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Abstract. This  p a p e r  1 develops,  w i t h  a n  eye on  t he  numer i ca l  appl ica t ions ,  a n  
ana logue  of t he  classical  E u l e r - C a u c h y  po lygon  m e t h o d  (which  is used  in t h e  so lu t ion  
of t he  o r d i n a r y  d i f fe ren t ia l  e q u a t i o n  

d y  
dx  = ! ('~' y)' y(x0) = y0) 

for t he  so lu t ion  of t h e  fo l lowing  cha rac t e r i s t i c  b o u n d a r y  va lue  p r o b l e m  for a h y p e r -  
bolic pa r t i a l  d i f fe ren t ia l  e q u a t i o n  

u,,y = l ( x ,  y,  u, u,,, yy) ,  

u(x,  Yo) = ~(x) ,  

u(x0, y) = ~(y), 

where  ~ ( x 0 ) =  z(y0). T he  m e t h o d  p re sen t ed  here,  wh ich  m a y  be  r o u g h l y  descr ibed  
as a process  of b i l inear  in te rpo la t ion ,  has  t he  a d v a n t a g e  o v e r  p rev ious ly  p roposed  
m e t h o d s  t h a t  on ly  t h e  t a b u l a t e d  va lues  of t h e  g iven  func t ions  a(x)  a n d  , ( y )  a re  
requ i red  for i ts  n u m e r i c a l  appl ica t ion .  P a r t i c u l a r  a t t e n t i o n  is d e v o t e d  to  t h e  p roof  
t h a t  a c e r t a i n  sequence  of a p p r o x i m a t i n g  func t ions ,  c o n s t r u c t e d  in a specif ied way,  
a c tua l l y  converges  to  a so lu t ion  of t h e  b o u n d a r y  va lue  p rob l em u n d e r  cons idera t ion .  
K n o w n  ex is tence  t h e o r e m s  are  t h u s  p r o v e d  b y  a process  which  can  a c t u a l l y  be  em- 
p loyed  in  .numer ica l  c o m p u t a t i o n .  

x Th i s  p a p e r  was  issued on  16 J a n u a r y  1957 as  N A V O R D  R e p o r t  4451, U. S. 
N a v a l  O r d n a n c e  L a b o r a t o r y ,  W h i t e  Oak,  Mary l and ,  a n d  was  p r e sen t ed  to  t h e  Amer i -  
c an  M a t h e m a t i c a l  Soc ie ty  in  O c t obe r  1956. 
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w 1. Introituction 

The classical initial value problem for the ordinary differential equation 

dy 
~ .  - / (x ,  y), 

(where the real valued continuous function ](x, y) is defined for Xo<= x<= x o + a  
and -- oo < y < + o.) consists in the determination of a real valued function y (x), 
defined'on x0=< x <  x0+ a, which satisfies the given ordinary differential equation 
on this interval, and also satisfies the initial condition 

y (xo) - -  Y0, 

where Y0 is a given real number. 

Among the many method~ which have been employed for proving tile existence 
of a solution y (x) to this problem, mention will be made here only of PICARD'S 
method of successive approximations (see e.g., G. SANSONE [21, VO1. I, pp. 9--t4~, 
E. L. INCE [19, pp. 63~65~, E. A. CODDINGTON & N. LEVINSON [98, p. 1 t - - t3 ] ,  
or E. KAMKE [16, pp. 51 --56]) ; of L. TONELLI'S method (see, e.g., L. TONELLI [18], 
G. SANSONE [=)1, vo1. I, pp. 45--48~); and of the Euler-Cauchy polygon method 
(see, e.g., G. SA~'SONE [21, vo1. I, pp. 36--45, vo1. II,  pp. 208--283], E. L. INCE 
[12, pp. 75--81], E. A. CODDn~GTON & N. LEVlNSON ~28, pp. 3--7~, E. KA~IKE 
[16, pp. 62--64~, or G. A. BLISS [9, pp. 86--921). 

For the numerical purpose of the actual construction of a solution the Euler- 
Cauchy polygon method is usually the most advantageous. The construction of 
the Euler-Cauchy polygons may be described as follows. For each positive in- 
teger m, let 

X f f ~  X o ,  m ~  X l ,  m ~ .X2, m ~  " " " ~ X m - - l , m ~  X m ,  m ~ X 0 "~- a . ,  

be a subdivision of the interval Xo<=X<=Xo+a into m closed subintervals 
xk, m<_--x<=xk+l,~, where k = O , t , . . . , m - - t .  On each such subinterval the 
ordinary differential equation is, so to speak, replaced by one whose right-hand 
side is a (suitably chosen) constant, so that the corresponding function ap- 
proximating a solution turns out to be a linear function on each subinterval. 
More precisely put, the polygonal function Ym, which is an approximation to a 
solution, is defined recurrently by the equations 

d 3'm dx ( x ) = / ( x ~ 1 7 6  Ym(x~176 on Xo,,,<=x<=xt. m, 

dy,~ 
dx (x)-----/(xl,,n'y,), Y.,(xl,.,) =Yl ,  on x l , . ,<x<=x2,~ ,  

�9 . . 

d y ,,, dx (x)=](xt, , .~;Yk),  y,~(xk,,.) =Yk ,  on Xk,.~<=x<<-Xh+l,m. 
�9 . �9 

for k = O, t . . . .  , m - - t .  Notice that, for simplicity in writing these equations. 
the symbol Yk is used to denote the'value of the function y,~(x) at Xk, m, a value 
which is obtained lrom the definition of Ym as a linear function on the preceding 
subinterval xk_~,,,,<= x ~  xk,,,, and which is used as an initial value for the function 
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y,. (x) for the "miniature"  initial value problem (of the same kind as the original 
one, but  whose differentii~l equation has a constant right-hand side): 

d ym 
dx (x) = 1 (xk,.,; Yk), y.,(x~,,~) = yk, 

on the next subinterval x k , . ~  x:< x~ :-1,.. For each positive integer m, the func- 
tion y . (x)  is continuous on the interval Xo<_ x<=xo+a, but its derivative will, 
in general, not exist throughout the interval, since it may  jump at the subdivision 
numbers xk, m. " 

Under the sole additional hypothesis tha t  the function ](x,-y) is bounded in 
absolute value on xo<--_x<=xo+a, - - o o < y <  + 0% it follows that  the sequence 
of functions {y~(x)) is  equibounded in absolute value and equicontinuous on the 
interval Xo~X~Xo+ a, and hence, by  AscoLfs . theorem [11 (see also TONELLI 
Ell, p. 76--86]) there is a subsequence 6f the secluence {y,(x)} which converges 
uniformly to a continuous limit function on Xo<=X<Xo+a. If, further, it is 
supposed that  the maximum length of the subintervals of the subdivision of 
%_< x <  xo+ a approaches zero, i.e. 

lim [ max (x~.l . , . - -  xk,~)~ = 0, 
r a ~ o c  L k = O , l , . . . , m - - 1  ' ' 

then every such continuous limit function is a solution of the original initial 
value problem, whose solution need not be unique. (It  should be noticed that  
the condition on the maximum length of the subintervals is automatically satis- 
fied in the most common case when the mth subdivision consists of m subintervals 
of equal length, namely aim.) If, besides this, the function /(x, y) satisfies a 
Lipschitz condition with respect to y, i.e. there is a number L ~ O  such that  

I f(  x,yO -- l (x ,Y,) l  < L I Y , - -  Y,I, 

whenever Xo<= x<= Xo-+-a, then the whole sequence {y.(x)} converges uniformly 
on Xo'< x ~  Xo+a to the (known to be unique) solution of the original initial 
value problem. 

The purpose of the present paper is to develop, with an eye on the numerical 
applications, an analogue of the Euler-Cauchy polygon method for the solution 
of the characteristic boundary value problem for the hyperbolic wr t i a l  dif- 
ferential equation 

u . . , = l ( x , y , u , u ~ , % ) ,  

(where the real-valued continuous function ](x, y, z, p, q) is defined for all 
(x, y, z, p, q) satisfying 

xo<_x<=xo+a , y o ~ _ y ~ y o + b ,  and - - o o < z , p , q < + o o ) .  

The problem in question consists in the determination of a real-valued function 
u(x, y) which satisfies the given partial differential equation on the rectangle 
xo<--_ x ~  xo+ a, yo<-- y--< Y0+ b, and also satisfies the conditions 

u(x, yo) = a ( x )  for Xo_<--_x-<_-xo+a, 

u(x o,y) : ~ ( y )  for Yo~Y----<yo+b, 
Ar~ h. l~; t t iomd ,Me, h. Anal . ,  VuI. I 2 3  
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where a(Xo)= r(Yo) and a(x) and l-(y) 'are given continuously differentiable 
functions on the characteristics Y=Yo and x =  x o o f  the given hyperbolic 
equation. (The treatment of this boundary value problem by successive approxi- 
mations goes back to E. PICARD [8] and has been considered by various other 
methods by  many writers since that time.) For each pair of positive integers m 
and ~, consider the following subdivisions of the intervals 

Xo <:- x ~ xo + a and yo ~ y <= yo + b , 

Xo=-- Xo, m < Xl,ra < X2,ra < " "  < Xr, t - l , m  < Xm, m~-- XO-~ a ,  

Yo ~ yo,~< Y1,,, < Y2,~ < "" < Y~-I,~ < Y~,~ ~ Yo + b, 

which produce a subdivision of the rectangle xo--< x ~  xo+ a and Yo~ Y--<--- Yo+ b. 
The miniature problem in the present method (see Section 3 for details) is as 
follows: 

~ ~rn n ~x-~y (x ,y)  = A k l ,  for Xk~X<~Xk+I ,  yl<=y<=yt+ 1, 

u,~n(x, y t)----Dkz+ Bkl(X-TXk) ,  for X k ~ X ~ X k + x ,  

u , ~ ( x ~ , y )  : D k l + C k l ( y - - y i ) ,  for yl<=y<=yz+l, 

where At1, Bkt, Ckl and Dkl are suitable constants, depending on the sub- 
rectangle (for simplicity in writing, x~ has been written for xk, m and y~ for Yl,~ 
in the formulation of the boundary value problem for the subrect~mgle). This 
means that  on each subrectangle, the approximating function u ~  is bilinear in 
(x, y), i.e. it is a hyperbolic paraboloid: 

u,,~(x, y) = Akt (x  --  xk) (y - -  Yl) + Bkl(X --  xk) + Ckl(y - -  Y3 + Dkl. 

The process just described reduces in the special case of the equation u , y =  / (x, y, u) 
and equal subdivisions of the intervals Xo<=X~Xo+a, y o < = y ~ y o + b  to the 
process given by G. ZWlRNER [24, pp: 222--223], who did not consider the more 
general equation treated here. Similar methods, analogous to the one described 
above, have been employed to prove existence theorems for the same boundary 
value problem by P. HARTMAN'& A. WINTNER [26], R . H .  MOORE [29] and 
R. CONTI [27], but they do not appear to b.e as convenient for numerical pur- 
poses as the one described above, which requires knowledge only of the tabulated 
values of the given functions a (x) and z (y) (from which the difference quotients 
needed may easily be calculated) and does not require the tabulated values of 
the first derivatives a'(x) and z'(y). Mention is also made of a different, but  
closely related, method, also analogous to the Euler-Cauchy polygon method, 
given by H. LEWu [14] (see also H. BECKERT [22]) for the solution of the initial 
value problem for second order quasilinear partial differential equations in two 
independent variables, which appears to require more differentiability assump- 
tions than the present method. 

The statement of the known main results and their connection with the existing 
literature is given in Section 2. Section 3 contains the precise description of the 
analogue of the Euler-Cauchy polygon method and the construction of the double 
sequence of functions {u~,,(x, y)} approximating a solution. Each function u~,, 
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is continuous, but  not necessarily differentiable with respect to x and y on the 
rectangle xo~ x<= x0+ a, y0~  y ~  Yo+ b. Section 4 contains an inequality, termed 
the convergence inequality, which is used, together with a theorem of C. ARZEL~. 
ET, pp. t t 9 - - t 2 5 ]  on the convergence of certain not necessarily continuous 
functions to continuous limit functions, in order to complete the proof of the 
existence of a solution in Sections 5 and 6. 

w 2. Statement  of known results 
Theorem 1. I /  

(1) the real-valued/unction [ (x, y, z) is defined /or all (x, y, z) such that 

Xo~X<=Xo+a , y o ~ y ~ y o + b ,  -- o o < z < +  oo, 

where x o, Yo, a,. b are real numbers, and a>___O, b>=O, and i] ](x, y, z) is continuous 
and bounded in absolute value, so that/or a certain non-negative constant M one has 

]](x,y;z)[ ~ M 
/or all these (x, y, z) ; 

(2) the real-valued /unction a(x) is de/in~d ?~r. all x such that x o ~ x ~ x o + a  
and possesses a continuous first derivative a'(x) /or all these x, while the real-valued 
/unction z(y)  is defined on the set yo~_ y <  Yo+ b and possesses a continuous first 
derivative z ' (y) /or  all these y (it being understood, o/course, that a'(Xo) , /or example, 
denotes the right-hand derivative o/ a at xo, etc.); then 

(3) there is at least one real-valued /unction u (x, Y) defined on the rectangle 

R: xo ~x<Xo : ,+a ,  y o ~ y ~ y o + b ,  

which is continuous, together with its partial derivatives Ou/ax, Ou/Oy, O~ulOx Oy 
( =  Otu/Oy Ox) on R, satisfies the partial differential equation 

02u 
o y o :  (x, y) = / (x, y, u (x, y)) /or (x,y) in R 

and the characteristic conditions 

u (x, yo) = ~ (x) /or x o <  x < x0 + a,  

U(Xo,y)~-T(y  ) /or y o < = y ~ y o + b .  

I t  is to be noticed that  this theorem asserts the existence of at least one 
solution to the characteristic initial value problem under consideration, but  that  
the uniqueness of the solution is not asserted, and is, in fact, in general not true. 
(See P. MONT~L [8, pp. 279--283].) One need only consider the following simple 
example of a characteristic problem (c/. P. HARTMAN & A. WINTNER [26, p. 84] 
and P. LEEHEY [28, p. 23]) consisting of the partial differential equation 

0su 
OxOy --[u[Zlz for O<=x~a ,  0 ~ y < b ,  

and the initial conditions 
u ( x , O ) = O  for O ~ _ x ~ a ,  

u(0, y) : 0 for 0__<y< b, 

25* 
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which has as solutions both 
u 1 (x, y) = 0,  

and 
us (x, y) = ? .  x~ yL 

on the rectangle O G x G a ,  O G y G b .  

T h e o r e m  2. I /  

(t) the real-valued [unction [(x, y, z, p, q) is defined [or all (x, y, z, p, q) such 
that 

X o G X ~ x o + a  , yo<=y~yo+b ,  - - o ~ < z , p , q < + o ~ ,  

and is continuous and bounded in absolute value, so that/or a certain non-negative 
constant 3f  one has 

[/(x, y,z, P,q)I <---- M 

/or all these (x, y, z, p, q), and i / [  satisfies a Lipschitz condition in the three argu- 
ments z, p, q (that is, there is a constant L >= 0 such that one has 

]/(x,y,z ,p,q)--/(x,y,z~,p~,ql)J<Llz--zl]  + L I p - - P 1 ]  + Z l q - - q t ] ,  

/or any (z, p, q) and (z 1, Pl, ql), whenever (x, y) lies in the rectangle 

R: x o < = x < = x  o + a ,  Y o G Y G y o + b ) ;  

(2) the real-valued [unction a(x) is defined /or all x such that xo <=x<__xo+a 
and possesses a continuous first derivative a'(x) [or all these x, while the real-valued 
[unction z (y) is defined/or all y such that yo <= y ~  Yo+ b and possesses a continuous 
first derivative [or all these y," then 

(~) lhereis one dnd only one real-valued /unction u(x, y) defined on the rec- 
tangle R, which is continuous together with its partial derivatives 

o., o,, o~u ( o'~, ) 
O.r ' 0 v '  Ox 03, : ~:-Ox. on R,  

satisfies the partial differential equation 

e'Zu Ou (x,v), eu (x, y)) /or ( x , y ) in  R ,  o;gr (x,~.,)=/(x,y,u(.,.,y), ~ . ~3' 

and the characteristic" conditions 

u(.r, y o ) - - a ( x )  /or XoGX<=Xo4-a, 

u(x0 ,y  ) = z ( y )  /or y o < = y ~ y o + b .  

"l'hi.s .,econd theorem does not contain the first theorem as a special case, 
since the function /(x,  y, z) of Theorem I is not  assumed to satisfy a Lipschitz 
condition in the argument  z. However, if in Theorem 2 the funct ion/ (x ,  y, z, p, q) 
does not depend on p and q, then Theorem 2 yields the additional information 
that  i f / (x ,  y, z) of Theorem l does satisfy a Lipschitz condition in the argument  z, 
then the solution who.~e existence is assured by Theorem I is indeed unique. 
Theorem 2 is the classical theorem of PICARD [6! mentioned in the Introduction.  
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Theorem 3. I/ 
(t) the real-valued /unction /(x,  y, z, p, q) is defined/or all (x, y, z, p, q) such 

that 
Xo~X<=Xo+a , y0=< y ~ y 0 +  b, - - o o < z , p , q < o o ,  

and is continuous and bounded in absolute value, so that/or a certain non-negative 
constant M one has 

[/(x, y,z, p,q)l <--_M 

/or all these (x, y, z, p, q), and i/ / satisfies a Lipschitz condition in the two argu- 
ments p, q (that is, there is a constant L >= 0 such that one has 

] / (x ,y , z ,p ,q)  --[(x,y,z,p~,qx)] --<_ L i p  --  p~] + Z l q -  qt[ 

/or any (p, q) and (Pl, qx) whenever (x, y) lies in the rectangle 

R: Xo<=X<=xo+a, yo<=y<=yo+b, 

and z is any real number); 

(2) the real-valued /unction a(x) is defined/or all x such that 

XO ~ X ~_ XO - 4- a ,  

and possesses a continuous first derivative a'(x) /or all these x, while the real-valued 
/unction , (y) is defined/or all y such that 

yo<= y<= yo + b 

and possesses a continuous first derivative/or all these y; then 

(3) there is at least one real-valued/unction u (x, y) defined on the rectangle R 
which is continuous together with its partial derivatives 8u/Sx, au/ay, fi2u/Sx 8y 
(=aZu /0y  8x) on R, satisfies the partial differential equation 

f~u (x, y), ~u (x, y)) /or (x, y) -in R,  an.,, (x, y) =/(x,  y,  u (x, v) ,  ~x ~, 
Ox Oy " . . 

and the characteristic conditions 

u(x, yo)=~(x) /Or Xo<X<Xo+a, 

u(xo, y ) = z ( y )  /or yo<=y<=yo+b. 

This third theorem contains the first theorem as a special case (and the 
same example used there is applicable here). The hypotheses made in the third 
theorem are such tha t  the part  of the second theorem concerning the existence 
of a solution follows, while the second theorem yields the additional information 
that  if the function /(x,  y, z, p, q) satisfies a Lipschitz condition in (z, p, q) 
together, rather than just in (p, q), the solution u (x, y) whose existence is asserted 
by  the third theorem is indeed unique. Theorem 3 was first proved by  P. LEEHEY 
E23] and P. HARTMAN ~r A. WINTNER [261. For more general theorems see 
R. CoNII [.',)7] and A. ALEXlEWlCZ & W. ORLICZ [301. 
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w 3. The double sequence of functions approximating a solution 

Let m and n be positive integers and consider the corresponding subdivisions 
of the intervals Xo~X<=Xo+a and y o ~ y ~ y o + b ,  as follows: 

Xo ~ Xo,,~ < Xx,m < X2,m < .. .  < Xm_l,m < Xm, m=-- Xo + a, 

Yo----Yo,~ <Yl,~ <y2,~ < "" < Y ~ - I , ~  < Y~,~ ~ Y o +  b. 

These subdivisions of the intervals xo=< x=< Xo+ a and y o < = y < y o +  b produce a 
subdi~dsion of the closed rectangle R into m. n closed subrectangles R~'F, where 
k = 0, t . . . . .  m -- t and l = 0, 1 . . . . .  n -- t. The closed subrectangle R~': consists 
in all (x, y) of R which satisfy the inequalities 

xk,~=< x < X~+s .... Yl,~ < Y < Yl+l,~. 

Given the functions a (x) and v (y), defined on the closed intervals Xo~_X~Xo+ a 
and yo~  y ~  Yo+ b respectively, a continuous function um~(x, y) will be defined 
on the rectangle R by a recurrent process, consisting in solving, on each sub- 
rectangle R~':, a boundary value problem of the form 02Um~/OX Oy = constant, 
with assigned (linear) values for Um, on the two rectilinear closed intervals of 
the boundary of R~'F which intersect at its lower left hand vertex (xk, m, Yl,~). 
Of course, the constant involved in the partial differential equation, and also 
the linear boundary values, both depend on k and l (and on m and n). The fact 
that  two adjacent rectangles, say R~': and Rk~t,l for instance, have a common 
boundary interval (since they are both closed subrectangles) will create no dif- 
ficulty concerning the definition of the function Um~ for points lying on the 
common boundary intervals, since the specific process employed in defining um~ 
will be such that the values assigned to um~ will coincide in this situation. 

Suppose, for the moment, that  Um~ has already been defined on the sub- 
rectangle of R with lower left vertex (x o, Y0) and upper right vertex (xk, . ,  Yl, m), 
i.e., the subrectangle defined by the inequalities 

xo--< x ~_ xk, m, Yo-- ~ Y < Yt,~, 

where t ~ k < m -- 1 and t ~ l <  n -- 1. Then the definition of the function um 
will be extended to the slightly larger subrectangle defined by the inequalities 

Xo<~X<=Xk+x,m, yo<= y<= yt+t,~, 

by first defining it on the closed subrectangles 

m ~  m ~ t  m n  R,,o, R,,1 . . . . .  R~,l-1 

in numerical succession (i.e., passing from R,~ to R,m~, and so on) ; then defining 
it on the closed subrectangles 

m n  m s *  m n  R0,l, Rl, l . . . . .  Rk-l,l 

' ~  R m~ and .so on); and finally in numerical succession (i.e., passing from Ro, t to t.t, 
defining it on the remaining closed subrectangle R~'~ in order to complete the 
definition of u,~, on the rectangle 

xo< x~ xk+1,~, Yo~ Y< YI+I,,,~. 
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(A simply drawn figure will readily make the process intuitive to the reader.) 
Alternatively, the function Um~(X, y) may first be determined on the m sub- 
rectangles in a row: 

m ~  m n  m n  
Ro, l. Rx, t . . . . .  R,n-l,t ,  

for the rows l =  0, t, 2 , . . . ,  n - - 1  in succession. There remains only to make 
precise just exactly what boundary value problem, i.e., what partial differential 
equation and what boundary conditions, is to be solved on each subrectangle 
R~'p. This will be done by  showing how the process is started in the initial sub- 
rectangle Ro%" and how the step-by-step scheme indicated above can then be 
carried out, using the given data, the given functions a(x) and r (y). The final 
result will be an explicit formula for u,~. (x, y) at any point (x, y) of a typical  
subrectangle R~p. 

On the rectangle R0%" the function urn, ~ is required t o  satisfy the partial 
differential equation (with constant right-hand side) 

OZUmn ( ex Oy (x ,y)  = [ x o, Yo, a(Xo), a(xl")Xlm-- O(Xo,.)Xo,. , ~(yl.) --  T(Yo.) ~o. -/ for (x, y) in R'~g, 

subject to the boundary conditions 

u,. . (X,  yo) = a(Xo)+ a ( x l " ) - a ( x ~  ( x - - x o )  for Xo<=X~Xx,,.,  
Xl, r a  - -  X O  

Um.(Xo,y) =x(Yo) -P z(Yt'")--z(Y~ (Y- -Yo)  for yo~y<=yx,~ .  
Yx, n -- Yo 

Roughly speaking, what is done in defining u~.'  on Ro~o n is to take as boundary 
conditions along its left boundary edge and its lower boundary edge certain 
linear functions derived in a natural manner  from the given functions z (y) and 
a(x), and to use the value of u~.  at (x o, Yo) and the slope s of these linear func- 
tions in determining the constant value to be assigned to a~u,.n]Ox Oy on Ro"o n. 
I t  is clear that,  the boundary value problem for u~.  on R0% " being explicitly 
solvable, 

u, . .  (x, y) = u . , .  (Xo, Yo) + 

+ um.(&~;yo)- .m.(Xo,yo~ ( X - X o )  + 

+ u, . .  (x o; y~,.) - u, . .  (Xo, yo) (y _ Yo) + 
Yx, n - -  Yo, n 

/(Xo, Yo, u , . .  (x o, Yo) u, . .  (x~,m; Yo) -- urn. (xo, Yo) + 
t 
(=o; y , , . )_-  (=o, yo)) (x - (y - yo) 

Y l ,  n - -  Y o , .  

for (x, y) in Ro~o ", where, for uniformity in the writing of formulas to appear 
later, u . .  (x o, Yo) has been written instead of a (xo) or z (Yo) etc. I t  is to be noticed 
that  u. . .  is bilinear in (x, y) on R'$o#, i,e., it is linear in x for each fixed y and 
linear in y for each fixed x. (From this point of view the process of defining 
u,~. being described may be thought of as a process of bilinear interpolation, 
so to speak.) 
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Consider now the definition of u .~  on the rectangle R~'7, it being assumed 
tha t  u ~  is already known as a linear function on the left boundary  edge, where 
x = xk,.,, and on the lower boundary  edge, where y = Yl, ~, of the closed rectangle 
R~'l ~. Then u ,~ ,  on the rectangle Rk~ ~, is required to satisfy the part ial  dif- 
ferential equat ion with known constant  lqght-hand side 

~"'~-- ( x , y ) = f l / ' & m ;  y~,~; u,~,,(x,,m; y~.~); u,,,~(xk~,,,~; yt,~)-,,m,,(xk,,~; y~.,,/ 
0.'r O y  , .a : l~_ l , rn-  xk ,  m 

u~,,(xk,=; Yl+l,~) --u,,,__~(xk,=; Yl,~)) for (x,y) in R'~"/', 
Y l + L n  - -  Yl, n 

and to coincide with an already known linear function of y on the left boundary  
edge, where x = x~,,~, and with another  already known linear function of x on 
the lower bounda ry  edge, where y = y~,.. I t  is clear tha t  u= .  is bilinear in (x, 3,) 
on R~'t ~ and tha t  

u , . .  (x, y) = u,~ ~ (xk,,~; yt,,,) + 

+ "__~_~ !5 k t ' ,  ~ ;  YJ.~!_ - " ~ " ( ' k , ' ;  y~. ,,) (x - xk, ~) + 
X k t l ,  r a -  Xk. m 

+ u,..(xk,.,; yr y_L,,,) ( y _  y~,.) + 
Y l + l ,  z - -  Y l  n 

+ /(xk,=; Yt.." Um.(Xk, m" Yl,,,)" ~ m n ( X k  § l ,m;  Y l ,n )  - -  U m n ( X k ,  m; !'l, t} . 

Xk F l , m -  Xk, m 

u~,, (xk,=; Yl ~,,.)--u,~,, (xk,~;)'b.) (x_xk,m) (Y--Y1..), for (x, y) in R'k"j". 
Y l - i , n - - Y l ,  n 

This last formula does not exhibit  the explicit dependence of the function 
u~ .  (x, y) on the given functions a (x), ~(y). In order to obtain a formula which 
makes evident this explicit dependence on a and ~, which will be essential in the 
convergence proofs to follow, it is convenient to use an abbreviated notat ion 
yielding more manageable formulas. For  example, when considering the flmction 
u,,,., with m and n regarded as fixed throughout  the discussion, a functional 
value such as 

um,,(xk,~; Yt,.) 

will be denoted s imply by  ukj, and a functional value such as 

/(xk,~; Yt.,,; u .... (xk,.," y~,,,)" 
I,~mn (Xk..Ll .m; Yl• Yl, .) . 

Xk I ltlg o X k j m  

H'ml, (Xk,  m; Ylq l?n) - -  ~ m n  !Xk,  m; Yl, n) [ 

Yl  + 1, n - -  Yl,  n ! 

will be denoted merely by ]kl- Further,  xk and Yl will replace xk, m and Yl .... 
respectively. 

In this notat ion,  the above formula for um,,(x, y), for (x, y) in R~'[', may  he 
rewrit ten 

u .... (x, y) = ukt + ~'k~ ,,z - ~,~t (x --  xk) ~- ukj , y '~k, (y __ y~) + A~" (x - x~,.) ( y -  y~). 
Xk 4 I - -  Xk Yl  i I - -  Y l  
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Using this abbrev ia ted  nota t ion,  one has the  following formulas  for u~n on each 
of the rectangles Ro~o n, Rt~o ~, R~'t ~, and R~t"i which are all special cases of the 
last  formula  just  wr i t ten  for R~'~ ", for (k, l ) = ( 0 ,  0), (t, 0), (0, l) and (t, 1), 
respectively.  In  the  first place 

u . ~ n ( x ,  y)  = % 0  + , , l o -  *,oo (x  - xo) + ~,ol - uoo ( y  _ yo) + l o o ( X  - Xo) �9 ( y  - yo) 
11 -- xo Yt -- Yo 

for (x, y) in R~'~', t h a t  is, when x o < x ~ x  1 and yo<=y<yl. In  the second place 

u m ~ ( x ,  y)  = u l o  + ~ o  - Ulo ( x  - x l )  + ~ 1 - 9 1 o  ( y  _ yo) + A o '  ( x  - x l )  ( y  - yo ) ,  
12 -- 11 Yl -- Yo 

for (x, y) in R1% ~, tha t  is, when Xl<=X<X ~ and yo<=y<=yt. In the th i rd  place 

um~(x, y) = % 1  + ~ ' '  - ~o, (x  - xo) + ~ o 2 - ~ o l  (y _ yl) + / o l -  (x  - xo) (y  - y 0 ,  
Xt - -  X o Yi - -  Yt 

for (x, y) in R'~, t ha t  is, when xo~x<--x 1 and yl<:y~y2.  In  the four th  place 

u ~ , , ( x ,  y)  = u l l  + ~ 1  - ~ ,~  ( x  - x 0  + u , ~ _ -  ~ _  ( y  _ y l )  + A ~' ( x  - x 0  ( y  - y l ) ,  
x, -- x t Y2 -- Yx 

for (x, y) in RI'~, t h a t  is, when xl_~ x ~  x z and  yl~_y< Y2. 

The~ formulas  for Ro t ,  . . . .  R10 and Rl1~" will now be rewri t ten so as to reveal  
the exac t  infIuence of the given functions ~(x) and z(y).  F rom the formula  for 
(x, y) in Ro~o n it  follows tha t  

U l l  = U l 0 +  U01 - -  U00-~- /00"  (Xl - -  XO) ( 3 I I -  Y0)" 

Subst i tu t ing  this expression for u 11 into the formulas  for (x, y) in R~'~ and R~'~, 
one obta ins  

Utah(X, y) = UXO + ~'~o-7 ~'_1o__ (X --  XO + "o_1 --~:oo (y __ YO) + 
X'2 - -  X1 3'1 - -  YO 

+ / o o "  (~1 - Xo) (y - yo) + A o -  (x - 11) (y - yo) ,  

when (x, y) is in R~o ~, and t ha t  

u.,n(x, y) -- %1 + ~,1o 7Uoo ( x -  xo) + "~ ~'" (y - y~) + 
11 - -  Xo  Y z  - -  Y t  

+ 1 o o - ( x  - x o ) ( y l  - yo) + 1o , (~  - ~o ) (y  - y , ) ,  

when (x, y) is in Ro~. 

Now from these last two formulas for (x, y) in Rl% ~ and R~'t ~ one obta ins  

U~l = % 1  + U2o - % 0  + / o o ( 1 1  - Xo) (y t  - yo) + / l o ( x ~  - x~) (y~ - Yo), 
and 

.u~., = .U~o + Uo~ - Uoo + Ioo (11  - Xo) ( y .  - yo) + / o , ( X ~  - xo; (y., - y O ;  

these, together  with the  a l ready known equat ion 

u11 = UlO + Uol - Uoo + / o o "  (x~ - xo) ( y l  - Yo),  
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can be used to rewrite the formula for (x, y) in R ~  n as follows: 

u , ~ . ( x ,  y )  --- U lo  + Uol  - Uoo + U~o - ~t~o_ (x  - Xl) + ~ o ,  - ~o~ ( y  _ y l )  + 
x~ - -  x t Y~ - -  Yt 

+ 100. (xl  - Xo) (yl  - yo) + / l o .  (x - x 0  (yl  - yo) + 

-~ 101" (Xl - -  XO)(Y .... Yl) -~- 111( X - -  X l ) ( Y - -  Yl) ,  
for (x, y) in R1~1 ". 

From the preceding considerations, the following general formula may  be 
obtained by  a process of mathematical  induction: 

2t'k ;-1, o - -  ~Ak,0 (X ~o, /+ l  - -  t~o,Z 
ume(x,Y)=--Uk,o+Uo.z--Uoo+ . . . . .  x k ) +  . . . . . . . . .  ( Y - - Y t ) +  

xk-" 1 - -  xk Yl+I - -  Yl 
k l l 

-!- Z Z 1 i - - 1 , / - 1  (X, - - X i _ l )  (Yi - -  Y / - 1 )  + Z / k  i - 1  (X - - X k )  (y i  - -  Y j - 1 )  + 
i . ~ l  ] ~ 1  i : = l  

k 

+ 5"/i 1,~(x~- x,_ 1) (y - yl) + A~(x - x~) (y - yl) 
t = l  

for (x, y) in Rk~ ", that  is, when x k ~ x < x k + l a n d  y l ~ y ~ y l + l ,  where k = 0 ,  1, 
. . . .  m --  t and l = 0, t . . . . .  n - -  t. I t  is readily seen that  by  putting (k, l) equal 
to (0, 0), (l, 0), (0, 1), (t, 1) in turn one obtains the formulas given above for 
Roo, R~ 0, R0 x, R1 ~, respectively, as special cases. 

For each pair of positive integers m and n, there has been defined a sub- 
division of the rectangle R into m .  n closed subrectangles, and there has also 
been defined on the rectangle R a real valued continuous function u,,,,,(x, y). 
This double sequence of continuous functions {u,,,,,(x, y)} is equibounded in 
absolute value on R. For let A, B, C, D denote non-negative real constants such 
that  

I,,(x)[ <_-A, I,,(~) --,,(~*)1 _--< CI~--  ~*1, 
whenever Xo<_ x<= Xo+ a, and Xo~ x * ~  Xo+ a; and 

[ ~'(y)l < B, [ "r ( y ) - ~ ( y * ) I < D I y - y * I ,  

whenever Yo < Y ~ Yo+ b, and Yo ~-- Y*--~ Yo+ b. (The existence of these constants 
A, B, C, D follows from the assumptions made about the functions a (x) and z (y) 
in any of the three theorems of Section 2.) Then, given (x, y) in R, one has 
Xk<=X~Xk_~I and yz~_y<yl+l  for some suitable pair of integers k and l, with 
o ~ k ~ m - - t  and o ~ l < _ n - - 1 .  Hence 

tu,.,,(x,y)l_<l~,ol+l~o,,l+l~ool+:~_~=.o-~_k.O'il~_x~l+ ~ o , . ~ - ~ = , _  ~ .  . ~ - y . T -  - - 
I X k - ' x  - -  Xk ] Y I + L -  Y l  i 

k 1 l 

+ Z Z M ( x , -  x,_ I) (Yi -- Yi-1) + X M ( x  -- xk) (Yi -- Yi-~) + 
i = 1  I=1 i=1 

k 
+ X M(x,  -- x,_l) (y -- Yz) + M(x  -- xk) (y -- y,), 

i - 1  

where M ~  0 is an upper bound for the absolute value of the function / (see the 
hypotheses of Theorems t to 3). Thus, by use of the definitions of the constants 
A, B, C, D-lust given, it follows that  

[um~(x,y)[ ~ 2A + B + Ca + Ob + M a b ,  
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where the numerical constant on the right-han d side does not depend on the 
point (x, y) of R or on the pair of positive integers (m, n). This proves that  the 
double sequence of continuous functions {urn. (x, y)} is equibounded in absolute 
value on R. 

Now, for each pair of positive integers (m, n), let the positive numbers ~m 
and fl~ be defined by ~ ~ max (x~+ 1 --xk) 

k = O , . 1 ,  . . . ,  m - -  I 

and i~.= max (Yt+I--Y~), 
I = 0 ,  1, ..., n ~ l  

so that  the product 0~, �9 ft. is certainly not less than the area of the largest sub- 
rectangle of the subdivision of R corresponding to the pair of positive integers 
(m, n). Under the additional r~tr ict ion that  

lim 0~ = 0 and lim/~. = 0 

(which implies, but  is not implied by, the fact that  the maximum area of the 
largest subrectangle of the (m, n) m subdivision of R approaches zero) it will be 
shown that  the double sequence of continuous functions ( u ~  (x, y)} is an equi- 
continuous double sequence of functions on R. By this is meant that  if {u,~N,(x, y)} 
is any singly infinite sequence of functions (with lim m, = lira n r = oo) extracted 

from the double rsequence {u~, ,(x ,  y)}, then the set of all functions u,,~.., where 
r-----1, 2, 3 . . . . .  is an equicontinuous set of functions. 

In order to show this, one has to find an upper bound for the absolute value 
of the difference urn. (~, ~) -- u . .  (x, y), where (~, y) and (x, y) are points of R. 
There are really four cases to consider, depending on the relative positions of 
the points (~,y) and (x, y) with respect to each other namely; x ~  and y < y ;  
~ < x  a n d y < y ;  x _ ~  a n d y < y ;  ~ < x  and y_~y. The first two cases are essen- 
tially the same by symmetry, i.e. by interchanging the roles of (x, y) and (~, y), 
and a similar remark applies to the last two cases. Only the first case mentioned 
will be considered here, since the treatment in the third case is exactly analogous 
to it. In the first case one has x ~ ,  y ~ y  and Xk~_X<Xk+ t ,  Y ~ Y ~ Y I + t ,  and 
x ~ <  x~+ x, y t ~ y <  Yt+t for suitable pairs of integers (k,/) and (~., 1). Further, 
x ~  x f ,  Yt ~ Yt and Xl~+l ~ XJ~+I , Y l + l ~  Y[,-i-1 ". 

From the definition of the function u ~  it follows that  

um.(~,y-3 - um~(x,  y) = u ~ . o -  uk, o + u 0 , r -  % :  + 

. + u ~ + ~ , o -  "~,o (~ _ x~) + * ,o ,Z+~-  Uo,~ ( y  _ Yz) - 
x~+ t -- x~ Yl+x -- YI 

u ~ + ~ . o - - ~ , o  (x - x~) - U o . ~ , ~ - u o . ~  (y _ y~) + 
x ~ +  z - -  x ~  Y / + t  - -  Y~ 

~- y, El~/,_,.,_,(x,-x,_~)(y,-y,_O]+ 

i = ~  i = t  
l k 

- Y.h.~-dx - x~) (y/- y;_,) - Y. l,-,i,i:', - ~,-~) (y - y,) + 
i = ~  i = 1  

+ 1 ~ ( ~  - x~) (y  - y~) - h , ( x  - x~) (y - y , ) .  
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H e n c e  

] ,u.,, i f ,  y) - Urn. (X, Y)] < c (x~+ l  - -  Xk)  -~- D (Yz+x -- Y,) + 2C o~,,, + 2Df l .  + 

+ M .  [(x~ - -  Xo) ( Y r -  Yo) - -  (x,  - -  Xo) ( y r  Ya)] + 2 M b ~,. + 2 M ~ t3. + 2 M 0~,. f t . ,  

in t e r m s  of t he  c o n s t a n t s  A, B, C, D, M which  were  i n t r o d u c e d  ear l ie r .  H o w e v e r ,  

x ~ + l -  x~ < ( ~  + ~m) - ( x  - ~m) = f f  - -  X) + 2 ~ , . ,  
a n d  s i m i l a r l y  

Yr+, - -  Y: --~ ( ;  + ft,) - -  (Y - -  fl,,) = ( ;  - -  Y) + 2fl,, 
while  

(x~  - x0)  ( y ~ -  y0)  - ( x ,  - Xo) (y ,  - y0)  

_<- (~ + ~m - Xo) f f  + fl,, - yo) - (x - ~ .  - xo) (y - fl,, - yo) 

=< f f  - Xo) (.~ - yo)  - ( x  - Xo) ( y  - yo)  + 

+ ~m E(Y - yo) + (y - y d !  + fl,, [ (~ - Xo) + (x - Xo)] 

_< (.v - xo) (~ - Yo) - (x - Xo)(y - Yo) + 2 b ~ +  2af t . ,  

so t h a t  f i na l l y  

] u~,, (JT, y) - -  Umn(X,y)] <~ 4(C + Mb)~.~ + 4 ( D  + M a ) f l .  + 

+ C(.~ -- x) + O (y -- y) + 2M.mfla + M [(.~: - -  xo) (y - -  Yo) - -  (x - -  xo) (y - -  Yo)J- 

S u p p o s e  e > 0  is g iven .  S ince  

l im ~ = l im  fl~ = O, 
m - - ~  o o  n - + o o  

t h e r e  a re  p o s i t i v e  i n t ege r s  m~ a n d  n~ such  t h a t  

4 (C  + Mb)~m + 4 ( D  + Ma)  fl,~ + 2Mo~,.fl,, < -~-e 

w h e n e v e r  m > m~ a n d  n >  n~. F u r t h e r ,  in  v i ew  of the  c o n t i n u i t y  of the  func t ions  
i n v o l v e d ,  t h e r e  is a n u m b e r  6 ~ > 0 ,  which  does  n o t  d e p e n d  on m a n d  n a n d  is 
such  t h a t  

C ( ~  - -  x)  + D ( y  - -  y)  + M [(.~ - -  Xo) ( 9  - -  Yo) - -  ( x  - -  xo) (y  - -  Yo)] < �89 e 

w h e n e v e r  I x - - ~ l < ~ ,  a n d  { y - - y l < O ~ .  Thus ,  w h e n e v e r  m>m~ a n d  n>n~ a n d  

Ix-~l<r l y - Y l  < 4 ,  
one has  

I . . , , ,  (x ,y )  - -  u,.,, (x, y)] < ~. 

Now,  le t  {u . . . .  (x, y)}, where  lira m , - -  l ira n. = oo, be  a singly in f in i t e  sub-  
r - - - ~  o o  r - - +  o o  

sequence  e x t r a c t e d  f rom the  double sequence  {u,.,,(x, y)}. Given  e > O ,  one 
c e r t a i n l y  has  rn. > m, a n d  n. > n, for all  b u t  a f in i te  n u m b e r  of pos i t i ve  in tegers  r, 
a n d  hence  

[u . . . .  (.~,y) - -  u . . . . .  (x ,y)]  < e  w h e n e v e r  b o t h  ] x - - Y  I < 6 ~  a n d  lY -Yl  < 6 , .  

S ince  o n l y  a finite n u m b e r  of va lues  of r a re  e x c l u d e d  and  the  c o r r e s p o n d i n g  
finite n u m b e r  of e x c l u d e d  func t ions  u . . . .  a re  c o n t i n u o u s  (hence u n i f o r m l y  
con t inuous )  on the  r ec t ang l e  R, i t  ea s i ly  fol lows t h a t  the  set  of func t ions  u ........ 
where  r = l ,  2, 3, . . . ,  is an  e q u i c o n t i n u o u s  se t  of func t ions  as des i red .  
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I t  follows then from AscoLI'S theorem (see ASCOLI [11 or TONELLI ~11~) that  
there is a subsequence of {u . . . .  (x, y)} which converges uniformly on R to a 
continuous limit function. This information is all that  is really needed to com- 
plete the proof of Theorem t of Section 2 (where / depends only on (x, y, z)), 
as can be easily seen by  particulari'zing the considerations of the following sections, 
and for this reason the proof will not be carried out in detail here. 

The formula for u,,,,,(x, y) given above was derived by  carrying out a step- 
by-step process such as would take place in an actual numerical solution. An 
alternative derivation of the formula for u,.,(x, y) will now be given. This 
second derivation seems to have the advantage of leading more quickly than the 
step-by-step method to a formula of the desired kind for other boundary value 
problems as well as for the present one. 

First, it will be recalled that  if the function F(x, y) is continuous for (x, y) 
in R, and the functions G(x) and H(y) are continuously differentiable on 
xo=< x ~  x0+ a and yo--< y=< Yo+ b, respectively (and G (xo) = H(yo)), then there 
is one and only one function w(x, y) which is continuous in R, together with 
~w/Ox, ~w/ay, and ?'~w/~x ~y ( :  ~w/~y  ~x) and satisfies the boundary valfle 
problem 

a~w (x, y) - F(x, y) 
~x ~ v 

w (x, Yo) = G (x) 

w (~o, y) =/~,(y) 

for (x,y) in R, 

for x 0 ~ x < - x  o + a ,  

for Yo~Y----<yo+b. 

The function w(x, y) is given by  the formula 
"X _~' 

w (x, y) = G (x) + n(y) -- w (x o, Yo) + f f V(~, rl) d~ d~l, 
xo Yo 

where w (Xo, Yo) ----- G (xo) = H(yo). 
Consider the subdivisions 

xo<  xx< x~< ... < xm< x 0 + a,  

y0<  Yl < Yz < "'" < Y, < Yo + b, 

which were employed in the step-by-step process leading to the equation for 
um~(x, y). By use of this subdivision of the rectangle R, the formula for w(x, y) 
may be rewritten as follows: 

k 1 

w (x, y) = G (x) + n(y) -- w (Xo, Yo) + ~. 
i = 1  i = l  

l x yj k xt 

+ X  f fF(~ ,~)a~an+Y f 

x i  ) ' j  

f f F(~,7) a~an + 
x,'--t )7--1 

)' x y 

f f ( , ,  ~7) d ,  d, 1 + f f f (~,  ~) d~ d~. 
j = l  .rk Yi-- t  i = 1  x i _  1 Yl Xk Yl 

This rewriting of the equation for w(x, y) makes no difference under the 
assumptions made about the functions F(x, y), G(x), and H(y). But it makes a 
difference when the differentiability and continuity requirements concerning 
F(x, y), G(x) and H(y) are relaxed siightly. Specifically; suppose that  F(x, y) 
is bounded in absolute value throughout R and continuous at all interior points 
of each subrectangle R~ff, with possible discontinuities allowed on the boundary 



372 J .B.  DIAZ: 

of any  such subrectangle. Sfippose also that  G(x) is cont'.muous throughout 
xo=< x Xo+ a and continuously differentiable for each x interior to a subinterval 
(i.e., such tha t  Xk<X<Xk+ 1 for some k) but  that  the derivative of Gix ) need 
not exist for the subdivision numbers xk. Similarly, suppose also tha t  H(y) is 
continuous throughout yo~  y ~  Yo+ b and continuously differentiable for each y 
interior to a subinterval (i.e., such that  Yz<Y<Yz+I for some l} but  tha t  the 
derivative of H(y) need not exist for the subdivision numbers Yl. The require- 
ment  tha t  G (xo) = HiYo) is still retained. Under .these relaxed assumptions, the 
rewrit ten formula for w ( x, y) shows immediately that  w (x, y) is continuous on 
R and satisfies the partial  differential equation 

a , ~  (x, y) - ~ (x, y) = F(x, y) Ox Oy Oy Ox 

whenever (x, y) is interior to a subrectangle R~'l". Further 

w(X, y o ) = G ( x )  for Xo<X<Xo+a, 
W i x o , y ) = H ( y )  for y o _ < _ y < y o + b .  

This last observation and the rewritten formula for w(x, y) furnish im- 
mediately the desired formula for u,..(x, y) upon taking Fix, y), G(x), and H(y) 
to be certain suitably chosen functions. One need only take for F(x, y) the 
following (piecewise constant) function defined on Xo~ x ~  Xo+ a, yo <= y<= Yo+ b, 
by  

F(x ,y )=/k l  for Xk~X~Xk+ 1 and yt<=y<=y~+l. 

while for x = Xo+ a and y -= Yo+ b 

F(x o + a, y) = / m - l . l  for Yl < Y < Y,+j, 

F(x, Yo + b) ='/.~,.-1 for xk< x < x~.x, 

F ( x  o + a, Yo + b) = L,--1, ,-1,  

where k = 0 , 1  . . . .  , m - - t ,  l = 0 , 1  . . . . .  n - - t ,  

while for G (x) and H(y), respectively, one takes the polygonal functions (compare 
the description of the Euler-Cauchy polygon method in the introduction): 

f a l x  ~ • f f ( x k + , )  - ~ ( x k )  i x _ ~ 

G(x)=!|  for Xk<X<Xk+ 1, and k----O,t . . . . .  m - - t  
/ 
t a ( x  o + a )  for x = x  o + a ~ x ~ ,  

and 
r (y3  + ~(y~+O - ~(y~) (y _ y~) 

Yl+l -  Yl 
H(y)= for Yl-----Y<YI+x, and l = 0 ,  t . . . . .  n - - I  

z (Yo + b) for y ---- Y0 + b ---- Yn: 

In verifying this remark, it must  be remembered that ,  in the abbreviated notatiOn, 
one has for example 

Uoo-~ U(Xo, yo), . ~(x , )  =- U,,o, ~(yl)--Uo, z. 
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w 4. The convergence inequal i ty  

In order to complete the proof of the theorems of Section 2, one has to con- 
sider the two double sequences of "part ial  derivatives" with respect to x and y 
of the double sequence of approximating functions of the last section. The 
quotation marks enclosing the phrase "part ial  derivatives" are a reminder that  
these functions must be precisely defined on R, especially along the boundaries 
of She subrectangles o f  R, where jumps may occur. The exact definition of 
what is meant by "part ial  derivatives" will be taken up in Section 5. Since the 
"partial  derivatives" in question are not necessarily continuous functions on R, 
in considering their convergence one cannot make use of the theorem of ASCOLI [1] 
on equibounded, equicontinuous sequences of functions employed in Section 3 
above. Instead, appeal will be made to a theorem of ARZEL.~ [7, pp. t t9 - -525]  
asserting the convergence of certain sequences of not necessarily continilous 
functions to continuous limit functions. The lemma of the present section 
furnishes an inequality concerning finite sums which serves as a basis for the. 
application of ARZEL2k'S theorem in Section 5. The result of the lemma is termed 
here the "convergence inequality" because of the central role it plays in the 
convergence proof of Section 5. I t  is remarked that  in the theory of the ordinary 
differential equation d y/d x----[ (x, y), an entirely similar r61e is played by  another 
convergence inequality (see, for example, BLISS [9, pp. 88--89]). The proof of 
the inequality of the lemma below resembles tha t  given by M. BRELOT [18, 
pp. 35--32] for an inequality'occurring in the theory of the ordinary differential 
equation d y/d x = / ( x ,  y). Compare also the inequality employed by H. BECKERT 
[z2, p. 53]. 

L e m m a .  2"/ 
(t) t is a positive integer,/o,/1 . . . . .  h is a sequence o/ t + 5 non-negative numbers, 

and %, z, . . . . .  zt is a non-decreasing sequence o~ t + 5 real numbers (so that z j--  zi-1 ~ 0 
/or i = 5 , 2  . . . . .  t): :' 

(2) the numbers L>= 0 and e ~ O  are such that the inequality 

l 

_ h ~ _ e + L Y / p x ( z i - - z j - 1 )  
i = l  

is va l id /or  l = 5, 2 . . . . .  t ; then 

(3) the inequality 
t 

holds /or l = 5,2 . . . . .  t. 

Proo/. I t  will be shown by mathematical induction that  

j ~ l  " i = l  

for l =  l ,  2 . . . . .  t, which implies the desired conclusion of the lemma, since 
5 + L ( z ~ - - z g _ ~ ) ~ t  f o r i - - l , 2  . . . . .  t and e + L / o ( z ~ - - z o ) ~ O .  

For l----t the asserted inequality follows from hypothesis (2). and the fact 
that  t + L(z 1 -  %) ~= t,  because 

e + L Io (~, - ~o) ~- {5 + Z:(~ --~o~}{e + L lo(z, - -  zo)}. 
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Now for the inductive step. Suppose that  the inequality to be shown holds 
for a positive integer l<=t-- t,  then it will be shown to hold also for the integer 
l + ! in place of l. This is readily seen, because then, by  the inductive hypothesis 
and hypothesis (2) of the lemma, one has 

/ l < ~ e - i - L E / i _ l ( Z i - Z ~  1 ) < =  [ t + L ( z , - - z i - 1 ) ]  e - J -L /o (Zx - - zo )  } 
i = l  , -  

w h i c h ,  together with the equality 
1+1 1 

8 -~- L ~ ]~,._ 1 (21-  2 1 _ i ) ~ { 8  -~" L Y] [ f_l  (Zj -- Z]_I)} - ~ [ I ' L ' ( z I + I - - Z I ) ,  
1=1 7=1 

implies that 

1=1 I =1  

and the proof is complete. 

I t  is of some interest, although it is not needed in the considerations that  
follow, to point out that  the inequality contained in the lemma just proved is a 
finite difference analogue of an inequality due to T : H .  GRONWALL [10, p. 293], 
in the continuous case. (See also G. SANSONE [21, vol. I, pp. 30--31].) Making 
suitable changes (in order to conform with the present notation) in the statement 
of GRONWALL'S inequality, as given by SANSONE, one obtains the following result : 

I f / ( z )  is a non-negative continuous function defined on the interval zo~ z=< 
Zo+a and there exist numbers e>:0 and L ~ 0  such that  

z 

0 ~ / ( z ) < _  ~ -+- f L / ( t ) d t  
zl, 

for z o ~ z ~ z  0+a ,  then 

0 ~ / ( z ) ~ e e  z'a for z o < : z ~ z  o + a .  

In order to compare this last inequality .with the inequality of the lemma 
proved here~ for each positive integer t consider the following subdivision of the 
interval z 0 ~ z ~ % +  a : 

Zo =-- Zo,t =~ zt,t "< z2.t "<= " "" ~ z t -Lt  =< zt, t ~ Zo -r a, 

and suppose that  the hypothesis (2) of the lemma holds, with z i and ]i being 
replaced, respectively, by  zi, t and /(zi, t). Then the conclLlsfon of the lemma 
proved reads 

/(~,,,) < ,H  [~ + L(z~,,- ~,_,,,)? {~ + L 1o(~,,,- ~o,,)} 

that is, 
l (zi , ,) < e L~. {e + L lo(z,,t - Zo)}, 

whose relationship in the  ilmit to the inequality of GRONWALL cited above, 

/ (z) < ~ d" ~, 
is clear. 
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w 5. The  double  s equence  of  func t ions  a p p r o x i m a t i n g  the  partial  der ivat ives  
of a so lu t ion  

Consider the double sequence of approximat ing  continuous functions u .~  
defined in Section 3- I t  has been pointed out  a t  the beginning of Section 4 tha t  
the part ial  derivative with respect to x of u~ .  exists in the usual  sense and  is 
finite on R save possibly when x is equal to one of the finite set of numbers  
{recall the abbrevia ted nota t ion  in t roduced at the end of Section 3) 

Xl ~ X 2 ~  . . .  ~ X m -  1, 

where jumps m a y  occur. (Of course, it is unders tood tha t  when x = x o and 
x =  x o + a ,  b y  the "par t ia l  derivat ive with respect to x "  of the function u ~  
are mean t  the one-sided limits 

lim u ,~  (~', y) -- u,.,, (x o, y )  
~T-.-~.x o .~ - -  X 0 
�9 > Xo 

and 

lim u~ ,  (~, y) - u,~,~ (x0 + a, y) 
�9 -~.o+~ � 9  (Xo+a)  ' 
~ < X o + a  

respectively.) A similar s ta tement  applies to the derivative with respect to y 
of the function u ~ . ,  the possible jumps  now occurring when y is equal to one 
of the finite set of numbers  

Yl < Y~ < "'" < Y,-x, 

a corresponding agreement  being made about  the "par t ia l  derivatives with 
respect to y"  of the function um~ when y = Y0 and y = Y0+ b. For  reasons of 
symmetry ,  it is clear tha t  one m a y  restrict  a t tent ion to the x derivative, similar 
considerations being applicable in the case of the y derivative:  In tu i t ive ly  
speaking, it will now be shown, using the lemma of Section 4, t h a t  the magni tude  
of the jumps in 8u ,~ , /ax  can be made arbi trar i ly small b y  choosing both m and n 
sufficiently large. 

First, consider the function u~n on the closed subrectangle R~'3, where 
k = 0, t,  . . . ,  m --  ~ and l = 0, t,  . . . ,  n - -  1. By  its ve ry  construction,  the function 
u~ ,  is bilinear in x and y on the subrectangle R~':*. In  view of the formula for 
u~,, given in Section 3, when (x, y) is a point  of the rectangle R~'l * which is not 
on its closed left and r ight-hand rectilinear bounda ry  intervals (i.e., when the 
point  (x, y) satisfies the inequalities x~ < x <  x,+t  and Y l ~  Y<~ Yt+x), then 

l 

e ~ , _  (~, y)  _ ~ + , . o  - ~,0 +~,  1~,:_~ ( y  _ y : - l )  + 1~, (y  - -  y , ) .  

On the other hand,  when the point  Ix, y) is on the closed left-hand rectilinear 
boundary  interval  

x = x~, Yl < Y < Yl+t, 

then the r ight -hand x de~rivative 

~+u~ u ~ , ~ ,  y) -- u,~,(xk, y) 
~x (xk,y) ---- lim 

Arch. Rational Mech. Anal.,  Vol. t 2 6  
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where x k < ~_<_ x~+ 1 and Yl ~--Y~--Yz+I, exists and is a linear function of y. Simi- 
larly, when the point  (x, y) is on the closed r ight-hand rectilinear boundary  
interval  

x = x~+l, Yl < Y --~ Y~+I, 

then the left-hand x derivative 

0-$~m n 0x (x~+l ,y)= lim u , ~ . ( ~ , y ) - - u . , . ( x k + l , y )  
,~'--~xk+l X - -  X k + l  ' 

where x k_<_ ~ < xk+ 1 and Yz --~ Y--~ Yl+~ exists and is a linear function of y. I t  is 
to  be noticed tha t  the "par t ia l  derivative with respect to x"  is constant  on R~'t" 
for each fixed y; tha t  is, for each y such tha t  YI----< Y--~ Y.,+x one has 

O-urn n 0+urn. 0Umn (X, y) - -  (Xk+l,,,) 

for all x satisfying x k <  x <  xk+ x. 

The max imum absolute value of the difference between the values of the 
"par t ia l  derivative with respect to x "  of urn. on two subrectangles R~"~" and R~"~" 
at the same y level will now be est imated by  use of the lemma of Section 4. 
Suppose, for definiteness, tha t  k ~  k. For  the rectangle R~'~" there are formulas 
for Ourn.['O x,  etc., similar to those just  derived for R~'~", which need not  be recorded 
here explicitly. One also has tha t  for each y such tha t  Yt < Y--~ Yt+x the equali ty 

O-Utah o+u.,, ou.. .  (x, y) - (x~+~, y) 
ox (xk,  y)  = -b-x- ox 

holds for all x satisfying x~ < x <  x~+ 1. Consequently, the problem of est imating 
the m a x i m u m  absolute value of the difference between the values of the "par t ia l  
derivative with respect to x" of u~ .  on the two subrectangles R~'l" and R~'l" 
reduces s imply to the est imation of m a x imum absolute value o f  the difference 
of the two functions of y, 

O+ t~rnn O+ Um n 
ex (xk'  Y) and ~ (x i ,  y ) ,  

which are l inear functions of y on the interval  Yt <Y<----Y~+x. In  view of the 
l ineafi ty of the two functions involved, the desired max imum absolute value 
of their  difference, 

O+umn O+Urn n max - - - - -  (xk, y) (x~, ~;)] 
y~-~ y<yt+~] Ox Ox 

is just  equal to the m a x i m um  of the four numbers  

O+1ff m n O+u-""- (xk, Yl+l) (x~ Yt+l) Ox Ox ' 

0+urn" 0+urn" (x~, Y3 Ox (xk, Yl) Ox 

O+u,n ,t O+um n Yl) ~ - -  (x~, Yl+l) 0x (x~, , 

Ox (x~, y3 Ox (x~, . 



The Polygon Method 377 

I t  is to be noticed that  only the estimation of the first two of these numbers 
requires special attention, since it will turn out that  the last two can be made 
arbitrarily small whenever the difference Yz+l--Yz is chosen sufficiently small, 
the reason for this being the continuity of ~+u,~,[Ox with respect to y for each 
fixed x. For example, 

O+urn~ tx ~+urn~ YI) ~ - -  t k, Y~+~) ax (x~, 

O+Umn O+Uran Y l + I )  O+Um~ O+Umn ] < e~ (x~,y~+~) ex (x~, + 0x (x~,y~+~) a x  (x~,yz) .  

Further,  since the first number is obtainable from the second merely by  replacing 
l by l + 1 ,  all that  remains is to estimate, for each pair of fixed integers k > k ,  
the n + t numbers 

~3+um n O+um n ] 
ox (xk, y~) a~ (xk, Y~)I' 

where l=-0, t . . . . .  n. For l =  0 this absolute value can be made arbitrarily 
small, and the lemma of Section 4 will now be used in showing that  the absolute 
values for l =  t . . . .  , n can also be made arbitrarily small. 

O+Umn , O+lgmn Now, from the definition of ~ (x k, y,) and ~ (xk, Yt) (recall, for 

example, that  u . , . ( x ,  Y3, for x k <  x<_xk+a, is 'a linear function of the single 
variable x) together with the previous formula for O+u,..[Ox obtained in this 
section, it follows that  (recall that,  for example, u,. .(xk+~, Yt)=--Uk+x,l) 

O*~mn ~+~Xmn Uk +l,l -- U.~,I ~ + 1 , 1  - -  UJ~,I ~x (x,,  yz) a .  (x~, y~) = * * + 1 -  x~ x ~ + ~ -  ~ 

l 
U k + l ,  0 - -  Uk, 0 uJ~+l,O - -  uJ~, 0 

: x~+x--x  k x ~ + t : ~  + ~ ( [ k , i - x - - l L i - 1 ) ( Y i - - Y i - t )  
i=1 

for l = t . . . . .  n.  

The proof that  the absolute value of this last difference can be made arbitrarily 
small provided that  m and n are chosen sufficiently large will now be completed, 
at first under the hypothesis required of the function in Theorem 2, i.e., that  [ 
satisfies a Lipschitz condition in all three of its last arguments z, p, q (see hypo- 
thesis (t) of Theorem 2). The argument will be Carried out first in this case 
because it is somewhat simpler than the corresponding argument when ] satisfies 
a Lipschitz condition only in its last two arguments p, q (see hypothesis (t) of 
Theorem 3)- I t  will also be supposed at first, again for the sake of simplicity in 
writing, that  the function ](x, y, z, p, q) does not depend on x and y, that  is 
/-/(z, p, q). 

Accordingly, under the hypothesis (t) of Theorem 2, one has that  (recall the 
description of the abbreviated notation ]~,i-x introduced in Section 3): 

IL~.;-1 - & i - d  --< L l[u~.,_~ - -  u~,i_ll  + -~+_ . . j -1 -  ~ _ _  , a - i  _ -~+1.;-___ ~-- ~ . i - 1  + 
[ X k + l  - -  Xk X f + i  7 X~ 

+ Uk, i - -  ~, i--1 Ui,I--  U~,i_ x } 
Yi -- Yi - t Yi -~ Yi-  t _ ' 

26* 
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and consequently 

] o+umn O+umn Yl) Uk+l'l - -  uk' l  uIi+l,l - -  *~,l [ ~ -  ( x , ,  Y3 ~ (x~,  = - -  _ _  
] X k + l - -  x k x~+i-- xl~ I 

< uk+~,o - U_k,o U~+t,o--U~,o] 
--- I x k + ~ - -  xk x~+ i x~ + 

l 

The term in the last inequality which involves the difference quotients with 
respect to y requires special attention. Consider the function um~ on the rectangle 
Rk~_i . From the formula for u .... given in Section 3 it follows that 

k j - 1  

~ , : - ~  - ~ , o  + ~o , : -1  - ~oo + X Y / , _ ~ , : _ ~ ( x ,  - x,_~) (y :  - y :_~ ) ,  
/ = i  J=l 

and k i-~ 

uk,~ = -  uk, o + ~o,:  - Uoo + ~, ~ /~_~,:_~(x~ - x~_~) (y:  - y:_~)  + 
i = 1  J = l  

k 

+ F, /~ -~ , : -a  (x~ - -~'~-0 (y~ - y:-~)  ; 
i = 1  

hence k 
~ k , j  - -  ~ k ,  ] - -1  - -  __~O,] - -  "O ,  ] - - I  _~_ Z / i - - l , / - - 1  (Xi -- Xi--1). 

3'/-- Y i - t  Yj--  Yj- i  i = 1  

Similarly 
,.,~.:- u~.;_, _ ~o. , -  *'o.,-, + y . / ~ _ ~ . j _ ~ ( x ,  - x,_~). 

Yj-- Yj- t  -37JZ Y~-I i=t 
and thus 

Uk, ] - -  Uk.j_ 1 Uli,j - -  Ul~,j_ 1 
Y i -  Y/-1 Yi-- Yj-1 --  Z / i-a, /-x(xi  --  Xi-1)" 

i ~ k + l  

Further,  in view of this 

i=1~ ] Uk'i--Uk'/--~Y/-- Y:--t U~'/--UL/--tY/2-Y/--t (Y/--Yi-x)--=i~=~'= i=a+lZi/i--i,/--1 (Xi--Xi--1) (Y/--Yj--1) 
Ii l r I; 

The inequality for 
O+u . . . .  (xk, Yd 0+um"0x ('x~' y )-t" 

may now be rewritten in the form 

+ 
] X k + i - - x  k Xfi+l xk ] - - [  X k + i - - x  k X~+i--XI~ 

l 

+ L ~ [•k,]--i - -  "]~,j--1] ( Y j -  Yj--1) + Mb(x~ - -  xk) + 
j=l 

i--~1 t (yi--yj_i)  for l =  i, 2 . . n. 
+ L �9 uk+x,/-~ -- Ukd-t . . . .  u~+x,/-t -- U)~,]-i 

.= x k + z - -  xk X ~ +  l -  X~ { ' " ' 
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This last inequality is precisely of the saroe type as tha t  of hypothesis (2) of 
the lemma in Section 4, upon identifying, in particular, t with n, t he /y  and z i 
occurring there ( f o r / ' =  0, t . . . . .  n) with the present 

l uk+x,j - -  uk,j ~I~+l,j - -  ul~,j 
x,ir X k X ? ~ + x -  X]~ 

and Yy, respectively, and the e of the lemma with 

m a x  IN gtl~+l' 0 - ~k' 0 ~J~+l' ~ -'- q~' ~ -~- 
0 s  Xk+ 1 -  X k X~+ 1 -  XJ~ 

' ) 
+ L Y [ (Y;-- YJ-,) + Mb(x  - -  , 

i=1  

which, as will now be shown, can be made arbitrari ly small merely by  choosing 
m and n sufficiently large and I xk-- x~ I sufficiently small (in view of the assumed 
continuity of the derivative a'(x) and the e.quicontinuity of any subsequence 
{u~ , (x ,  y)}. with lim m, = lim n, = oo, which was shown in Section 3). In  f---~ oo y--+ oo 
verifying this, one can use the mean value theorem of the differential calculus, 
since for k = 1, . . . ,  m - -  t 

u~+l,o--Uk, o u~+~,o-ULo _a,(x~) _a,(x~) ' 
-~k+l - -  xk x~ +  i - -  x~ 

where Xk<X~<Xk§ 1 and x~<x~<x~+ 1. Let e > 0  be given, then there exist 
(see Section 3) positive integers m, and n~ and a positive number b, such tha t  
whenever m, > m,, ~, > n, and [ x k -  x~ I < (~* one has 

I 

max /L~ ' luk j_x--ULi_ l l (y j - -y i_ l )+Mb(x ~ Xk) } 1 - -  ~ ,  
o < k < ~ < m - l k  j = t  ' 

where u (x, y) is written for um,~, (x, y). Also, in view of the uni]orm continuity 
of the function a'(x) on the interval xo~_ x<=Xo+a, it follows tha t  

~ k + l , O  - -  '/a:k, 0 ~- ' [ -1,  0 - -  '/AJ~, o ] ] 
I xk+x x~ x~+ t - x ~  . ~ - e "  

Consequently; from the conclusion of the lemma of Section 4 it follows tha t  

X k ~  1 -  X k X~+ l m x ~  
n 

{i/~l  E ' -~- i (y i - -Y, - - l ) ]}  {~:"~/- ~: (Yl--Yo)} ~-< { i ~ !  eL(Yi--Y'-"} ( ~ ' ~ L  E (Yl--Y0)) 

for  =t,2 . . . . .  

(It  should be noticed tha t  the last inequality also holds for l = 0.) 

The last inequality has been obtained under the two assumptions that  the 
function / satisfies a Lipschitz condition in all three variables z, p, q (hypothesis 
(1) of Theorem 2) and tha t  [ does not depend explicitly on x and y; that  is, 
[~/ (z ,  p, q). The derivation of a similar inequality, in the case when [------ 
/(x, y, z, p, q) satisfies only a Lipschitz condition in the two variables p, q (hypo- 
thesis (t) of Theorem 3) will now be sketched. As in the previous case, the initial 
step, where the Lipschitz condition is applied, is in estimating the absolute value 
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of the difference [k, i- l --[~, i- l" This can now be done as follows by adding and 
subtracting the number 

/ ( X k ;  Y j - 1 ;  Ul~,j 1; q ~ k ; l ' J f - - l ~ U k ' J - - l "  U k ' i - - U k ' j - - 1 ]  
Xk {-1 - -  Xk ' Yj - -  Yf--1 .] 

to the difference in question. One obtains 

/k , j - -1  - -  /~ , j - - I  = [ ( X k ;  Y j - 1 ;  • k , j - 1 ;  U k + l ' J - - ~  Uk'j--1 " 7"r - -  i*k,j--l'] 

�9 u k , J - -  ~ t k , j _ t l  - - [ ( X ~ ;  Y j - - I ;  " l~ , j -1 ;  u k + t d - ~ - ~ u k ' i - 1  y Z ~ , ~ _ i  ) + 
Xk+ , - -  g k ~ 

+/(x~;  YJ 1; uL,-1; -uk+t'J-~tZ Uk,j-t , uk, i--'uk,i--t ] 
X k + x - -  Xk ' Y i - -  Yi - 1  / 

U~+l,i_ ~ -  u~,i_ ~ u~,i- u~,j_~ ] 
- - t  x~; yj_~; u~,~-_l; x~,~-x~ ; ~'-yj-~-~ ]i" 

Using this and the Lipschitz condition with respect to p and q, one has 

$~k+l,l - -  ~k, l  uk +1,I - -  ~ , l  

Xk ~ 1 Xk X]~ + 1 - -  Xk 

< uk+,.o Z Uk.o u.~+__l.OUu.~.o I + ~  Ilk.i-l-- 1,,-, I  (y , -  y: ,) 
- -  xk+ t - -  x k X~+ 1 -  XJ[ j = l  

- -  X k +  1 -  X k X ~ + l - - X ~  

l ( Uk~.t, i--I  - -  *~k,j--t . Uk, i - -  Uk, i - - l '  

-~-]~=1 ] Xk; y] 1; Uk,l--1; X k + l - - X k  ' Y i - - Y i  -1  

--  /('J[; Yj-I: '/r Uk+l']--1--"k,]--1, ' g k , ] - -  * * k , i - 1 ) [  

l 
-@" t ~-~ ~[ 'U 'k+ I '~ ' - - lZ  qA'k']'--I ~ 'J~+l , i -1- -~/ '~ ,J- -1  2[_ 

i_C.~t / i x ,~+: t - -  x k x ~ + l ~ x ~  

~L " k , j  - -  " k , j - - I  ~:J~, ]" - -  g/'J~,j--I I/<y: - y j - l )  . 
Yi Yi-t Y/ ~ Y/-1 [J 

The term in the last summation involving the explicit difference quotients with 
respect to y may be handled exactly as before, yielding the same result: 

~, u?'--~uk~'L-t uL~--~u~'~-~ (Yi-- Y~-~) <= Mb(x~ -- Xk). 
i = l  Y ] -  Y / - 1  Y / -  Yi 1 

Thus, one has finally 

[ UJ~+I,/ - -  U~_,I "14"~+1,[,--'~'~',1 1 'gk +1, O ~ U~,O U '  ~71,_0 - -  U' ,  O 

'b/ 'k+l,]--I - -  'b/'k,;/-- 1 ~l~k, ? " -  ~k , / - -1 ]  
+ ~ . ~  [ Xk; Yi--1; Uk,j--1; ?'=1 Xk+l-- xk YJ-- Yi-t / 

-- /(X~; y/_t;Ul~,i_l; Uk+l ' i - -1  - -  Uk'i--1 " uk'] - -  Uk'l'--l'l] [ " U . -  

"3(- Mb(,~-- ,k) -~- L l[ u k + , . j _ l  ~.~ ~k,.i . I " ~ + l , j - 1 -  'bl~,]'--I [ ( y i _ _  Y;I--1) 
_ xk+ t - -  x k xJ~+x - -  X/[ 

for l = 1 , 2  . . . .  , n .  
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This inequality is again precisely of the same type as that  of hypothesis (2) 
of the lemma in Section 4, upon identifying, in particular, t with n, t h e / i  and z~ 
occurring there (for/" = 0, t . . . . .  n) with the present 

[uk+l,i--uk, i u~+l.i--~',.,[ 
X k +  x x k x J ~ + t  - -  x/~ 

and Yr respectively, and the e. of the lemma with 

max {l u'+~'~176 =- u'+~'~176 + 
0 < k <  J ~ < m - I  X k +  l - -  X k X ~ +  1 XJ~ 

l 

-- / x~;. Yi-x, u~.i-x; 
�9 " k ~ - - * k  " Y i - - Y / - 1  ] l  ~ ' l  : ~ - l J ~  , 

which (as will now be indicated, without e~tering into the detailed argument) 
can be made arbitrarily small (i.e., less than any positive number given in ad- 
vance) merely by choosing m and n sufficiently' large and I x~ - xll sufficiently 
small. In showing this, use is made of the assumed continuity of the derivative 
a'(x); of the equicontinuity of any subsequence {u,~,,(x, y)} with }imoo~n,= 

lim n, = 0% which was shown in Section 3 ; and of the uni]orm continuity of the 

function /(x, y, z, p, q) on any Closed and bounded set of points (x, 3), z, p, q) 
satisfying 

(x,y) inR,  - - Z ~ z < Z ,  - - P < : p < P ,  - Q ~ q < Q ,  

with Z, P, Q positive numbers. Notice that  it can readily be seen, from the 
definition of u ~  and of the difference quotients involved, that  there exist 
positive numbers Z, P, Q such that  

I~ : l  < z ,  
i m 

. . X k +  1 ~ ~1r - -  

[ u~,t+t--uk,t ~_.Q for k = 0 ,  t . . . . .  m and l = 0 , 1 ,  n - - I  y Z ~ = ~  .... 

and for any pair of positive integers m and n, where one uses the abbreviated 
notation, Ukt----U'~(Xk, yt), etc. In particular, since 

uk+~,z--*,k,~ u~+~,,-- uk,0 +~/, 
Yi-1) , 

I 

x'k+1 -- ..~l~ xk+1" -- Xk j=1 

one may choose P = C + M b, 

in terms of the constants C, M and b of Sections 2 and 3- This being granted, 
one obtains exactly as before, by an application of the lemma of Section 4, that  
i f . e > 0  is given, then there exist positive integers me and n, and a positive 
number ~, such that  whenever m,>m, and n,>n,,  and Ix,--x~[ < 6 ,  then 

]u~+,,,-~k,, ~ + ' , ' - ~ , '  < : b { ~ + r ~ ( y l - y 0 ) }  for z=0,1  , . . . . .  ,~. 
X k +  1 Xk, X J [ + I  Xj~ - -  ' - -  
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I t  is now t ime to define the double sequence of functions {pm~(X, y)) cor- 
responding to the double sequence {Umn (X, y)} of Section 3. The double sequence 
{Pro, (x, y)} will be, roughly speaking, a sequence of functions approximating 
the partial  derivative with respect to x of a solution, h view of the possibility 
of jumps in ~u~Jax,  the function p ~ ( x ,  y) has to be defined carefully in R, 
to make sure it is single-valued. For each pair of positive integers m and n, 
the function Pmn is defined as follows, for points (x, y) in the closed rectangle R: 

~ U m n  , 
~ x ~  (x, y) whenever xk< x < xk~ 1 for some k = 0, t, . . . ,  m - - l ,  

b+Ura~ , p,,,,,(x,y) = ~ -x  ~x,y) whenever x : x ~  for some k=O,'l  . . . . .  m - - i ,  

tx, y) whenever x = x~ = x 0 + b. 

The function p ~  possibly has jump discontinuities only when x =  x~ . . . . .  x ,_  1 
and is continuous in the two independent variables x and y at all other points 
of R. 

This double sequence of functions {p,,, (x, y)}, as may be readily seen from 
the formulas given for aUr,,,/Ox, ~+u,~,,/~x and ~-u,.,,/Ox given earlier in this 
section, is equibounded in absolute value on R. That  is to say, there is a positive 
number  P, which is independent of m, n and of (x, y), such that  

IPm,,(x, y)l <-- P 

for any positive integers m and n, and any point (x, y) of R. 

Let {p . . . .  ) denote any singly infinite subsequence of functions (with 
lirn m, =,~oolim n, = oo) extradted from the double sequence {p,,, (x, y)). Let e> O. 

From the preceding considerations it follows that  there exist positive integers m~ 
and n, and a number b , >  0 such that  whenever (~, ~) and (x, y) are points of 
R satisfying 

Ix --.Vl < ,S,, ly--~Y] < ~ , ,  

and m,>m, ,  n ,>n, ,  then 

lP . . . .  (~,~) - p . . . . ( x ,  y)[ < e.  

(In ARZE~,'S terminology [7, p. t t9] ,  the subsequence of {p,,,,,(x, y)} for which 
m, > m, and n~ > n ,  is equioscillating by  less than ~. This can be proved by  an 
argument similar ~o that  used in Section 3 in showing that  the sequence {u.~,,(x, y)) 
is equicontinuous. There are again four cases to consider, depending on the relative 
positions of the points (~, ~) and (x, y) with respect to each other. As in Section 3, 
only the case when x < ~  and y ~ ;  need be considered in detail. Here one has 
x k ~ x ~ x k+x; Yl --~ Y--~ Yt+x; and x~ ~ ~ ~ Xf+x; Yl ~ 5 <: Yz+x for suitable pairs of 
integers (k, l) and (k, 1). Further xk<x~; yl<=yz and :~,'+,NX~+l; y l+lNyt+, .  
The inequalities deduced earlier in this section for 

I 
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may then readily be employed to obtain the desired result, the details being 
as follows. Now 

~ . . ( ~ , y - )  - ~ m . ( x , y )  = [~m~(~,~) - ~ . ~ ( ~ ,  y)J + [ ~ . ~ ( ~ ,  y) - ~ . ~ ( x , y ) ] ,  

where the point (~, y) is in the subrectangle R~'z ~ because x~<:~x~+t  and 
Y~ ~Y~Yz+I- This, together with the definition of the function p~ . ,  implies the 
inequality 

] p . . ( ~ , ~ )  --  p ~ . ( x ,  y)] < ] Pm,,(~, Y) - ~m.(~,  y)] + ] ~ . ( ~ ,  y) - -  p,~.(x, y)[ 

+ 
m 

t xs  1 x~ j I x k + x - -  x~ J 

- -  XJ~+I - -~J~  xJ~+l - -  xJ~ xJ~+l - -  xJ~ X k + l  m Xk 

+ l(y - y~) /~ l  + 21(y - y,)/~,[ .+  I(y - y,)/~,I 

Yi-x) + u~+l,l-- u~,l  u~+l,l-- uk, l + 4 Mf l . ,  
--- i= /+1  x j i + x - -  x~ x / , + x - -  x k 

in case xk~x~x~+ x for some integer k = 0 ,  t . . . . .  m - - t  (this only excludes 
x = x0+ a, which will be treated separately below) and the integer ~ is chosen 
(if possible) so that  x~_~_x~+x,  with ~ = 0 ,  t . . . . .  m - - I  (if ~ = x 0 + a ,  which 
is seemingly excluded at first, the inequality just written still continues to hold, 
but  with ~ replaced by m - - t ) .  If x =  xo+a, a case definitely excluded above, 
then one must necessarily have �9 = xo+ a ( =  Xm) too, and then 

IP..C~,y-) - p . . ( x , y ) ]  

X m -  Xt~t_ 1 X m -  X m _  1 

I 

These inequalities nowreadi ly  furnish the desired "equioscillation" property of 
the singly infinite sequence {Pro,.,}. 

Since the sequence of functions. {p=,,,} is equibounded in absolute value', and 
since for each e >  0 there are posiiive integers m, and n, and a number t~, > 0 
such that  for all points (~,y) and (x, y) of R satisfying Ix- l <~ . ,  ly - l <~,  
and for all m, and n~ satisfying ms>m ,, n ,>n,  one has 

l #m. . . (~ ,~)  - # ~ . , , ( x ,  Y)I < *, 

it follows from a theorem of ARZELX [7, pp. t t 9 - - t 2 ) ]  that  there is a continuous 
function p (x, y) defined on R and a subsequence of the sequence {pro,.~ which 
converges uniformly to the continuous function p (x, y) on R. For a proof of 
this particular result needed here, carried out under the equivalent hypothesis 
that  the given sequence of functions has zero "Grenzschwankung" (see CARA- 
TH~-ODORY [17, p. 3] for the definition of this term), reference is made to 
H. BECKERT [~, pp. 24--27]. 



For reasons of symmetry, without further discussion i t  is clear how the 
double sequence {q,, ( x ,  y)) ,  which approximates the y derivative of a solution 
is defined. It is also clear that there is a positive number Q, which is independent 
of m, n and of ( x ,  y) such that 

Iqrnn(x, Y ) I  5 Q 

for any positive integers 7% and n and any point ( x ,  y) of R. Let {q,,,,} denote 
any singly infinite subsequence of functions with lirn m, = lirn n, = cu extracted 

t-+w t-+W 

from the double sequence of functions (q,, ( x ,  y)). Again, by ARZELA'S theorem, 
one concludes that there is a continuous function q ( x ,  y) defined on R and a 
subsequence of the sequence (q,,,, ( x ,  y) )  which converges miforndy to q ( x ,  y) 
on R. 

5 6. The existence of a solution 

Consider the double sequences of functions {u,, ( x ,  y)) ,  { p , ,  (x ,  y)), and 
{q,, ( x ,  y)).  In Section 5 i t  was pointed out that there exist positive numbers 
2, P, and Q such that for any positive integers nz, n and any ( x ,  y) in R, one has 

I t  is remarked, since use will be made of this fact immediately, that the continuous 
function f ( x ,  y, z ,  p, q) is uniformly continuous in ( x ,  y, z ,  p ,  q) on the closed and 
bounded five dimensional set of points defined by 

That is, given E > O  there is 6,>0 (which may be chosen to be less than E ,  for 
later convenience) such that whenever (Zl, yl, G, &, &) and (Z,, y,, T,, p,, q,) 
satisfy the inequalities 

and 

Let (urn, (x, Y ) } ,  where lim zn, = lim n, = oo , be a singly infinite subsequence 
r-+m ,+a? 

of the double sequence (u,,(x, Y ) } ,  and suppose further that (see Section 3) 

where the convergence to the continuous function u ( x ,  y) holds over the rectangle 
I?. From Section 5 ,  it follows that the corresponding subsequence {prnrfir(x,  y ) )  
itself contains a subsequence which converges uniformly on R to a continuous 
function p ( x ,  y).  For simplicity, suppose the subscripts have been chosen so 
that the subsequence {P,,~,~) itself converges uniformly on A to ;b ( x ,  y). Making 
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a similar agreement about subscripts, it may also be supposed that  the cor- 
responding subsequence {q,~,~,(x, y)} itself converges uniformly on R to a con- 
tinuous function q(x, y). Summarizing, one concludes that 

:im~.,~(~, y) = .(~, y), 

limp,, ~., (x, y) ----- p (x, y), 

lim q~,,, (x, y) = q (x, y), 

the convergence to the-continuous functions u, p, q being uniform on R. It  will 
now be shown that  the function u (x, y) is a solution of the boundary value 
problem under study. 

In view of the above mentioned uniform continuity of [ on a certain closed 
and bounded five-dimensional set of points, it follows that  

l i rn/(x,  y, u,.,..(x, y), p,.,,~(x, y), q,..,,,(x, y)) = l(x, y, u(x, y), p(x, y), q(x, y)), 

the convergence to the continuous limit function being again uniform on R. 
Furthermore, since the limit function 

[(x,y,u(x,y) ,  p(x,y) ,  q(x,y)) 

is continuous on R, the following Riemann integrals exist for all (x, y) in R: 

x y 

f f/(~,n, uC&,7), P(~,n), q(~,n) d~dn, 
XO Yo 

X 

f / (~ ,  y, u (~, y), ~ (2, y), q (~, y)) a~, 
xo 

Y 

f 1(~,,~, u (~, ~), p (~,,~), q(~, ~)) a~; 
Y* 

the order of integration with respect tQ ~ and ~7 may be interchanged in the 
double integral without altering its value. All this information will now be used 
in order to show that  the function p is precisely the x derivative of the function 
u and that  the function q is precisely the y derivative of the function u. 

Let e>O, and let ~,>O be such that  e > 8 , > O  (the restriction e>~5, is made 
for later convenience) and that  also 

I / (~1, yl, zl, pl, ~)  - / ( . ~ , ,  ~ ,  ~ ,  ~ ,  q~)l < 

whenever the points (s Yi, zi, ~i, qi) satisfy both 

x o < ~ _ X o + a ,  yo~_y~_yo+a, I ~ ] ~ Z ,  ]p~I<~P, ]q~[ =<Q, 
and 

1~,- .~ .~l<6, ,  ] ~ l - y 2 1 < b , ,  I~x-- iz l<6, ,  I ~ , - L I < 6 ~ ,  I~ , -q~ l<6 , .  
..,.. 

In view of the uniform continuity of the functions u (x, y), p (x, y) and q (x, V) 
on R, there is another number ~* > 0 (which for convenience will be chosen such 
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that  e > O. > 6* > O) such that  

I P (#,, n~) - P (~,,  m) l < ~. < ~, 

whenever the points (~1, ~h), (~,  ~*) of R satisfy the inequalities 

- < - 

Further, there is a positive integer N, such that  

[P (~, v) - p.~..(~, ~)] < 6- < 6~, 

[q(~, n) -- q-~.,(#, ~)1 < 6" < O., 

and (c]. Section 3 for the definitions of ~m and ft.) also 

whenever 
~.~< 6* < ~., B. .< O* < ~., 

m . > N ,  n . > N , ,  

and (~, 7) is any point of the~rectangle R. 

Let (x, y) be a point of R and m, and n, be positive integers such that m ,>N,  
and n , > N , .  These positive integers m, "and n, and the numbers e, be, 6~* will 
be supposed fixed during the immediate discussion. The notation of Section 2 
(fo~ example, writing x~ instead of X,,,.k) will be used in the next computation 
for simplicity in writing. There are integers k and l, with 0 ~  k ~ m , - - 1  and 
O~ l<= n , - - t ,  such that  xk<---x~ xk+ 1 and Yt = Y<= Yt+l, i.e.," such that  the point 
(x, y) being examined lies in the closed subrectangle R~k f "~.- Recall that a (0) = �9 (0) 
and consider the difference 

[ + " '  l 
u . . . . .  (x, y) - -  a (x) T (y) - -  a (0) + f f / (~, ~7, u (~, ~), p (~, .q), q (~, *1)) d~ d , l t ,  

xe Yo 

which may be written 

u,~ ~,(x, y) - [~ (x) + ~ (y) - (~ (o) + 

' "' f ' /  ,7, (~ ,~) ,p(~ ,~) ,q(~ ,~))a~a~+ + Y Y  f (~, ,, 
t = l  f = l  x~_ 1 Y]--I 

+;. / ,, f l(~,n, u(~,~),p(~,,7), q(~,,~)) a~a,7 + 
j = l  xk ~I--1 

k x i y 

§ Y f f / (~ .r l ,  u(~,~),P(~,rl ,)q(~,~))d~dll§ 
i = 1  xC_ 1 Yl 

x y 

x k  y l  
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Recalling the definition of u,,,,,,(x, y) from Section 2, and the fact that  

]i-a,i-a = ] (xi-1, Yi-x, u,,,,,,,(Xi-x, Y/-1), P,,~,,(xi-1Yi-1), q,,,,,,,(xi-x, Y/-1), 

from Sections 2 and 3, one has, for example, tha t  

I I ,-x,i-t  -- 1(8, '7, u(8, ,~), P (~, '~), q(8, ~))1 

11 (xi-1, Yi-1, u~.,,n..(xi-1, Yj-1), P~n,(xi-1, Yi-x), qra,,~,(Xi--i, Y.,'--t)) - 

-/(x,_~, y/_~, u(x~_~, y;-1), P (x~_l, Yi-1), q(x~_l, y/-1))] + 
+ [[ (xi-1, Yj-1, u (xi-~, y~-~), p (xi-t ,  Yi-t), q{xi-t ,  YJ- t)) - -  

whenev.er xi- 1N ~ N xi and N-  1--~ ~ N_ N" Consequently, the absolute value of the 
difference u,~, , , - -[ . . . l  is less than (see Seciion 2 for the definition of the con- 
stants C and D) 

la(x) -- a(xk)] + I~(Y) -- ~(Yl)I + C- (x -- xk) + D.  (y --  Yt) + 
l 

+ yo) + - ( y ; -  + 

N 2e(C + D + ab + ,b  + ea-(- e ~) 

whenever m, >  N, and n ,> N~, and hence 
x y 

�9 u{x, y) = or(x) + ,(y)  -- ~r(O) + f f/(*,~?, u(*,n), P(Ln) ,  q (8, ~/)) a,a,~ 
Xo Yo 

for any (x, y) in R. From this last equality it follows" that  8u/Ox, 8u/Oy, and 
8*u/Ox 8y ( =  8iu/Sy 8x) exist and are continuous throughout the rectangle R. 
As a mat ter  of fact 

0 u  Y 

0~ (~'Y) -- a'(x) + f/(x,,1,'u(x,,7), pCx,~), q(x, n)) ae, 
Yo 

O U  x 

~y (x, y) = ~'(y) + f 1 (~, ~-, ,, (~, y), p (~, y), q (~, y)) a~, 
XO 

while O~u O~u 
O. Oy ('~' y) -- Oy O. ('~' y) --  / (x, y, ,, (x, y), # (x, y), q (,r y)), 

for any (x, y) of R. 

The proofs of Theorems 2 and 3 will be complete once it is sho~aa that 
u/O x =-- p and "Ou/O y ---- q. I t  suffices to consider only 0u/0 x. Let ~ > 0 be given, 

and the numbers , > ~5, > r > 0 and m, > N,, n, > N, be as in the argument 
just carried out. Let (x, y) be a point of R. There are two cases to consider: 
either x~<~ x <  x~+ 1 and Yt ~ Y<~ Yt+x for suitable integers k and l, with 0 ~  k ~  
m,- -2  and O ~ l ~ n , - - t  or x,,,,_x~x~x,,,,=--xo+a, and Yt.~Y~Yt+x with 
0_--< 1 ~ n , - -  t. Consider the difference 
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which may  be written (in either of the two cases mentioned, with k----m,-- t  in 
the second case) 

l y j  f 

P . . . .  ( x , y ) - - [ a ' ( x ) + X  f / ( x ,~ ,u (x ,~ l ) ,p (x ,~ ) ,q (x ,~?) )d~+ 
j = l  Y t - ~  

+ f'[  (x, n, u (x, ~), # (x, ~), q (x, ~2)) d~j. 
Yl 

Recalling the definition of p . . . .  (x, y) from Section 5, and the fact that  from 
Sections 2 and 3 

/~-1,i-1 = / (x ; -1 ,  y j - l , u  . . . .  (x,_~yj_~), p ..... (xi-~, yj-~), q . . . .  (x,_l, y i -d) ,  

one has again, for example, that  

l 1i-i,~-, --  I ( L  n, u(~,n), P(L n), q(~,'J))l < 2e, 

whenever xi_x<=~<--_x, and yi_~_~l<--_y.j. Besides, the mean value theorem of 
the differential calculus and the definition of the constant C of Section 2 imply 
that  

]"~+"~ -~"k'~ o,(x) = i ~ , ( x .  ) _ o'(x)l _-< Clx* -x l  <-_ c~,,. 

Consequently, the absolute value of the difference p . . . .  (x, y) --  [ . . .]  is less than 

eC + 2~(~; (x,-- x,_,)) + 2~(x--x~)=< e(C + 2a), 
' i = I  

whenever m, > N~ and n, > N~, and hence 

Y 

p (~, y) = ~'(~) + f I (x,,7, ,, (x, ~), p (~, ~), q (~, ~)) a~ 
Y0 

for any (x, y) in R. Since the right hand side of the last equation is already 
Ou Ou 

known to be equal to ~ (x, y), it follows that  --0x-~ p' as desired. By sym- 

metry  one has also that  
x 

q(~, y) = , '(y) + f 1(~, y, ~(~, y~, p(~, y), ~(~, y)) a t  
x0 

for any (x, y) in R, from which it follows that  Ou/Oy ~ q, and the proof is complete. 

Under the hypotheses of Theorem 3, the preceding argument shows that  any 
singly infinite subsequence {u . . . .  (x, y)}, where lim m, = oo and lim n, = oo, 

r ~ : ~ c  r --> oo  

contains a subsequence which converges uniformly on R to a solution. On the 
other hand, under the hypotheses of Theorem 2 (in ",,,hich case there is but one 
solution) the preceding argument implies that  the wholedouble seua.~ee {u,,,~(x, y)} 
converges io the solution, i.e. that  

lim u~,, (x, y) 
m ~ o o  

n ---~ oo  

is the solution, the convergence being uniform on R. 
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