Note on a Class of Exact Solutions
in Magneto-hydrodynamics

C.C.Lix

1. Introduction

The purpose of this note is to describe a class of exact solutions of the magneto-
hydrodynamic equations which are applicable to various flow configurations.
Some examples of these solutions have been worked out in some detail by PETER
GOTTLIEB; his solutions .and some others will be reported in future communi-
cations.

The class of solutions considered here is of the “layer-type”, including many
classical exact solutions of the Navier-Stokes equations as special cases; e.g.,
the flow near a stagnation point in the two-dimensional and the axially symmetri-
cal cases, and the flow of a viscous fluid over a rotating disc. It represents a
further generalization of a class of solutions discussed by the present writer for
the steady or unsteady motion of an ordinary viscous fluid.’

2. Basic equations

For a uniform electrically conducting incompressible fluid, the egquations of
magneto-hydrodynamics are as follows*:
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In these equations, x; (i =0, 1, 2) are the space coordinates, ¢ is the time, v, are
the components of velocity, H; are the components of the magnetic field. The
properties of the fluid are characterized by the density g, the kinematic viscosity »,
the magnetic permeability u and the electric conductivity ¢, in terms of which
we define the magnetic diffusivity

(2:3) 7= (4mpc)
The quantity I is essentially the total pressure and is defined
(2.4) el =p+pH8x,

where p is the ordinary pressure of the fluid. The summation convention is used
throughout this paper.

* Cf. COwLING (1957), p- 93
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We seek a class of solutions in which the x,-axis occupies a special position,
We allow the velocity field, the magnetic field, and the pressure gradient to
depend on the coordinate x, and the time ¢ in a fairly general manner, but only
linearly on the two other coordinates x, (@ =1, 2). To be more specific, we assume
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Since we must have
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the functions &, (x,, #) and &,4(%,, #) must actually be independent of x,. The
function IT then takes on the form
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3. Equations in two independent variables

The particular choice of the form of the solutions is made so that the other
terms in the basic equations (2.1) and (2.2) are also linear in the variables x,

(x@=1, 2). Consider, for example, v; Zil_". By using {2.5) and (2.6), it is easily
seen that ’
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Thus, these basic equations can be satisfied by comparing coefficients of x, and
%, and terms independent of them.

For convenience of reference, we list below the formulae useful for such reduc-
tions. Each of the vectors v; and H, is of the form

(33) {Az} :{aoraa+aaﬁ xﬂ}v

where ay, a,, a,4 are functions of x, and ¢. The vector-94,/dt is then of the same
form. In fact
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Also, the Laplacian of 4; is of the form

Vv [BPa, 2%y % ayp
(35) {A A1} _{ axg » axg + ax(’j xﬂ} *
Furthermore, if B, is another vector of the same form as A4;, then
- B 24;
(3'6) Ci - BJ axl
is also of the same form; indeed,
Coz-—z%’ _bo aaz +aayby,
6.7) ;
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With the help of these formulae, it is not difficult to write down the equations
for the functions of %, and ¢ defined in (2.5) and (2,6).

The equation of continuity in (2.1) is satisfied if

U, _
(1) ox, T s =0
Similarly, the condition for the absence of free magnetic charges is satisfied if
ok, _
(IT) 7 + hgg = 0.
The equations of motion (2.1) lead to
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Similarly, the equations (2.2) for the change of magnetic field lead to
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4. Consistency of the system

It is necessary to examine the above system of equations to see that there is
indeed the right number of equations for the unknowns specified in (2.5), (2.6)
and (2.7). Clearly, there are seven unknowns in each of (2.5) and (2.6) and enly
one unknown, i.e., & (x,, ¢}, in (2.7), since @, and &,, are functions of { alone
and are therefore expected to be specified by boundary conditions at specified
values of x, (e.g. at infinity). Thus, there are fiffeer unknowns altogether.

27+
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On the other hand, we have one equation for each of the types (I) and (II)
and seven equations for each of the types (III) and (IV), making up a total of
sixteen equations. Thus, one of them must be redundant if we are not going to
have the difficulty of too many equations. Indeed, a closer examination shows
that the equations (I), (II), (IVa) and (IVc) are not all independent.

If we contract (IVc), we obtain
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In this form, it is clear that, by using (I) and (II), g and A4, can be eliminated
to give an equation in %4, and #%,. The resultant equation must then be consistent
with (IVa). This fact can be easily verified by noting that the xy-derivative of
(IVa), when added onto (IVc’), leads to an identity by virtue of (I) and (II).

5. Concluding Remarks

We have thus found a large class of exact solutions of the hydromagnetic
equations, involving fifteen unspecified functions of the variables x, and ¢. If.
one restricts oneself to the steady case, the equations above reduce to ordinary
differential equations which can be integrated (numerically, if necessary) under
appropriate boundary conditions. Symmetry conditions also help to simplify
the equations in various cases.

These simplifications are all present in the examples worked out by PETER
GorTLIEB. He considered the flow near a stagnation point both in the two-
dimensional case and in the case of axjal symmetry with a magnetic field parallel
to a solid boundary. These examples serve to illustrate the behavior of the
magnetic field as it is carried along a solid surface due to convection currents in
the core of the earth. It is clear, from a consideration of the path of the fluid
particles, that there can be a considerable stretching of the magnetic lines. In
the ideal case of zero viscosity and zero magnetic diffusivity, the field may be
expected to become infinite as the boundary is approached. It is to be expected
that this tendency to increase will be counteracted by both the hydrodynamic
and the magnetic diffusive effects. The resultant picture in the case of steady
motion is worked out in a paper to follow. Other interesting problems may be
developed within the present framework. For example, one might consider an
infinite disc oscillating about its axis (taken to be the x,-axis) in the presence of
a magnetic field in that direction. Some hydromagnetic damping is certainly
to be expected. The steady rotation of a disc would be another possible problem,
extending that worked out by voN KARMAN & COCHRAN years ago* in the purely
-hydrodynamic -case. Indeed, this may be combined with the problems studied
by GOTTLIEB to describe the combined effect of earth rotation and convection
near a stagnation point in the problem of geomagnetism. Finally, one might
constder the problem of a uniform magnetic field perpendlcular to the xj-axis

* See GoLDsTEIN (1938), p. 110.
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and rotating about it (perhaps in an unsteady manner), and attempt to find out
whether this would indeed provide an effective “‘magnetic wall” to hold an ap-
proaching fluid. It is clear from elementary considerations of Eq. (2.1) and (2.2)
that a magnetic field can act in the manner of a static pressure to hold a fluid
in balance, but the added effect of rotation may have the advantage of making
the equilibrium more stable. These and other problems are subjects for future
studies.
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