ and P2 respectively. If mating is ran- 
dom, we can ignore A A  genotypes and Aa x Aa mat- 
ings. 

Table 1 shows the number of offspring, weighted 
by their fitnesses. Hence, if P( and P2' are the cor- 
responding frequencies in the next generation, 

l m* + f * ~ ( f ) -  E 1 ] • ,=_  
1 2 m * + f  qb(f*) ( 
' l m * + f * P i + ~  P2 j (2) 

P 2 - 2  m* + f 

Hence PI' + Pz' = RP, + P2, where 

1 r n * + f *  I- q~(f) 1 
R 

2 m* + f [1 +~(f,)].----" 
(3) 

If f = f* ,  then R = 1 (as is obvious, if the mutant is 
identical to the rest of the population). If m*, f *  is to 
be proof against invasion by any mutant f then R < 1 
if f # f * .  Hence, provided R is a differentiable func- 
tion, 

0(~__), =0, (4) 

and 

Of 2 1, < 0. (5) 

Substituting for R in (4) gives 

(m* + ~*' qY(f*) - 2 
j ) ~ f , ) - _  . (6) 

B y  an exactly similar argument, considering a mutant 
investing m in males and f *  in females, 

* '  "*'tP'(m*)---2 (7) 
m + j  ) O(m*)-- " 

From (6) and (7) ,  

qS' (f*) _ 0' (m*) (8) 
q~(f*) ~(m*) " 

This can be expressed in words by saying that, at an 
ESS, the percentage increase in fitness of females 
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resulting from additional investment equals the per- 
centage loss of fitness of males resulting from the loss 
of that same investment. It is a special case of 
Charnov's (1979) assertion that "Selection favours a 
mutant gene which alters various life history parame- 
ters iff the ~ gain of fitness through one sex function 
exceeds the ~ loss through the other sex function." 

The stability of the equilibrium depends on (5). 
Using (6), this can be reduced to the condition 
~b"(f*)<0; there is of course the corresponding re- 
quirement that (82R/Sm2),<O, which reduces to 
O"(m*) <0. Unfortunately, these conditions can only 
be checked by solving Eqs. (6) and (7) for f *  and m*. 
I have examined some numerical examples of the 
equilibria discussed below, and found them to be 
stable, but I am unable to provide any general proof 
of stability. 

To obtain a more practical feel for what is im- 
plied by Eqs.(6)-(8), I now consider some special 
cases. First, suppose the fitness functions are different 
for the two sexes, but not frequency-dependent; that 
is, 4) depends on f but not f *  and 0 on m but not on 
m*. For  example suppose 

0 (f) = f~/(1 + f~); O(m) = mO/(b + m~). 

Then d)'(f)/4(f) =a/(1 + f")f, 

O' (m)/O (m) = a b/(b + m a) m, 

and hence from (8) 

b f*(1  +f*a)=m*(b+m*~). (9) 

If b > 1, then for a given investment females are more 
likely to survive than males, and it follows from (9) 
that m*> f* .  (This inequality can be seen as follows. 
For  re=f, L H S > R H S .  Also, d(LHS)/df>O and 
d(RHS)/dm > 0. Hence, if LHS = RHS, m* > f*.)  

Hence if for a given investment females are more 
likely to survive than males, at an ESS more will be 
invested in males. However, although this will usually 
be the case, it is possible to find functions relating 
fitness to investment for which the statement does 
not hold. 

Now consider the case in which both sexes have 
the same non-frequency-dependent probability of sur- 
vival, ~b(f) and ~b(m), as a function of investment, but 
one sex (e.g. the male) has an additional fitness com- 
ponent according to whether it receives more or less 
than the average investment. That is 

0(m) = ~b(m) [1 + O(m- m*)], (10) 

where 0(0)=0, and 0'(0)>0, implying that a male 
receiving a greater than average investment is fitter 
than average. Combining (8) and (10) gives 

~b'(m*) qS'(f*) 
~Qt"m*~+ 0'(0)= q~(f,).  (11) 

For  most plausible functions, (?'(m)/(o(m) decreases 
monotonically with m; this is so, for example, if qb(m) 
=ma/(b+rn ~) with a and b positive. In this case, 
m*> f* .  Hence, if one sex has an additional frequen- 
cy-dependent component of fitness, investment in 
that sex will be greater. 

So far, I have supposed that a parent makes the 
same investment in all offspring of a givensex. How- 
ever, it might pay to invest heavily in some in- 
dividuals and little in others. In the extreme case, 
suppose that the sex of an offspring is known to the 
parent before any investment has been made. By not 
investing at all in some offspring, the parent can in 
effect determine the sex ratio among its offspring. 
Then, from Fisher's (1930) argument, we expect the 
total investment in males and females to be equal. 

More generally, suppose there is a minimum in- 
vestment d in each offspring before the sex of that 
offspring is known to the parent. A female produces n 
offspring of each sex, and raises all her daughters and 
a fraction r of her sons. Then the constraint equation 
becomes 

nrm + n(1 - r)d + nf = C. 

Now suppose that typical aa females have the pheno- 
type m*, r*, f *  and that rare mutant Aa females have 
the phenotype m*, r, f* .  Equations (2) then become 

1 d+r*(m*-d)+f*  1 
P~-2  d+r(m*-d)+ f*  PI +~P2, 

1 r[d+r*(m*-d) + f * ]  1 
P2'-2 r*[d+r(m*- d) + f * ]  P1 +~P2. 

Then P~ + P2' = RPI + P2, 

where R =  1 (r+r*)[d+r*(m*-d)+f*] 
2 r*[d+r(m*-d)+f*] 

The equilibrium condition (OR~St), =-0 gives 

r, f*  +d 
m* -d" (12) 

When d = 0 (i.e. offspring sex can be recognised before 
any expenditure), r*m*=f*. That is, total expendi- 
ture on the two sexes is equal. 

If (f* +d)/(m*-d)> l, then the ESS is to invest 
m* in all sons and f *  in all daughters, where m* and 
f *  are given by Eqs. (6) and (7). 

If ( f * + d ) / ( m * - d ) <  1, then it is no longer evo- 
lutionarily stable to invest in all sons. Instead, invest- 
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ment  in some males should cease at d. If r* ,t= 1, then 
Eqs. (6) and (7) must be replaced by 

[r*(m*-d)+d+f*] qS'(f*--~) = 2, (13) 
q~(f*) 

and 

[r*(m* - d) + d + f * ]  ~/(m*) _ 2r*. (14) 

Fortunately, (12) can be used to eliminate r* and m* 
from (13), and r* and f *  from (14), to give 

qS'(f*) 
( f*  + d). = 1, (15) 

qS(f*) 

(m*-  d) O'(m*) , (16) ~(m*) = 1. 

For  given ~b and 0, Eqs. (15) and (16) can be solved 
for f *  and m*, and Eq. (12) then gives r*. 

To take a particular case, let ~( f )= f2 / ( l+ f~ )  
and ~,(rn)=m2/(2+mZ). Then with d=0.02, f * =  1.01, 
m*=1.174 and r*=0.90. Hence 10% of sons are not 
raised. However, with d=0.10, r* > l ; in other words, 
all sons are raised. Thus, as expected, if the minimum 
investment d is low enough, it is evolutionarily stable 
not to raise some of the more expensive sex. How- 
ever, the numerical example suggests that d must be a 
very small fraction of  m* before this is an evolu- 
tionarily stable option. 

These conclusions have been stated for the case in 
which for a g iven investment the fitness of sons is 
lower than that of daughters. If daughters require 
more investment than sons for a given fitness, then it 
may be stable for only some daughters to be raised 
beyond d. 

Throughout  iche analysis, I have supposed that the 
level of investment is determined by the mother. 
Identical conclusions follow if it is determined by the 
father. 

Discussion 

If the primary sex ratio is unity, but the fitness of 
sons and daughters depends differently on parental 
investment, it will in general be evolutionarily stable 
to invest differently in the two sexes. In particular 

i) If, for a given investment, the (non-frequency- 
dependent) probability of survival of males is greater 
than of females, the ESS is to invest more in females, 
and vice versa. 

ii) If the probabilities of survival of the two sexes 

are equal, but one sex has an additional frequency- 
dependent component of fitness, such that individuals 
receiving a greater than average investment are fitter, 
then the ESS is to invest more in that sex. 

iii) If the sex of offspring can be recognised by 
their parents after some investment d, then it may be 
evolutionarily stable to invest further only in some 
fraction r of the more expensive sex, and to abandon 
a fraction 1 - r  after an investment d. However, a 
numerical example suggests that d must be a very 
small fraction of total investment in an individual 
before this option will be favoured. 

Are there any data which bear on these pre- 
dictions? In fact, the theoret ical  investigation was 
stimulated by two sets of data. The first (Clutton- 
Brock et al., to be published) concerns the red deer, 
Cervus elephas. This is a polygynous species, in which 
the success of a male in holding a harem depends on 
body weight and condition. The variance of male 
reproductive success is greater than of females. There 
is no evidence for adaptive variation of the sex ratio. 
Females do invest more in sons than daughters early 
in life. Duration of gestation and birth weight  is 
greater for male calves. Males suckle more often and 
grow faster. Hinds which have reared a male calf in 
the previous season are nearly twice as likely to fail 
to produce a calf in the following year, apparently 
because they fail to conceive. Those which do con- 
ceive after rearing a male do so later. 

These data fit well with prediction (ii) above. 
There is evidence for frequency-dependent fitness in 
males, and of greater investment in them. However, 
as the authors point out, there is an alternative 
explanation. Female offspring remain in the same 
area as their mothers and compete with them for 
food, whereas males disperse. Therefore, although 
maternal investment is often greater in sons during 
the first two years, this may be counterbalanced by 
greater investment in daughters later on. This re- 
sembles the explanation by Clark (1978) of the male- 
biassed sex ratio in Galagos, although she proposes 
that daughters compete with each other rather than 
with their mothers. This in turn resembles Hamilton's 
(1967) explanation of female-biassed sex ratios arising 
because of local mate competition. The data do not 
enable us to distinguish between these hypotheses. 

The second data set was that of Dittus (1979) on 
the Toque monkey, Macaca s. sinica. Infant and 
juvenile mortality is substantially higher in females 
than males; this results mainly from behavioural 
interactions which limit access to food. Male mor- 
tality is higher in young adults at the time of dis- 
persal. There is no evidence that the variance of repro- 
ductive success is greater in males, but it probably is 
so. Nor  is it clear that the higher female mortality 
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can properly be assigned to a lack of 'parental  invest- 
ment'. The picture is therefore less clear than in the 
red deer. An alternative explanation is again possible, 
since females remain in the troop and continue to 
compete with their mothers and sisters, whereas 
males disperse. 

I know of no data to suggest that some fraction of 
the more expensive sex is abandoned early in life 
(prediction iii). This is a selectively favoured option 
only if recognition is very early. In mammals it would 
imply recognition before birth and selective resorb- 
tion or abortion; in birds it would imply recognition 
at or soon after hatching. 

If differential parental investment is observed, the 
main problem is to distinguish between the hy- 
pothesis proposed here, and the hypothesis that off- 
spring are competing for resources with their parents 
or each other. Ideally, we need to examine polyg- 
ynous species in which either there is no sex differ- 
ence in dispersal, or in which femaIes disperse more. 
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