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1. Introduction 
The purpose of this note is to describe a class of exact solutions of the magneto- 

hydrodynamic equations which are applicable to various flow configurations. 
Some examples of these solutions have been worked out in some detail  by  PETER 
GOTTLIEB; his solutions a n d  some others will be reported in future communi- 
cations. 

The class of solutions considered here is of the " l a y e r - t y p e " ,  including many  
classical exact solutions of the Navier-Stokes equations as special cases; e.g., 

the flow near a stagnation point in the two-dimensional and the axially symmetr i -  
cal cases, and the flow of a viscous fluid over a rotat ing disc. I t  represents a 
further generalization of a class of solutions discussed by  the present writer for 
the steady or unsteady motion of an ordinary viscous fluid.  

2. Basic equations 
For a uniform electrically conducting incompressible fluid, the equations of 

magneto-hydrodynamics are as follows*: 

(2.1) 0 vi Ovi ,~ OHi = OH 0 vk _ 
Ot + v i  Ox i 4nO Hi  Oxj - -  Ox--7 + r A y ~  bxk - - 0 ;  

OHi v. OHi - -  T4. Ovi = ~  Zj H i  ' OHk 
(2.2) 0, + 1 Ox i --1 Ox i Ox k - - 0 .  

In these equations, xi (i = 0, t, 2) are the space coordinates, t is the time, v i are 
the components of velocity, H i are the components of the magnetic field. The 
properties of the fluid are characterized by  the density O, the kinematic viscosity v, 
the magnetic permeabil i ty/~ and the electric conductivity e, in terms of which 
we define the magnetic diffusivity 

(2.3) ~ = ( 4 ~ . ) - * .  

The q u a n t i t y / / i s  essentially the total  pressure and is defined 

(2.4) O i l  = p + ~ n * / 8 ~ ,  

where p is the ordinary pressure of the fluid. The summation convention is used 
throughout this paper. 

* C/. COWLINO (1957), p. 93 
Arch. Rational  Mech. Anal., Vol. I 27 
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We seek a class of solutions in which the xo-axis occupies a special position. 
We allow the veloci ty field, the magnet ic  field, and the pressure gradient  to 
depend on the coordinate x o and the t ime t in a fairly general manner,  bu t  only 
l inearly on the two other coordinates x~ (~ = t, 2). To be more specific, we assume 

(2.5) v0 = Uo(Xo, t) 
v~, = u~, (Xo, 0 + u~,# (Xo, t) x a, 

H o = h 0 (x o, t) 

H~ = h~ (Xo, t) + h ~  (Xo, t) x~, 
(2.6) 

and  

(2.7) 

Since we mus t  have 

OH 
exo - ~s~ (xo t) 

OH - a~, (Xo, t) + oa~p (Xo, t) x~. Ox~x 

(2.8) e ~  ~ o  = ~ ~ L ~ J '  

the functions ~ ,  (Xo, t) and ~ ,~  (x o, t) mus t  actually be independent of x o. The 
function H then takes on the form 

11 = ~ ~ ( t )  x~ x~+  ~ ( t )  x~+ ~(xo,  t), 
(2.9) 

a~o = ~o-. 

3. Equations in two independent variables 
The part icular  choice of the form of the solutions is made so tha t  the other  

terms in the basic equations (2.t) and (2.2) are also linear in the variables x~ 
aH~ 

( ~ =  t ,  2). Consider, ,for example, v i ~ .  By using (2.5) and (2.6), it is easily 

seen tha t  

(3.]) V" ~Hi clio 
' axi = v~ 

and 

(3.2) 

Thus, these basic equations can be satisfied by  comparing coefficients of x x and 
x2 and terms indeperident of them. 

For  convenience of reference, we list below the formulae useful for such reduc- 
tions. Each of the vectors vi and H i is of the form 

(L3) {Ai} : {ao, a ~ +  a~a xa}, 

where ao, a~, a~a are functions of x o and t. The vec tor .SA i /a t  is then of the same 
form. In fact 

J~A~/, ~aao ea~ ~a~ 
(}.4) I T t  J" = [ at ' b-t + T xOJ " 
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Also, the Laplacian of A i is of the form 

(3.5) { A A i } = I o ' %  O~a*` a'a*`# 1 

Furthermore, if B i is another vector of the same form as  A i ,  then 

(3.6) Ci = B i aAi 
Ox~. 

is also of the same form; indeed, 

aao 1~ Oa*` co=- a=.'  c * ` = ~ ~  + a*`vbv' 
(3.7) 

b aa*`# c~,# = o ~ + a~,~, b:,#. 

With.the help of these formulae, it is not difficult to write down the equations 
for the functions of x 0 and t defined in (2.5) and (2,6). 

The equation of continuity in (2.t) is satisfied if 

aua 
(I) Ox ~ + uaa = O. 

Similarly, the condition for the absence of free magnetic charges is satisfied if 

(II) aho 
axe ~- h## = 0. 

The equations of motion (2.t) lead to 

(Il ia)  Ou. . au. a*u o t, [h Oho) 
~ i -  - f  Uo ~do - v a,,l . . . .  % + T U d  l o --~01, 

(IIIb) au*` Ou~, 02u*` ~- --ale ,+ # [h ah*` ) 

(IIIc) Ouo,# au*` a O*u~'a + J P - - [ h  ,h~,# + h,,vh~,#) 
--Ot--J2U~ + u*`z'Uv#--V ax~ = --OYa# 4z~O ~ ~ 

Similarly, the equations (2.2) for the change of magnetic field lead to 

(IVa) aho aho O*ho aUo 
at +u~  ' = h ~  axe '  

(IVb) Ohm, Oh*̀  a~h*  ̀= h au*` 
at + u~ Yf~,o + h*`v U~' - -  ~ ~ ~ g~o + u~ h"' 

(IVc) ah,,# oh*`# + ,  02h*̀ # Ou~# 
o--7- -+ Uo o.% n~,:, u:,# - ~ ~ = ho ~ + u,,:, h:,#. 

4. Consistency of the system 
It  is necessary to examine the above system of equations to see that  there is 

indeed the right number of equations for the unknowns specified in (2.5), (2.6) 
and (2.7). Clearly, there are seven unknowns in each of (2.5) and (2.6) and only 
one unknown, i.e., go(xo, t), in (2.7), since /~*  ̀and g*`# are functions of t alone 
and are therefore expected to be specified by boundary conditions at specified 
values of x o (e.g. at infinity). Thus, there are/i/ teer unknowns altogether. 

27* 
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On the other hand, we have one equation for each of the types (I) and (II) 
and seven equations for each of the types (III)  and (IV), making up a total  of 
sixteen equations. Thus, one of them must  be redundant if we are not going to 
have the difficulty of too many  equations. Indeed, a closer examination shows 
that  the equations (I), (II), (IVa) and (IVc) are not all independent. 

If  we contract (IVc), we obtain 

Oohox• 02h## - Ouolj Ohaast + %  - + hay u~a-- ~ ~ ] -  = h a ~ + uav hva , 

o r  

(IVc') Oh~ bh~ O~ha~ Ou~ 

In this form, it is clear that,  by using (I) and (II), u~a and h~a can be eliminated 
to give an equation in h 0 and u o. The resultant equation must  then be consistent 
with (IVa). This fact can be easily verified by noting that  the xo-derivative of 
(IVa), when added onto (IVc'), leads to an identity by virtue of (I) and (II). 

5. Concluding Remarks 

"We have thus found a large class of exact solutions of the hydromagnetic 
equations, involving fifteen unspecified functions of the variables x o and t. I f  
one restricts oneself to the steady case, the equations above reduce to ordinary 
differential equations which can be integrated (numerically, if necessary) under 
appropriate boundary conditions. Symmetry  conditions also help to simplify 
the equations in various cases. 

These simplifications are all present in the examples worked out by  PETER 
GOTTLIEB. He considered the flow near a stagnation point both in the two- 
dimensional case and in the case of axial symmetry  with a magnetic field parallel 
to a solid boundary. These examples serve to illustrate the behavior of the 
magnetic field as it is carried along a solid surface due to convection currents in 
the core of the earth. I t  is clear, from a consideration of the path of the fluid 
particles, that  there can be a considerable stretching of the magnetic lines. In 
the ideal case of zero viscosity and zero magnetic diffusivity, the field may  be 
expected to become infinite as the boundary is approached. I t  is to be expected 
that  this tendency to increase will be counteracted by  both the hydrodynamic 
and the magnetic diffusive effects. The resultant picture in the case of s teady 
motion is worked out in a paper to follow. Other interesting problems may  be 
developed within the present framework. For example, one might consider an 
infinite disc oscillating about its axis (taken to be the xo-axis ) in the presence of 
a magnetic field in that  direction. Some hydromagnetic damping is certainly 
to be expected. The steady rotation of a disc would be another possible problem, 
extending that  worked out by YON KXRMAN & COCHRAN years ago* in the purely 
.hydrodynamic "case. Indeed, this may  be combined with the problems studied 
by GOTTLIEB to describe the combined effect of earth rotation and convection 
near a stagnation point in the problem of geomagnetism. Finally, one might 
consider the problem of a uniform magnetic field perpendicular to the x0-axis 

* See GOLDSTE[N (1938), p- 110. 
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and rotating about  it (perhaps in an unsteady manner), and a t tempt  to find out 
whether this would indeed provide an effective "magnet ic  wall" to hold an ap- 
proaching fluid. I t  is clear from elementary considerations of Eq. (2A) and (2.2) 
tha t  a magnetic field can act in the manner  of a static pressure to hold a fluid 
in balance, but  the added effect of rotation may  have the advantage of making 
the equilibrium more stable. These and other problems are subjects for future 
studies. 
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