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Abstract. The problem of structural isolation from ground transmitted vibrations by open or infilled trenches under conditions 
of plane strain is numerically studied. The soil medium is assumed to be linear elastic or viscoelastic, homogeneous and 
isotropic. Horizontally propagating Rayleigh waves or waves generated by the motion of a rigid foundation or by surface 
blasting are considered in this work. The formulation and solution of the problem is accomplished by the boundary element 
method in the frequency domain for harmonic disturbances or in conjunction with Laplace transform for transient 
disturbances. The proposed method, which requires a discretisation of only the trench perimeter, the soil-foundation interface 
and some portion of the free soil surface on either side of the trench appears to be better than either finite element or finite 
difference techniques. Some parametric studies are also conducted to assess the importance of the various geometrical, material 
and dynamic input parameters and provide useful guidelines to the design engineer. 

1 Introduction 

Vibration isolation of  structures from ground transmitted waves generated by machines, traffic or 
blasting is a very important engineering problem, especially in densely populated areas or in cases 
where the structure houses sensitive instruments. Vibration isolation of  an active or passive type is 
accomplished by barriers which diffract the surface waves radiated from the vibration source and 
sufficiently reduce their amplitude. These barriers may be trenches (open or filled with bentonite or 
concrete), sheet piles, or a row of solid or tubular piles. 

Barkan (1962) and Dolling (1965) were the first to report on some field investigations for studying 
the effectiveness of  wave barriers, while these authors as well as Neumeuer (1963) and McNeill, 
Margason and Babcock (1965) also described some successful applications of vibration isolation. The 
most comprehensive work on the vibration isolation problem was done by Woods (1967, 1968), 
Richart, Hall and Woods (1970) and Dolling (1970a, b) who performed extensive field experiments to 
study the effectiveness of  open trenches as Rayleigh wave barriers and provide design recommen- 
dations. Some years later, Woods, Barnett and Sagesser (I 974), utilizing holographic interferometry, 
performed model dynamic tests to study the Rayleigh wave screening effectiveness of  several types of  
rows of  cylindrical obstructions or piles. Use of  piles in cases of  long Rayleigh wavelengths is the only 
practical solution because construction of  very deep trenches required for this kind of  waves is 
impractical. Further experimental (laboratory) studies on the use of  piles as isolation barriers were 
also done by Liao and Sangrey (1978). 

The analytical treatment of  the problem of vibration isolation by wave barriers in the framework 
of  linear elastodynamics is based on the theory of  wave diffraction. The text of Pao and Mow (1973) 
describes all the analytical work on wave diffraction up to 1972. One can mention here Hudson (1967) 
who obtained an approximate solution for the scattering of  Rayleigh waves by a surface obstacle; 
Knopoff  (1959a, b), Mal and Knopoff  (1975), Pao and Mow (1963), Thau and Pao (1966) who 
studied wave diffraction by spherical, rectangular and parabolic obstacles; Trifunac (1973), Wong 
and Trifunac (1974), Mei and Foda (1979) who studied the scattering of  SH waves in a half-space with 
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a semicylindrical, semielliptical canyon and simple overground structures, respectively; Thau and 
Umek (1973, 1974), Dravinski and Thau (1976a, b) who studied the diffraction of elastic waves by 
rigid embedded rectangular foundations under conditions of plane strain and Luco (1969, 1976), 
Luco, Wong and Trifunac (1975) who studied the dynamic behaviour of cylindrical and spherical 
footings embedded in an elastic half-space. Recently, Mendelsohn, Achenbach and Keer (1980) and 
Angel and Achenbach (1984) treated the scattering of elastic P, SV and Rayleigh waves by surface- 
breaking cracks in a half-plane and a half-space, respectively; Avil6s and S/mchez-Sesma (1983) 
determined the effectiveness of a row of rigid piles as barriers for elastic SH, P and SVwaves and Lee 
(1982) studied the diffraction of plane elastic waves by a semispherical canyon. 

Analytical solutions of wave diffraction problems are confined to simple geometries and idealized 
conditions. It is apparent that more realistic problems of diffraction of elastic waves in a half-space 
with barriers involving complex geometries can only be solved numerically. Utilising perturbation ex- 
pansions and the Finite Difference Method (FDM) in both space and time domains in conjunction 
with a special boundary treatment Aboudi (1971, 1973) was able to obtain approximate solutions to 
problems of Rayleigh wave diffraction in a ha l f  plane with a thin barrier. Recently, Fuyuki and 
Matsumoto (1980) employed the FDM in both the space and time domains in conjunction with 
nonreflecting boundaries to study in a two-dimensional context the effectiveness of trenches as 
Rayleigh, P, SV  and SH wave barriers. Wass (1972) was probably the first to study in the frequency 
domain the screening effect of the trenches on elastic surface waves by the Finite Element Method 
(FEM), as an application in his thesis. He especially considered the case of SH waves by using special 
finite elements taking into account the radiation condition. Haupt (1977, 1978a-c) and Segol, Lee and 
Abel (1978) also employed in the frequency domain special types of the FEM in two dimensions to 
perform extensive numerical studies on the amplitude reduction of Rayleigh waves by open or infilled 
trenches. Haupt (1977, 1978a-c) utilized the FEM in conjunction with substructuring and his concept 
of the influence matrix boundary condition and assumed elastic, homogeneous and isotropic soil 
conditions, concrete filled trenches and soil material and geometrical damping. Segol, Lee and Abel 
(1978) developed a FEM similar to that of Wass (1972) and considered nonhomogeneous (layered) 
soil and open or bentonite slurry filled trenches. May and Bolt (1982) were able to study the 
effectiveness of trenches as wave barriers by utilizing a special time domain FEM with absorbing 
boundary characteristics. Their soil model was a viscoelastic layered half-plane. As it is well known, 
Rayleigh waves are surface waves which decrease in amplitude more slowly than body waves and for 
these reasons are the most important waves to consider in any isolation attempt. Most of the 
aforementioned references involving numerical methods as well as the present work deal with 
Rayleigh waves. It was found in Fuyuki and Matsumoto (1980), Haupt (1977, 1978a-c), Segol, Lee 
and Abel (1978), May and Bolt (1982) that trench effectiveness as a Rayleigh wave barrier increases, in 
general, with its depth in agreement with the experimental findings of Woods and Richart (1967), 
Woods (1967, 1968), Richart, Hall and Woods (1970).There is however disagreement on the 
importance of the trench width which is found significant in Fuyuki and Matsumoto (1980), Haupt 
(1977, 1978a-c) and insignificant in Woods and Richart (1967), Woods (1967, 1968), Richart, Hall 
and Woods (1970) and Segol, Lee and Abel (1978). Both the FDM and the FEM present a basic 
disadvantage in dealing with wave propagation problems in soils in that they represent a semi-infinite 
medium by a finite size model. Remedies to this may be either a very large, and hence uneconomical 
mesh, or use of complicated non-reflecting boundaries [Wass (1972), Haupt (1977, 1978a-c), Segol, 
Lee and Abel (1978), May and Bolt (1982)], which are sometimes applicable only when the layered soil 
is supported on a rigid bedrock base (Wass 1972, Segol, Lee and Abel 1978). In addition, these 
methods badly simulate dynamic stress concentrations in problems of wave diffraction as it has been 
demonstrated by Manolis and Beskos (1981, 1983). It is obvious that a more accurate, reliable and 
economical method for solving vibration isolation problems is needed. 

The Boundary Element Method (BEM) which is employed in this paper for the study of the 
effectiveness of open or infilled trenches as wave barriers is free of these disadvantages as requiring 
only a small portion of the soil surface to be discretized and as taking automatically into account the 
radiation condition. Furthermore, it is a highly accurate and very efficient method, especially for 
vibration isolation problems where one is primarily interested in soil surface displacements. Various 
special forms of the BEM in the frequency domain have been employed for the solution of problems 
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involving the scattering of elastic waves by soil surface or subsurface topography. One can mention 
here among others, the works of Wong and Jennings (1975), Wong, Trifunac and Westermo (1977), 
Wong (1982), Sfinchez-Sesma and Rosenblueth (1979), Sfinchez-Sesma and Esquivel (1979), 
Dravinski (1980, 1982a-c), Chu, Askar and Cakmak (1982) for two-dimensional and the recent work 
of Sfinchez-Sesma (1983) for three-dimensional problems. Use of the direct BEM has also been 
employed for the solution of wave scattering by two- and three-dimensional rigid embedded 
foundations in the frequency domain by Dominguez (1978), Dominguez and Alarcon (1981) and in 
the time domain by Spyrakos and Beskos (1985) and Karabalis and Beskos (1985). The direct 
frequency domain BEM has also been utilized for the solution of wave scattering by two- and three- 
dimensional cavities by Kobayashi and Nishimura (1982) and Rizzo, Shippy and Rezayat (1985a, b), 
respectively. Very recently, an advanced BEM for both frequency and time domain elastodynamic 
analysis has been reported by Banerjee, Ahmad and Manolis (1986). 

In this paper the problem of structural isolation from ground-transmitted vibrations by open or 
infilled orthogonal trenches under conditions of plane strain is numerically studied by the direct BEM 
in the frequency domain for harmonic waves or in conjunction with Laplace transform for the case of 
transient disturbances. Actually the proposed methodology can deal with trenches of any arbitrary 
shape but it is applied here to rectangular ones which are usually preferred in practice. The soil 
material is assumed to be a linear elastic or viscoelastic, homogeneous and isotropic half-plane. The 
methodology utilized in this work has as its starting base the type of the BEM described by Manolis 
and Beskos (1981). For reasons of simplicity, without, however, jeopardizing accuracy, constant 
boundary elements and the infinite plane Green's function are utilized in this paper. Use of infinite 
space Green's function requires, of course, a discretisation of the free soil surface, which is restricted 
however, for all practical purposes, to a small finite portion of it. For this particular problem the 
surface discretisation is required anyhow because information on the free surface is primarily 
required. The idea of employing a half-plane Greens function which requires no free soil surface 
discretization was abandoned in view of its high complexity (Dravinski 1980). Horizontally 
propagating harmonic Rayleigh waves are considered first and their scattering pattern by open or 
infilled trenches is determined by the proposed method and compared against other numerical 
methods. Two characteristic practical problems involving passive and active isolation of waves 
produced by machine foundations by means of trenches are also studied and parametric studies are 
performed in conjunction with these problems to assess the importance of the various geometric, 
material and dynamic input parameters and develop design recommendations. Results are also 
presented for the case of a passive isolation problem involving a transient disturbance. This problem is 
handled with the aid of Laplace transform with respect to time and its solution requires the use of 
numerical Laplace transform inversion as discussed in Narayanan and Beskos (1982). The very 
recently published work of Emad and Manolis (1985) also treats the problem of passive vibration 
isolation by open trenches by employing the BEM in the frequency domain under conditions of plane 
strain in a manner very similar to the present one. However, that work assumes the disturbance to be 
just a harmonically varying with time vertical concentrated force and, in general, represents a short 
study of a limited scope. 

2 Treatment of plane elastodynamics by BEM 

The formulation and solution of the general transient elastodynamics problem by the BEM in 
conjunction with Laplace transform has been first presented by Cruse and Rizzo (1968) and Cruse 
(1968) and in an improved form by Manolis and Beskos (1981). It was shown in Manolis and Beskos 
(1981) that one can go form Laplace transform domain to the frequency domain by simply replacing 
the Laplace transform parameter s by ico, where o) is the circular frequency and i = 1/---1. Manolis and 
Beskos (1981) will be the basis of the development of the present boundary element methodology both 
in the frequency and the Laplace transform domain. 

Consider a homogeneous, isotropic and linear elastic body B with boundary S under con- 
ditions of plane strain. Its equation of motion under the assumptions of zero body forces is of 
the form 
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2 "" (c~ -c~)ui,ij + c2 u;,. = u;, (1) 

where ui (x, y, t) are the components of the displacement vector, indices i andj  correspond to Cartesian 
coordinates x and y, commas indicate differentiation with respect to these coordinates, dots indicate 
differentiation with respect to time t and summation over repeated indices is assumed. The cl and c2 in 
(1) are propagation velocities of compressional (P) and shear (S) waves, respectively and are given 
in terms of Lam6's elastic constants 2 and/~ and mass density Q of the material by 

• cZ~ = (2 + 2 #)/~,  c~ = #/~.  (2) 

The constitutive equation is of the form 

a,j = Q [(c 2 - 2 C2)Uk,k6ij + C 2 (U~j + Uj,~)], (3) 

where o-~j (x, y, t) are components of the stress tensor and 6~j is the Kronecker's delta. For the purpose 
of this paper, initial conditions are assumed to be zero, while the mixed type boundary conditions take 
the form 

Gijnj=tio(X,y,t); ( x ,y )~S ,  (4) 

u~=U~o(X,y, t); ( x , y ) ~ S .  (5) 

where nj stands for the outward unit normal vector component at the boundary S = S, + Su and t~o and 
Uio represent prescribed boundary values for the traction and displacement vectors, respectively. 

For time harmonic disturbances the solution of the problem is also time harmonic and one has 

(Tij ~" ~ i j e  imt , bl i = ~i eiC°t (6)' 

where co is the circular frequency and 8 o and ~7~ represent the stress and displacement amplitudes, 
respectively. Thus, Eqs. (1) and (3-5) take the following form in the frequency domain: 

( C2 - -  d )  ~li,ij Jr- C 2 Uj,ii -I- (D2aj = O, (7 )  

f f i j = Q [ ( C ~ - - 2  2 - 2 - Cz)Uk,k 6~; + c2 (u~j + aj,0], (8) 
ei; n; = ~o (x, y, o)); (x, y) s S, (9) 

ai=aio(X,y, co) ;  (x ,y)~S, .  (10) 

In order to solve the system of Eqs. (7-10) in the frequency domain by the BEM, use is made of the 
boundary integral equation (Manolis and Beskos 1981) 

½ a; (P) = - ~" ff,(a) ~ , (a ,  P) dS(a)  + j" {~ (O) uj, (O, P) dS(O) (1 I) 
s s 

which is valid for points P and Q lying on a smooth boundary curve S as shown in Fig. 1. In Eq. (11) 
Ui; and 7~; are the singular influence tensors (fundamental solution or Green's functions) for the 
infinite plane which are given in the frequency domain by Manolis and Beskos (1981): 

~n+l  

/ 
Fig. 1. Boundary  surface discretisation o f  a body B 
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(fij = (2rc0e~)-i (~p5 u _ ~r, ir.j) 

7"ij = (2r0- t { [(d q2/dr) - (qS/r)] [5 u (Sr/Sn) + r,jnj] 

- (2 d?/r) [njr,i - 2 r,ir,j (~r/Sn)] - 2 (dq~/dr) r,i r,j (~r/5n) 

+ [(c21/c 2) - 2 ]  [(d T/dr) - (dqS/dr) -(d~/r)]rinj} 

where 

(12) 

(13) 

= Ko (icor/c2) + (c2/ia~r) [1(1 (io)r/cz) - ( c2 /c l )K  1 (icor/cl)], 

d? = K2 (icor/Cz) - (c2/c~)K2 (io)r/cl), (14) 

with Ko() ,  Ks ( ) and K2( ) being the modified Bessel functions of the second kind of zero, first and 
second order, respectively, and r being the distance between the two boundary points P and Q. 

The solution of Eq. (11) is accomplished numerically. For this purpose the boundary S of the 
plane body B is discretized into a number of N, in general unequal, straight segments or boundary 
elements over which the stress and displacement vectors are assumed to be constant as shown in 
Fig. 1. Constant boundary elements are chosen in this work because of their simplicity and generally 
good performance in a variety of boundary element applications. In plane vibration isolation 
problems the boundary S to be discretized consists of the perimeter of the trench, the soil-foundation 
interface for the case of machine foundations and the free surface of the half-plane. Use of Green's 
functions defined for the half-plane do not, of course, require any discretisation of the free surface but 
they are complicated in form (Dravinski 1980). Besides, only a small portion of the free surface 
around the trench and the soil-foundation interface requires discretization in order to obtain very 
good results (Dominguez and Alarcon 1981) when use is made of the simple Green's functions given 
by (12)-(14) and the discretisation is needed anyhow because information on the surface is the 
primary unknown in this particular problem. Equation (11) can thus reduce in its discretized form to 
the matrix equation 

GTu - G U t  = 0, (15)  

where ~ and t are the displacement and traction vectors, respectively, in the frequency domain such 
that 

a = ( a a ,  ~2 , .  • . ,  a , , . . . ,  u u ) r ;  u , - ( u ,  , -  - x  u.)-Y r 

t = ( t l ,  t 2 , . . ,  t , , . . ,  tN) T; t ,  = (t x ,  tX) T 
(16) 

and GT and GU are square influence matrices of order N x N, where N is the total number of 
boundary elements, consisting of entries of the form 

S.+{ 
GTi)(m,n)= ~. L j ( Q , ,P , , ) dS ( Q) ,  

Sn ~. 

s,+~ (•7) 
GUij (m,n)= [. (7ij(Q,, Pm)dS(Q), 

S n - ,  2 

where, as shown in the Fig. 1, Pm and Q, are the midpoints of elements m and n, respectively, S, + ~ and 
S,_~ are the end points of the elements n, and m and n range from I to N. It should be noticed that in 
the vibration isolation problems treated in this paper only boundary quantities are involved and thus 
there is no need for the computation of internal displacements and stresses. When Q, 4: P,,, i.e., when 
r + 0 the integrals in (17) are regular and the integration is done numerically. A 7-point-Gauss- 
quadrature scheme (Stroud and Secrest •966) was used in this work. When on the other hand Q, 
approaches P,,, or r~0 ,  due to the fact that U u =0(lnr)  and Tij =O(1/r), the integrals in (17) are 
singular and are evaluated analytically. In both cases 6 and 8 term expansions of the Bessel functions 
for the small and large argument cases, respectively, were employed (Abramowitch and Stegun 1974). 
It is interesting to mention that for the singular case involving straight line elements, only diagonal 
terms of GU u are nonzero. Explicit expressions for the singular integrals of (•7) can be found in 
Dasgupta (1986). The use of two kinds of expansion for Bessel functions and the analytic treatment of 
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singular cases are the two major improvements over the integration methodology of Manolis and 
Beskos (1981), which considerably increased the accuracy of the computations. 

3 R a y l e i g h  w a v e  d i f f r a c t i o n  by  t r e n c h e s  

This section deals with simple problems of vibration isolation which require the determination of the 
effectiveness of open or infilled trenches as Rayleigh wave barriers. Plane harmonic Rayleigh waves 
are assumed to propagate horizontally in the half-plane and impinge on an open or infilled trench as 
shown in Fig. 2. One is basically interested in determining the right combination of geometrical and 
material properties of the trench as well as the right range of frequencies for which the presence of the 
trench results, through wave diffraction, in wave amplitude reduction in the region after the trench. In 
this problem of passive isolation the source of the Rayleigh waves is not known but it is assumed that 
the free-field Rayleigh wave motion is known and given in terms of its horizontal and vertical 
components of displacement u and v, respectively by, e.g., Richart, Hall and Woods (1970): 

U = U (X, y )  e i~°~, V = g(X, y )  e i~t (18)  

where 

~(x,y)=Ai -Ne-qr-~s2+N 2 e -sy e -iNx, 

2 qN 2 (19) 
g(x,y)-=AI-qe-qr-~s2+N 2 e-Sy] e -iux, 

q=N[1 --(eR/Cl)2] m, s = N [ I  --(CR/C2)2] m, 
(20) 

N= O)/CR = 2~/LR, CR ~" K C  2 

K6-8K4+(24-16aZ)KZ+16(a2-1)=O, a2 =/ t / (2+ 2#) 

with CR and LR being the Rayleigh wave velocity and wave length, respectively, and A being an 
arbitrary constant. 

Material damping of the soil can be taken into account in the above equations with the aid of the 
Rayleigh wave attenuation coefficient eR, which is related to the logarithmic decrement 6 by the 
relationship (Richart, Hall and Woods 1970) 

C~ = LR~ R . (21) 

Thus, the presence of material damping is reflected in Eq. (18) by replacing the exponent io~t by 
(ic0t - ~RX) or more conventionally by leaving Eqs. (18) as they are and replacing the exponent - iNx 
in Eqs. (19) by --(iN+~R)X. 

Consider the case of the open trench first. The displacement components (19) correspond in a 
discretization form of the problem to the incident displacement vector field u ~ which is connected with 
the total and scattered due to the presence of a trench, displacement vector fields u and u s, respectively, 
by the relation 

u = n i + u s (22)  

A relation similar to (22) holds true for the traction vectors along the boundary surface S, i.e., 

t = t i + t s (23)  

where t, t i and t ~ are the total, incident and scattered traction vectors, respectively. Formulation of the 
wave scattered problem in terms of the scattered field is accomplished by writing the boundary 
integral Eq. (15) in the form 

{GT~I GT~2"] {~}']={GU~I GU~2"] (_t}'] (24) 
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Yt_. 
× 

R t 

Fig. 2. Rayleigh wave diffraction by a trench 

where the superscripts g and s stand for "ground" and "scattered", respectively, and the subscripts f 
and t correspond to quantities of the free soil surface Sf and the trench perimeter St, respectively, 
comprising the total boundary S, as shown in Fig. 2. The boundary conditions of the problem read 

~ = 0  on Sf (25) 

f = 0  on S=Sf+St. (26) 

Use of Eqs. (9) and (8) permits one to express ~ in terms of the vector ~i given by Eq. (19) as 

i i = A a  i (27 )  

where A is a known coefficient matrix and consequently boundary condition (26), on account of (23) 
and (27), becomes 

t - ~ = - t { = - A ~  on St. (28) 

Thus, the problem consists of solving for ~ anda~ Eq. (24) subject to the conditions (25) and (28). 
Knowledge of the vectors ~i and ~s allows one to determine ~ from (22) along the boundary S and from 
there to compute the ratio of the displacement at a boundary point after the trench over the 
displacement at the same point in the absence of the trench which obviously corresponds to the free 
field incident motion. 

Consider now the case of the infilled trench for which perfect bonding is assumed between the half- 
plane soil medium and the infill material. Equations of equilibrium and compatibility along the 
trench-infill interface St take the form 

tct = - - t t  ( 2 9 )  

act  = a t (30) 

where tc and tic are the traction and displacement vectors of the infill material. The above equations 
can be rewritten with the aid of (22) and (23) in terms of the incident and scattered field as 

= ( 3 1 )  

- -  - - i  - - s  
Uct = ut + ut (32 )  

where zi -i t t and ut are the tractions and displacement vectors of the input motion, which can be obtained 
as explained in the case of the open trench. The boundary integral Eq. (15) can now be applied for 
both the half-plane medium and result in Eq. (24) and the infill medium to receive the equation 

GT~, GT~2/\ff~o/ \ G U ~  GU~2J co (33) 

where the index c stands for infi11 medium and Uco and i-co are displacement and traction vectors on the 
top boundary surface So of the infill, as shown in Fig. 2. The boundary conditions of this problem read 

t~=0, ~o=0 (34) 



50 Computational Mechanics 1 (1986) 

and thus use of(31), (32) and (34) reduces the system of Eqs. (24) and (33) to the single matrix equation 

GT~, GT~/ ~'1 ~c / K, ' (35) 

where K~ and K2 are given by 

K1 = _ c - - i  c - i  GTll ut - GUll t t ,  

K2 c - i  c i = --  G T 1 2 u t  - G U 2 1  tt .  (36) 

Solution of Eq. (35) provides the displacements ~} which are needed for assessing the screening 
effectiveness of the infilled trench. 

4 Passive and active vibration isolation of foundations 

In this section the two basic practical engineering problems of passive and active vibration isolation of 
rigid massive machine foundations subjected to harmonically varying with time forces are studied 
with the aid of the proposed methodology. The amplitude reduction of the waves generated by the 
motion of the foundation is accomplished again by open or infilled trenches as shown in Figs. 3 and 4. 

It has been proven by Miller and Pursey (1955) that two-thirds of the total energy generated by a 
vertically vibrating footing on a half-space is transmitted away from the source in the form of 
Rayleigh waves. These waves are also characterized by a much more slower amplitude attenuation 
with distance than body waves (Richart, Hall and Woods 1970). These two facts indicate that 
Rayleigh waves are the most important ones in problems of vibration isolation of foundations. The 
proposed method, however, unlike many of the previous ones, takes into account all the waves 
generated by the moving footing and not just Rayleigh waves, exactly because it treats the 
foundation-trench system as a whole. 

The proposed methodology assumes linear elastic material behaviour. It is well known, however, 
that internal or material damping in soils plays an important role in reducing the amplitude of 
vibrating soil media. If the soil is assumed to be a linear viscoelastic material subject to harmonic 
vibrations one can use the elastic formulation with the elastic moduli 2 and/z being replaced by the 
complex moduli 

2"=),(1 + i/~1), #* = p(1 +i~2 ) (37) 

yf 

~--w -I ~2-' Fig. 3. Passive vibrat ion isolation of a machine foundation by open or 
infilled trenches 

_h_ I @ - T  _L - - I -  - - I q  .L I -  
I 

Fig. 4. Active vibration isolation of a machine foundation by open or 
infilled trenches 
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where the damping factors fll and fie are, in general, functions of frequency and are usually assumed to 
be equal, i.e., fll = f12 = ft. The logarithmic decrement ~ is connected with fl through the relationship 
(Richart, Hall and Woods 1970) 

(38) 

The damping factors fll and f12 are independent of frequency for the case of the constant hysteretic soil 
model which is usually employed in applications. 

Consider the passive vibration isolation problem associated with the open trench case, 
schematically described by Fig. 3. The source of disturbance is a rigid, massive, surface strip 
foundation in perfect bonding with the soil which is subjected to the system of forces Ix,  Pr and 
moment M given by 

Px= ff xe i~t , Py= ff ye i°~t , M = Jlle i~°t . (39) 

It should be noticed that the methodology developed in this section is by no means restricted to the 
above kind of foundation. Flexible embedded foundations with or without mass under relaxed or 
nonrelaxed boundary conditions can also be treated by the proposed methodology after some 
modifications and additions. The motion of the foundation of Fig. 3 generates surface waves which 
are modified in amplitude by an open trench. The present methodology is capable of determining the 
motion after the trench, so that the designer can be able to determine the appropriate combination of 
the geometrical parameters of the trench and frequency range for achieving amplitude reduction of a 
desirable degree. 

The whole dynamic system of Fig. 3 consists of two parts, the soil half-plane with the trench and 
the rigid foundation, which are related to each other through the compatibility and equilibrium 
equations at their interface. A constant boundary element discretization is adopted for the soil, while 
a discretisation of the rigid foundation into a number of elements having a one-to-one correspon- 
dence with the soil elements at the contact surface, as shown in Fig. 3, is also assumed. The matrix Eq. 
(15) for the soil medium takes the form 

where the subscript f refers to quantities of  the free soil surface including the trench boundary, while 
the subscript r refers to quantities at the soil-foundation interface. Because the free soil surface is free 
of tractions one has 

(41) 

For a rigid foundation the contact area displacements, as a result of  compatibility, are given by 

a,x (x, o) = & ,  ar,(X, o) = 3 ,  - ax, (42) 

where zJx and zly correspond to the displacements at the center of  the foundation, while ~ is the small 
amplitude of foundation rotation about the axis z passing through the foundation center and being 
perpendicular to the x-y plane. Equilibrium of forces acting on the foundation takes the form 

k = l  

Py= -rnco2Zy + ~ lk6,~ (43) 
k = l  

k Tk =k M =  - - J ( D 2~  + .x- l Oyy, 
k = l  

where m and J are the mass and mass moment of inertia about the z axis of the foundation, 
respectively, l, represents the length of the k-th foundation element and -k _ .~, -k _ =7, O-y~ -- t~, ayy -- ty are the 
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interface tractions of the k-th foundation element. Equations (42) and (43) can be written in a compact 
matrix form as 

~r = CA (44) 

----- ~ -q -  at- r . (45) 

Expanding (44) and (45) so as to include displacements and stress for all the boundary elements and 
taking into account (41) one can receive 

(U~)=(  C : )  (~f) (46) 

where I is the identity matrix. Elimination of (gr, u-f)r and (tr, fO r between Eqs. (40, 46) and (47) results 
in the equation 

( ~ ) = [ W ]  ( ~ )  (48) 

with GU g and GT g being the complete square matrices of Eq. (40) with elements GU~j and 
GT,gj; i,j= 1,2, respectively. Knowledge of the vector fif permits one to study the change in dis- 
placement amplitude as he considers soil surface points before and after the trench. 

The problem of the active vibration isolation of a machine foundation by open trenches as 
depicted in Fig. 4 is mathematically the same as the passive one and can be treated in exactly the same 
way. 

The case of the infilled trench, for both the passive and active vibration isolation problems, can be 
analysed by a procedure similar to the one used for the open trench in the passive isolation problem. 
One has simply to supplement the equations for the open trench with one additional boundary 
element equation for the infill material in conjunction with the appropriate equilibrium and 
compatibility equations at the soil-infill interface and the traction-free boundary condition at the free 
top surface of the infill material. For more details the interested reader is advised to consult Dasgupta 
(1986) and Beskos, Dasgupta and Vardoulakis (1985). 

5 Isolation of  waves due to transient sources of  disturbance 

When the ground transmitted waves that have to be isolated are produced by transient dynamic 
disturbances such as blasting, they are themselves transient and the previous analysis developed for 
harmonic waves is not capable of handling them. The vibration isolation problem involving transient 
surface waves is treated in this section with the BEM in conjunction with Laplace transform with 
respect to time by following the general procedure described in Manolis and Beskos (1981). Thus the 
problem is formulated in the Laplace transform domain and solved there by the BEM for a sequence 
of values of the Laplace transform parameter to obtain the transformed solution. The time response 
of the system is finally obtained by a numerical inversion of the transformed solution. If the wave 
generating disturbance is a complicated function of time its Laplace transform is computed 
numerically. Both direct and inverse numerical Laplace transforms are computed with aid of 
Durbin's (1974) algorithms as described in Narayanan and Beskos (1982). The formulation of the 
vibration isolation problem by the BEM in the Laplace transform domain under zero initial 
conditions can be obtained directly from the frequency domain formulations of the previous sections 
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Fig. 5. Isolation of transient surface waves by open or infilled 
trenches 

by simply replacing co by s / i=- i s ,  where i=]/~]-1 and s is the Laplace transform parameter 
appearing in the definition 

o o  

f (x ,  y, s) = ~ f (x ,  y, t) e-st dt (50) 
o 

of the Laplace transform f (x ,  y, s) with respect to time of a function f (x ,  y, t). A typical vibration 
isolation problem dealing with transient waves is chematically shown in Fig. 5 and is similar to one 
dealing with waves and depicted in Fig. 3. The basic equation here is (40) where, of  course, overbars 
indicate now Laplace transform quantities, subject to the boundary conditions 

t-f=0 

t-r = ITo f(s) (51) 

where I is the unit vector andf(s)  represent the Laplace transformed time variation of the disturbance 
which, in general, is computed numerically. Thus, the problem consists of solving (40) for the two 
unknown vectors fif and ~r. Once ~-f is known for a sequence of values of s, u(t)f can be obtained by 
numerical inversion and values of the surface displacements (usually the maximum ones) before and 
after the trench can be compared to assess the effectiveness of the trench as a wave barrier. 

6 Numerical examples 

The preceding theoretical developments are illustrated in this section by means of some numerical 
examples. 

Example 1 : The proposed methodology for the study of Rayleigh wave diffraction by trenches is 
employed here for the case of a semi-circular open trench for which there are numerical results 
available due to Wong (1982) to serve as a mean for assessing its accuracy. This is a case where the 
Rayleigh wave input is very close to the trench so that no material damping of the waves is taken into 
account. Figure 6 provides the horizontal and vertical surface amplitude ux and uy, respectively, as a 
function of the dimensionless distance x/R, where R is the radius of the trench, for the dimensionless 
frequency q=o~R/~e2 =0.5 and for the case for which G = I ,  Q= 1, v= 1/3 and R = 4 .  The almost 
excellent agreement between the results of  the two methods as depicted in Fig. 6 is apparent. The 
boundary element discretization consisted of 64 elements and the CPU time on a CRAY-1 computer 
was 15.62 s. 

Example 2: This is also a test example for the proposed methodology and deals with the Rayleigh 
wave diffraction by a rectangular trench of depth t and width b infilled with concrete for which there 
are numerical results available due to Haupt (1977). In this case the Rayleigh wave input is applied at a 
distance of 5 LR from the trench and soil material damping is taken into account in acordance with 
(21). The Rayleigh wave attenuation coefficient ~R = 8.04" 10-3 cm-1. The half-space soil medium is 
characterized by a Young's Modulus Es = 46.12 MN/m 2, a Poisson's ratio vs = 1/4, a weight density 
~ = 1 7 . 2 K N / m  3 and a wavelength LR=30cm, so that the damping logarithmic decrement 
6~ = aRLR. The corresponding quantities for the concrete filling are Ec = 34.3 E~, vc--= v,, ~¢ = 1.37 ~ 
and 5~ = 5 5~. Figure 7 depicts the normalized vertical amplitude A (~) at the surface of the half-plane 
as a function of the dimensionless distance ~ = X/LR. The normalized amplitude A (~) is defined as the 
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Fig. 6a and b. Diffraction of Rayleigh waves 
by an open semi-circular trench 

ratio of the amplitude when the trench is present to the amplitude in the absence of the trench. 
Figure 7 covers two cases characterized by the normalized parameters T=  t/LR and B = b/LR which 
take the values shown there. The agreement between the two methods is excellent for points to the left 
of the trench and just good for the points to the right of the trench. In view of the facts that the present 
method has given excellent results in the previous example and that Haupt's (1977) method is 
characterized by high complexity, one is inclined to trust the results of the present method more than 
those of Haupt (1977). In any case, Fig. 7 clearly shows that for the values of the parameters used 
there is a significant amplitude reduction due to the trench varying between A = 0.20 to A = 0.40. If 
one adopts values of A _< 0.25 as an indication of successful isolation (Richart, Hall and Woods 1970) 
then the present case is very close to be considered as corresponding to a successful design. The CPU 
time on CRAY-1 machine and for 145 boundary elements was 26.07 s. 

Example 3: The passive vibration isolation problem of Fig. 3 is studied here by the proposed 
methodology. A rigid footing of width w and mass m is subjected to a vertical harmonic load 
Py= Poe i~t and its motion generates surface waves which are diffracted by a rectangular trench of 
depth t and width b which is at a distance l from the footing. The trench may be open or infilled with 
concrete. The material properties of the soil medium are as follows: shear modulus Gs = 132 MN/m 2, 
Poisson's ratio vs = 0.25, specific weight ~ = 17.5 N/m a, hysteretic damping coefficient fl~ = 6 % and 
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Fig. 7a and b. Diffraction of Rayleigh 
waves by a concrete filled rectangular 
trench 

velocity of Rayleigh waves Cg -- 250 m/s. The material properties of the infill medium (concrete) on 
the other hand are related to those of the soil as follows: shear modulus Gc = 34.29 G~, Poisson's ratio 
vc=vs, specific weight 0~=1.37~s, hysteretic damping coefficient /3~=5fl~ and Rayleigh wave 
velocity c~ = 5 c~. The magnitude of the applied force is Po = 1 KN/m 2 and its operational frequency 
is 50 Hz. 

The screening effectiveness of the trench is measured by the amplitude reduction factor AR defined 
as the average normalized vertical surface amplitude behind the trench over the length l; =/2 - (b/2), 
i.e., 

AR = (1/l~) j" A (4) d~. (52) 

The foundation with dimensions w x d=2.50 x0 .5m is made of concrete and has a weight of  
W= 765 KN/m 2. A numerical study was first conducted to assess the effect of  the foundation mass 
on the screening effectiveness of  the trench and the factor AR was computed for zero and non zero 
mass for the sequence of values (2.5, 5.0, 20.0 and 50.0) of the parameter L=l/LR and for 
T=t/LR=I.0 and B=b/LR=0.4. The results of  this study (Dasgupta 1986) indicated that the 
maximum difference between the values Of AR for zero and nonzero foundation mass was only 1.5 %. 
The presence of mass, however, has a considerable effect on the foundation displacement as the 
foundation is coming closer to the trench. Because the isolation effect, and not the foundation 
response, is the aspect of  interest in this work the mass is neglected in the numerical computations 
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pertaining to the parametric studies. Figures 8 and 9 show the normalized vertical surface amplitude 
A = A (4) where ~ = X/LR for the cases of the open trench and concrete filled trench respectively, for 
T =  1.0, B = O. 1, L = 5. O, L1 = I i /LR = 2. O, L2 = 12/LR = 5.0, 17 = W/LR = 0.5, W = 765 KN/m. In both 
Figs. 8 and 9 there is amplitude reduction, but while AR _~0.25 for the open trench, AR~0.75 for the 
infilled trench for surface points after the trench. This clearly indicates that, for the parameters 
chosen, the open trench performs much better than the concrete filled trench. 

In an effort to assess the screening effectiveness of both kinds of  trenches, in a general way, 
parametric studies were conducted with zero foundation mass by keeping constant the parameters 
L1, L2 and 17 and varying the parameters T, B and L. The results of these studies are depicted in 
Figs. 10-14, which provide the value of  the amplitude reduction factor AR as a function of T, B and L. 
It is apparent from Fig. 10 that for an open trench, AR shows a considerable decrease for increasing 
values of T in a manner essentially independent of B and with a rate of decrease which is very high in 
the range 0.1 _< T<_ 0.5. Figure 1 I, however, corresponding to an infilled trench, shows a much slower 
reduction of AR with T which considerably increases for high values of B. Thus the present findings 
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resolve the problem of the significance of the trench width and prove that it strongly affects the 
screening of waves for infilled trenches only. Figure 12, dealing with an open trench, indicates a slight 
decrease of Ag with L for all values of Tand  this decrease becomes more significant for higher values 
of T. Figures 13 and 14 for the infilled trench show essentially no change of AR with L for various 
values of B and T; significant reduction of AR is noticed, however, for all values of L for increasing 
values of B and T, thereby confirming Haupt's (1977) results that AR decreases with increasing values 
of the area of the trench BT. From the design point of  view, for a successful isolation A~_< 0.25 
(Richart, Hall and Woods 1970). This requirement is achieved for T_>0.6 for open and BT>_ 1.5 
for concrete filled trenches as it can be deduced from the Figs. 10-14 and these results are in 
agreement with Woods (1968), Haupt (1977) and Segol, Lee and Abel (1978). 
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Example 4: The case of  active vibration isolation of  a rigid foundat ion  by means of  two open trenches 
symmetrically placed on either side of  the foundat ion,  as shown in Fig. 5, is considered here. With  
the material properties and load of  the previous example and with T =  1.0, B =  0.1, L=I/LR = 1.0 
and L1 = ll/LR = 5.0, the proposed methodology was employed to construct Fig. 15, which provides 
A = A (~) and indicates that  the selected parameters result in a successful vibration isolation design. 

Example 5: The diffraction by an open trench of  waves generated by a transient surface load as shown 
in Fig. 4 is studied in this example. The material properties of  the soil are the same as those in example 
3, while To = 1 MPa,  to = 15 ms and initial conditions are assumed to be zero. Thus, the dynamic load 
T(t) and its Laplace t ransform iP(s), for 0 < t < to, have the form 

T(t) = (to - O/to, T(s) = [(e -St° - 1)to s2] + (l/s). (53) 
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The geometry of the problem, with reference Fig. 4, consists of  d l =  0.06 m, d2 = d3 = 2.0 m, b = 0.5 m, 
xl--1.06 m, x2 =0.98 m and variable d. 

Figures 16, a and b, provide the vertical components of the displacement versus time at the 
points I (before the trench) and 2 (after the trench), respecitvely, for the cases without and with the 
trench and for three different values of the trench depth d. It is apparent that the presence of the trench 
slightly amplifies the maximum response at both points 1 and 2 indicating that for this particular 
example the vibration isolation effectiveness is slightly negative. More extensive studies involving 
different kinds of transient dynamic disturbances and geometry are necessary in order to reach 
definite conclusions concerning the trench effectiveness as a transient wave barrier. These studies are 
presently being conducted by the authors. For the above particular example for a total response time 
of 0.048 s and 60 time steps or resolutions for the numerical inversion of Laplace transform, the CP 



60 

0.02 [ 

Computational Mechanics 1 (1986) 

0.00, 

o.o2 
E 
E @ 
(3 

~0.0l ,  
q') 

O 

0.06 

0.08 

a &10 
0.02 

- -  without trench 
with trench .b =0.Lm 

o d =0.5m 
o d =l .0m 
, d = 1 . 5  m 

0:00 

--EEEoo 0.02 

o.o~ 
.m 
123 

0.06 

- -  without trench 
with trench b:O.4m 

~ d =0.Sin 
o o d : l . 0 m  

. ~ d= l . 5m 

I I I I 

0.08 

b O. 10(~.0 1.0 2.0 3.0 4.0 5.0 
Time (10 -2 s ) 

Fig. 16a and b. Vertical displace- 
ment versus time for the transient 
vibration isolation problem of ex- 
ample 5 for, a point land b point 2 

time spent on a CRAY-I  computer was 103.87 s for the case without trench involving 35 boundary 
elements and 221.81 s for the case with a trench of  depth 1.0 m involving 51 boundary elements. 

7 Conclusions 

The preceding discussions can lead to the following conclusions: 
1) A numerical methodology based on the frequency domain BEM has been developed for the 

very accurate and efficient treatment of vibration isolation problems under conditions of plane strain 
and the assumption of  homogeneous linear elastic or viscoelastic soil medium. 
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2) Both  active and  passive v ibra t ion  isolat ion by open  or  infilled trenches in the presence of  
ha rmon ic  or t rans ient  dynamic  dis turbances  have  been considered and  per t inent  numer ica l  examples  
have  been solved to i l lustrate the p roposed  methodo logy .  

3) Pa ramet r i c  studies have  been conduc ted  to assess the impor t ance  o f  the var ious  geometr ical ,  
mater ia l  and  dynamic  input  pa r ame te r s  on the t rench effectiveness as a wave barr ier  and  p rov ide  
some design guides to the engineer. Thus,  it was found  for  ha rmon ic  d is turbances  that  the screening is 
effective for  T >  0.6 for  open  and  BT>_ 1.50 for  concrete  filled rec tangular  trenches, where T =  t/LR 
and B = b/LR with t and  b being the depth  and  width o f  the trench,  respectively, and  LR being the 
Rayle igh wave length. In general,  open  trenches are m o r e  effective than  infilled t renches but  they 
present  wall instabil i ty problems.  

4) M o r e  research work  is needed in the area  of  v ibra t ion  isola t ion utilizing more  realistic 
model l ing capab le  o f  taking into account  p rob l em three-dimensional i ty ,  soil layering and  aniso t ropy.  
The B E M  has  the poten t ia l  to handle  in an effective m a n n e r  all these p rob lems  as it will be shown by 
the au thors  in subsequent  publ icat ions.  
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