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Abstract. This paper?! develops, with an eye on the numerical applications, an
analogue of the classical Euler-Cauchy polygon method (which is used in the solution
of the ordinary differential equation

Z—,’,’=/(x, Vi ¥(x0) =)

for the solution of the following‘ characteristic boundary value problem for a hyper-
bolic partial differential equation

xy = f(x, Y, U, Uy, yy)r
u (¥, ¥o) = 0(%),
u (%, ¥) = 7(¥),

where o(x,) =7(y,). The method presented here, which may be roughly described
as a process of bilinear interpolation, has the advantage over previously proposed
methods that only the tabulated values of the given functions ¢(x) and 7(y) are
required for its numerical application. Particular attention is devoted to the proof
that & certain sequence of approximating functions, constructed in a specified way,
actually converges to a solution of the boundary value problem under consideration.
Known existence theorems are thus proved by a process which can actually be em-
ployed in numerical computation.

! This paper was issued on 16 January 1957 as NAVORD Report 4451, U. S.
Naval Ordnance Laboratory, White Oak, Maryland, and was presented to the Ameri-
can Mathematical Society in October 1956.
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§ 1. Introduction
The classical initial value problem for the ordinary differential equation

dy _
s (%, %),

(where the real valued continuous function /(x, y) is defined for %= x=xy+a
and — co<C y<C -+ o) consists in the determination of a real valued function y (%),
defined on %y < x < xy+ a, which satisfies the given ordinary differential equation
on this interval, and also satisfies the initial condition

¥ (%o) = Yo,
where y, is a given real number.

Among the many methods which have been employed for proving the existence
of a solution y(x) to this problem, mention will be made here only of PICARD’s
method of successive approximations (see e.g., G. SanNsonE [21, vol. I, pp. 9—14],
E. L. IncE [12, pp. 63—65], E. A. CoppingToN & N. LEVINSON {28, p. 11—13],
or E. KaMke [I6, pp. 51-—56]); of L. ToNELLI'S method (see, e.g., L. ToNELLI{13],
G. SaNsONE [21, vol. I, pp. 45—48]); and of the Euler-Cauchy polygon method
(see, e.g., G. SANSONE [21, vol. I, pp. 36—45, vol. II, pp. 208—283], E. L. INCE
{12, pp. 75—81], E. A. CoppingToN & N. LEvINsoN [28, pp.3—7], E. KAMKE
[16, pp. 62—064], or G. A. Biiss [9, pp. 86—92)).

For the numerical purpose of the actual construction of a solution the Euler-
Cauchy polygon method is usually the most advantageous. The construction of
the Euler-Cauchy polygons may be described as follows. For each positive in-
teger m, let

A= Ao m <Xy < X< <Ay <Ay = %o+ &,

be a subdivision of the interval xy<x<x,+a into m closed subintervals
e mSXZ=Xpq,, wWhere 2=0,1,...,m—1. On each such subinterval the
ordinary differential equation is, so to speak, replaced by one whose right-hand
side is a (suitably chosen) constant, so that the corresponding function ap-
proximating a solution turns out to be a linear function on each subinterval.
More precisely put, the polygonal function y,,, which is an approximation to a
solution, is defined recurrently by the equations

dw.
d.xm (x) :/(xo,m;%): ym(xo,m) :yO) on xO,méxgxl.m-
dy . .
dxm (X) =f(xl,mr yl)r ym(xl,m) :le on A’l,méxéxzm:
4 : : :
d};m (x) = f(xk,m; }’k): ym (xk,m) = Y on xk,m é x é xk-}—l,m’
for k=0,1,...,m—1. Notice that, for simplicity in writing these equations,

the symbol y, is uscd to denote the:valuc of the function y,,(x) at x; ,,, a value
which is obtained from the definition of y,, as a lincar function on the preceding
subinterval x;_4 ,,< x< x; ,, and which is used as an initial value for the function
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y,,(¥) for the “‘miniature” initial value problem (of the same kind as the original
one, but whose differentig! equation has a consfant right-hand side):

D (2) = (i 90, I () = Vi
on the next subinterval %, , <%= x,,,,. For each positive integer m, the func-
tion y,,(¥) is continuous on the interval x,< ¥=< x,+ a4, but its derivative will,
in general, not exist throughout the interval, since it may jump at the subdivision
numbers x, . *

Under the sole additional hypothesis that the function f(x,y) is bounded in
absolute value on ¥,= x< %3+ 4, — co<<y<C 4 oo, it follows that the sequence
of functions {ym(x)} is equibounded in absolute value and equicontinuous on the
interval x,< x< x,+ @, and hence, by AscoLl's.theorem [1] (see also TONELLI
[11, p. 76—86]) there is a subsequence of the sequence {ym(x)} which converges
uniformly to a continuous limit function on x,=< x=< x4+a. If, further, it is
supposed that the maximum length of the subintervals of the subdivision of
Xy= x= x,+ @ approaches zero, t.e.

lim [ max _1(xk.&1.l,,,—x,,,m)] =0,

m—ooc “k=0,1,...,m

then every such continuous limit function is a solution of the original initial
value problem, whose solution need not be unique. (It should be noticed that
the condition on the maximum length of the subintervals is automatically satis-
fied in the most common case when the »'™ subdivision consists of » subintervals
of cqual length, namely a/m.) If, besides this, the function f(x, y) satisfies a
Lipschitz condition with respect to ¥, i.e. there is a number L=0 such that

If(x:yl) _f(xx)’z)l §L|J’1_y2|r

whenever x,< ¥x< xy+ a, then the whole sequence {ym (x)} converges uniformly
on x,< x<x,}a to the (known to be unique) solution of the original initial
value problem.

The purpose of the present paper is to develop, with an eye on the numerical
applications, an analogue of the Euler-Cauchy polygon method for the solution
of the characteristic boundary value problem for the hyperbolic pertial dif-
ferential equation

u.t)'z /(x, y} ur ux; uy);

(where the real-valued continuous function f(x,y,z, #,¢) is defined for all
(x,v,2,p,q) satisfying '

X SAS X0+ a,  YoSYSYe+ b and —oo<z,p,q<+ o).

The problem in question consists in the determination of a real-valued function
#(x, y) which satisfies the given partial differential equation on the rectangle
Xo= xS xpt+a, Yo=V=y,+b, and also satisfies the conditions

u(x,yp) =o(x) for xySx=x,+a,

(g, ¥) =(y) for yo=y=w+90,
Arch. Rational Me: h, Anal, Vol. 1
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where a{xy) =7(y,) and o(x) and 7(y) are given continuously differentiable
functions on the characteristics y=y, and x=x, of the given hyperbolic
equation. (The treatment of this boundary value problem by successive approxi-
mations goes back to E. PIcaRD [4] and has been considered by various other
methods by many writers since that time.) For each pair of positive integers m
and #, consider the following subdivisions of the intervals

H=x=x+a and y=y=y,+0,
Ko =Ko m < Xy < Xg << <X g < Xy = %o+ 4,
Yo = yo,n<yl,n<y2,n<"'< yn—l,n<yn,n Ey0+br

which produce a subdivision of the rectangle ¥, < *< xy+a and y,<y=<y,+b.
The miniature problem in the present method (see Section 3 for details) is as

follows:

52
‘;}'gi' (x, ) =A;y, for i, Sx=x,, NSEYSYaq

Upn (%, V) = Dy Br(x — %),  for 5= 2= x4,
Un (%2, Y) = Dry+ Cri(y —91),  for =y <y,

where A;;, B, Ci; and D,; are suitable constants, depending on the sub-
rectangle (for simplicity in writing, x, has been written for x, , and y, for y; ,
in the formulation of the boundary value problem for the subrectangle). This
means that on each subrectangle, the approximating function w,,, is bilinear in
(x, ¥), i.e. it is a hyperbolic paraboloid:

Upn (%, Y) = Api(x — 2) (¥ — ¥1) + Bri(x — %) + Cos(y — y) + Dy

The process just described reduces in the special case of the equation u,,= f (x, y, u)
and equal subdivisions of the intervals x,<x< xy+a, Vo<Sy=y,+ & to the
process given by G. ZWIRNER [24, pp: 222—223], who did not consider the more
general equation treated here. Similar methods, analogous to the one described
above, have been employed to prove existence theorems for the same boundary
value problem by P.HaRTMAN & A. WINTNER [26], R. H. Moork [29] and
R. ConTI [27], but they do not appear to be as convenient for numerical pur-
poscs as the one described above, which requires knowledge only of the tabulated
values of the given functions o (x) and 7(y) (from which the difference quotients
needed may easily be calculated) and does not require the tabulated values of
the first derivatives ¢’(x) and 7'(y). Mention is also made of a different, but
closely related, method, also analogous to the Euler-Cauchy polygon method,
given by H. LEwy [14] (see also H. BECKERT [22]) for the solution of the initial
value problem for second order quasilinear partial differential equations in two
independent variables, which appears to require more differentiability assump-
tions than the present method.

The statement of the known main results and their connection with the existing
literature is given in Section 2. Section 3 contains the precise description of the
analogue of the Euler-Cauchy polygon method and the construction of the double
sequence of functions {u,,,(x, y)} approximating a solution. Each function #,,,



The Polygon Method 361

is continuous, but not necessarily differentiable with respect to x and y on the
rectangle ¥, < x < %+ a, ¥o=y=1y,+b. Section 4 contains an inequality, termed
the convergence inequality, which is used, together with a theorem of C. ARzELA
[7, Pp.119—125] on the convergence of certain not necessarily continuous
functions to continuous limit functions, in order to complete the proof of the
existence of a solution in Sections 5 and 6.

§ 2. Statement of known results
Theorem 1. I} |

(1) the real-valued function f(x,y,2) is defined for all (x,y, 2) such that
HE=XZXta, Ye=Y=Yt+bh —oo<z<+ oo,

where 560, Yo, &, b are real numbers, and a =0, b=0, and if f(x, v, 2) is continuous
and bounded in absolute value, so that for a certain non-negative constant M one has

|flx, 92| = M
for all these (x,v,2);

(2) the real-valued function o(x) is defingd for all x such that x,<x< x%,+a
and possesses a continuous first derivative o’ (x) for all these x, while the real-valued
function 1 (y) is defined on the set yy=y< v+ b and possessés a continuous first
derivative T'(y) for all these y (it being understood, of course, that 6'(x,), for example,
denotes the right-hand derivative of o at x,, €lc.); then

(3) there is at least ome real-valued funciion u(x, y) defined on the rectangle

R: %<zSx%+a, %<y<yy+b,
which is continuous, together with its partial derivatives duldx, Ouldy, P*ulox-0y
(=0%u|0y 0x) on R, satisfies the partial differential equation '
g8 .
a*y‘l;;(x:y)=i(xry:u(xry)) fOf (x,y) n R

and the characteristic conditions
u(x,y) =0(x) for x=x=%+a,
(%, ) =1(¥) for y,<y=y,+b.

It is to be noticed that this theorem asserts the existence of at least one
solution to the characteristic initial value problem under consideration, but that
the uniqueness of the solution is not asserted, and is, in fact, in general not true.
(See P. MoNTEL [8, pp. 279—283].) One need only consider the following simple
example of a characteristic problem (¢f. P. HARTMAN & A. WINTNER [26, p. 84]
and P. LEEHEY [23, p. 23]) consisting of the partial differential equation

U1 <
axay_iul for 0<x<a, 0Zy=<h,

and the initial conditions
u(x,00=0 foro=x=<a,

u(0,y)=0 for 0=y=b,
25*
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which has as solutions both
ul (x’ y) = 0 L
and
uy (%, y) = 75 X% %,

on the rectangle 0=x<a, 0= y<bd.

Theorem 2. If
(1) the real-valued function [(x,y,z, P, q) is defined for all (x,y,z, p, q) such
that
HExZx+a, Y E2vEy+b  —oeo<zpg<+ o0,

and is continuous and bounded in absolute value, so that for a certain non-negative
constant M one has

[, v2,0,9|=M

for all these (x, v, z, p, q), and if f satisfies a Lipschitz condition in the three argu-
ments z, P, q (that is, there is a constant L' =0 such that one has

[f(r,y.2.0.9) — v, pr@)| SL|z—2z| + L|p—p| +Llg—ql,
or any (z,9,9) and (z;, Py, q\), whenever (x,y) lies in the rectangle
y =9 b1 q
R: n=x=x+a, Y%=y=yt+b);

(2) the real-valued function g(x) is defined for all x such that xg<x<xy+a
and possesses a continuous first derivative ¢'(x) for all these x, while the real-valued
function T (y) is defined for all y such that yo,< y=< vy+ b and possesses a continuous
first derivative for all these vy, then

(3) there is ome and only ome real-valued function u(x, ) defined on the rec-
tangle R, which is continuous together with its partial derivatives
ou  ou au o%u
G 5y aey |7 aver) MR
satisfies the partial differential equation
ou )

Eu oy gy Gy B
Zray BN = Hlr vy, 5 () 5 5)

P for (x,y) m R,

and the characteristic conditions
u(x,vy) =o(x) for xy< x = xy+a,

ulxe, V) = 1(y)  Jor yp=y=yo+0.

This second theorem does not contain the first theorem as a special case,
since the function f(x, v, 2) of Theorem 1 is not assumed to satisfy a Lipschitz
condition in the argument z. However, if in Theorem 2 the function f(x, v, 2, 9, ¢)
does not depend on p and g, then Theorem 2 vields the additional information
that if f(x, y, z) of Theorem 1 does satisfy a Lipschitz condition in the argument z,
then the solution whose existence is assured by Theorem 1 is indeed unique.
Theorem 2 is the classical theorem of P1cArD [3] mentioned in the Introduction.
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Theorem 3. If

(1) the real-valued function f(x, v, z, p, q) is defined for all (x, v, z, p, q) such
that
%= 22 %yt a, Y Sy=ve+ b —oo<zp,g<<oo,

and is continuous and bounded in absolute value, so that for a certain non-negative
constant M one has

[fxyzp9 =M

for all these (x, v, z, D, q), and if | satisfies a Lipschitz condition in the two argu-
ments p, q (that is, there is a constant L=0 such that one has

[f(x5.2,0.9) — f(x. .2, )| S L|p —pl+L|g—aq
for any (p, q) and (p,, q,) whenever (x, y) lies in the rectangle
R: ny=x=x+a y=y<y,+5,
and z is any real number);
(2) the real-valued function o(x) is defined for all x such that
X=x=x,-+4a,

and possesses a continuous first derivative o'(x) for all these x, while the real-valued
function ©(y) ts defined for all y such that

Yo=Y=9¥+ b
and possesses a continuous fivst derivative for all these vy, then

(3) there is at least one real-valued function u(x, y) defined on the rectangle R
which is continuous together with its partial derivatives du[éx, duloy, S*ul/dx oy
(=*uloy 0x) on R, satisfies the partial differential equation

0%u
2x dy

ou
éx

(xry) Zf(xxy,“(%y),

17 .
(®9), 5 (%) for (x.y) R,
and the characteristic conditions
w(x,yo) =0(x) for x¢<x=Z x5+ a,

u(xg,¥) =T(¥) Jor ye=y<y,+ 5.

This third theorem contains the first theorem as a special case (and the
same example used there is applicable here). The hypotheses made in the third
theorem are such that the part of the second theorem concerning the existence
of a solution follows, while the second theorem yields the additional information
that if the function f(x,y,z, 9, ¢) satisfies a Lipschitz condition in (2, $, g)
together, rather than just in (p, ¢), the solution #(x, ¥) whose existence is asserted
by the third theorem is indeed unique. Theorem 3 was first proved by P. LEEHEY

23] and P. HARTMAN & A. WINTNER [26]. For more general theorems sce
R. Coxnt1 [27] and A. ALExIEWICZ & W. OrLICZ [30].
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§ 3. The double sequence of functions approximating a solution

Let m and n be positive integers and consider the corresponding subdivisions
of the intervals x,<x<1x,+a and y,<y=y,+ b, as follows:

Xg = xo,m<x1,m<x2,m< <xm—l,m<xm,mE'xo"*‘ a,
Yo=Yo,n <Y1, <2, <" <Vn—1,n < Yu,n = Yo+ b.

These subdivisions of the intervals x,<x< xy+a and y,<y=<1y,+ b produce a
subdivision of the closed rectangle R into m - # closed subrectangles RY;", where
k=0,1,...,m—1 and I=0,1, ..., n—1. The closed subrectangle R}, consists

in all (%, ¥) of R which satisfy the inequalities

Om=XE X1 me YiaSYEYii1n-

Given the functions g (x) and v (y), defined on the closed intervals x,<x<x,+a
and y,= y=y,+ b respectively, a continuous function #%,,,(x, y) will be defined
on the rectangle R by a recurrent process, consisting in solving, on each sub-
rectangle R}/, a boundary value problem of the form &%#,,/dx 8y = constant,
with assigned (linear) values for #,,, on the two rectilinear closed intervals of
the boundary of R}/ which intersect at its lower left hand vertex (x, ,,, ¥ ,)-
Of course, the constant involved in the partial differential equation, and also
the linear boundary values, both depend on % and ! (and on » and #). The fact
that two adjacent rectangles, say R}/* and RR; ; for instance, have a common
boundary interval (since they are both closed subrectangles) will create no dif-
ficulty concerning the definition of the function #,,, for points lying on the
common boundary intervals, since the specific process employed in defining «,,,
will be such that the values assigned to #%,,, will coincide in this situation.

Suppose, for the moment, that #,, has already been defined on the sub-
rectangle of R with lower left vertex (%, ) and upper right vertex (x; ,,, ¥1,m),
i.e., the subrectangle defined by the inequalities

xogxgxk,mi 3’0§3’§J’1,m

where 1<k<m—1 and 1=</<#n—1. Then the definition of the function #,,,
will be extended to the slightly larger subrectangle defined by the inequalities

XS XZXpiimr YVoSYS=Vipyns-
by first defining it on the closed subrectangles
R:::;J R;::?: ey Z:r—l

in numerical succession (i.e., passing from R}'j to R}'}, and so on); then defining

it on the closed subrectangles

”n "t " mn
0,!» LI =+ k—1,1

in numerical succession (i.e., passing from Ry 7 to Ry7, and so on); and finall
0,1 1,1

defining it on the remaining closed subrectangle R} in order to complete the
definition of u,,, on the rectangle

x0§ xgxk+1,m; yoéyéyH—l,m‘
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(A simply drawn figure will readily make the process intuitive to the reader.)
Alternatively, the function u,,,(x, ¥} may first be determined on the m sub-
rectangles in a row:

RGT REL o Ry,

for the rows 1=0,1, 2, ...,n—1 in succession. There remains only to make
precise just exactly what boundary value problem, 7.e., what partial differential
equation and what boundary conditions, is to be solved on each subrectangle
R?". This will be done by showing how the process is started in the initial sub-
rectangle Rjy and how the step-by-step scheme indicated above can then be
carried out, using the given data, the given functions a(x) and z(y). The final
result will be an explicit formula for #,,,(x, ¥) at any point (x, y) of a typical
subrectangle R}/

On the rectangle RJy the function w,,, is required to satisfy the partial
differential equation (with constant right-hand side)

Oty "N (X m) =~ 0(%em) T(Yin) — T(Von) : 9
Sz (1) = (%0, yo, o(xg), Tm_ T om) | ) =5 D0nl) for (x,) in RES,

subject to the boundary conditions

umn(xryo) :O'(xo) +—U.(M(x—-x0) for xogx—g—xl.mr

Z1,m— %o
T(Ya) — T -
Uy (%0, V) = T (Vo) + (y;;H—o)* (¥ =50 for »=y=y ..

Roughly speaking, what is done in defining #,,, on Rgy is to take as boundary
conditions along its left boundary edge and its lower boundary edge certain
linear functions derived in a natural manner from the given functions z(y) and
o(x), and to use the value of «,,, at (x,, ¥,) and the slopes of these linear func-
tions in determining the constant value to be assigned to &%u,,,/0x 8y on Riy.
It is clear that, the boundary value problem for #,, on Rye being explicitly
solvable,

umn(x: y) = umn(xox yo) + .
YUmn (%1, m3 Yo) — Umn (%o, Vo)

+ X1,m— Xo,m : (

umn(xo;yl,n) — U (%o, Vo) (

Y1, — Yo,n
+ f(xo: Yor Ymn (%0, Vo),

% — %o} +

+ y — %) +

_”_‘mn(xl,m; Vo) — thmn (%9, Vo)

Z1,m— Xo,m

>

‘{ango; Y1,n) — Uma (%o, Vo)
yl,n - ZVo,n

) (= — ) (v — 0]

for-(x, ) in Rgy', where, for uniformity in the writing of formulas to appear
later, #,,, (%, o) has been written instead of ¢ (x,) or T(y,) etc. It is to be noticed
that u,,, is bilinear in (x, ) on Ry, i.e., it is linear in x for each fixed y and
linear in y for each fixed x. (From this point of view the process of defining
#,,, being described may be thought of as a process of bilinear interpolation,
so to speak.)
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Consider now the definition of #,,, on the rectangle R}, it being assumed
that «,,, is already known as a linear function on the left boundary edge, where
x = x; ,,, and on the lower boundary edge, where y =y, ,, of the closed rectangle
Ry*. Then u,,, on the rectangle R}}*, is required to satisfy the partial dif-
ferential equation with known constant right-hand side

o* U n

’ . . . U Xpr g ms Vin) — W (Kp i Vion)
37755/( y) f(xkum’ y’,”’ umn(xk,m' yl,n)r i L # MANTR, My T

s

xk-rl,m - xk,m
urgf{(}{k,m; yl-l—l,n) —umn(xk,m; yl,n)
Yiii,n =~ Yin

) for (x,y) in Ry,

and to coincide with an already known linear function of y on the left boundary
edge, where ¥ =z, ,,, and with another already known linear function of x on
the lower boundary edge, where y =y, ,. It is clear that #,,, is bilinear in (x, )
on R} and that

umn(xr y) = umn(xk,m; yl,n) +

+ “mn(xk+1 'f’;.ZI,ﬁl-‘ umn(xk s Vi, ) (x . xk,m) +
kt1,m ™ Xeom
Upn (X, ms Yibs,n) = Umn (Fp,ms Vi,n)
_+_ mn m 1n _ mn m n (y_y[,n) +

Viti,n— yl,u

+f(xk,m; yl,n; umn(xk,m; yl,n).

'”mu(xk t1, ms Vi, n) - umn (xk m V[’,'L? X
xkl—l,m— Xe,m ’
Umn (xk ms Vi1, n) Umn (xk m: », n)

S, *) =) (= 31), for (x,3) in REY.

This last formula does not exhibit the explicit dependence of the function
%,,,(%, ¥) on the given functions o (%), 7(y). In order to obtain a formula which
makes evident this explicit dependence on ¢ and 7, which will be essential in the
convergence proofs to follow, it is convenient to use an abbreviated notation
yielding more manageable formulas. For example, when considering the function
%,,,, With m and » regarded as fixed throughout the discussion, a functional
value such as

Upin (xk, m ) yl, n)

will be denoted simply by #,;, and a functional value such as

. . . N umn(xk-é-l'm; Yi, n) umn (xl\ ns M, n)
f(xk,m’ 3’1,”: umu(xk,mr yl,u)’ - ).’ T T )
ki,m ™ Xk,m

”",’,’f(x,’i-”'; yl—rivl',n) umn (xk ms 31, u) )
Yiti,n — Yin

will be denoted merely by f,,. Further, x, and y, will replace x,, and y,,,

respectively.

In this notation, the above formula for «,,(x, v}, for (x, y) in R}/, may he
rewritten

Up 1,0~ Upy Ut Uy
U (%, 9) = Uy + x;llmvk (x — ) + :‘1 l_ v (y--9)+F-(x—x) (v—w).
1
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Using this abbreviated notation, one has the following formulas for «,,, on each

of the rectangles Rgy, RY¢, Rgy, and R™ which are all special cases of the

last formula just written for R}, for (&, 1)=(0,0), (1,0),(0,1) and (1, 1),
respectively. In the first place

U n (%, Y) = thgg + =2 o= Yoo (x — x) + e “oo (y — %) + foo(* — %) - (¥ — ¥o)

11— %o N—
for (%, ¥) in RYy, that is, when x,<x=<x, and y,=y=7y;. In the second place

Uy (X, ) = 1o+ L“— (x —x) + 1T
—N Vi —

um (3’ — %) + fo (¥ — 1) (¥ — %)

for (x, y) in R}, that is, when x,<x<x, and y,=<y=y,. In the third place

Uy (%, ) = thy + PLL0L (5 ey  Hos T Mo () 4 for - (x — x0) (¥ — ),

X — X, Vo— W
for (x, y) in RYY, that is, when x,<x=<x, and y,<y=y,. In the fourth place

gy — Uy Uy 2~
Xeg— Xy ( 1) Vo —

U (%, Y) = g3 + uu (y —y) +h(x—x2)(y — ).

for (x, y) in RYY, that is, when %, <x<x, and y,Sy=y,.

The formulas for RF, Ry, and R}y will now be rewritten so as to reveal
the exact influence of the given functions ¢(x) and 7(y). From the formula for
{x,¥) in Rgy' it follows that

Uyq = u10+ g1 — Yoo+ foo (%1 — %) (V1 — %)

Substituting this expression for #%,, into the formulas for (x, y) in Ry¢ and RgY,
one obtains

g™ U9 gy — Ugo .
mn(x y) - M10+ X __xl (x xl) + .1'1_“)'0 ( y()) +

+ foo- ( — %) (¥ — ¥o) + o (x — %) (¥ — 0),

when (x,y) is in RY’, and that
o (%, 9) = gy + 10700 (x — xg) + B2 (y — ) 4

X — X Vo— W

+ foo (x — %) (Y1 — ¥o) + for (x — %0) (¥ — ¥1),
when (x,y) is in RgY"

mn

Now from these last two formulas for (x, ¥) in R}y and RgY)' one obtains

Uoy = tgy + U0 — U + foo(¥1 — %o) (Y1 — Vo) + Fro{¥2 — 1) (1 — ¥o),
and

Uy g = Uy + tgs — Yoo+ foo (¥1— %o) (V1 — ¥o) + for (%1 — %o} (¥2 — ¥1);

these, together with the already known equation

Uy == Uy o+ Ugy — Yoo+ foor (¥1— %o) (¥1 — Vo).
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can be used to rewrite the formula for (x, y) in RYY as follows:
Upn (%, Y) = thy0 + tgy — ”oo+ Zlo( “"71)"‘%:,—2“—“2l (y —») +
2
T foo (%1 — Xo) (11 — )’o) + for (2 — %) (11— ¥o) +
. + for (71— %) (¥ ) + fu(x — x) (y— ),
for (x,y) in RYY'
From the preceding considerations, the following general formula may be

obtained by a process of mathematical induction:

k1,0~ Uk Wo,I+1— Yo,1

3 (x —x) + -

Kz 1—xk Vit —J’I
il

4 2 2 (=20 (9 — v +_§1fk i1 =) (¥j — w0 +

it j=1

g (%,9) == 1450+ t 1 — thgo + v — ) +

k
+ glfi vl =2 )y — ) +Ffalx —x) (v — )

for (x, ¥) in Ry}, that is, when x,<x<x,,, and y,<y=<y,.,, where 2=0,1,

m—1 and [=0,1,...,n—1. It is readily seen that by putting (%, }) equal
to (0,0}, (1,0), (0 1), (1,1) in turn one obtains the formulas given above for
R3S, RYy, Ry, RTY, respectively, as special cases.

For each pair of positive integers m and #, there has been defined a sub-
division of the rectangle R into m - n closed subrectangles, and there has also
been defined on the rectangle R a real valued continuous function #,,(x, y).
This double sequence of continuous functions {u,,,,,(x, y)} is equibounded in
absolute value on R. For let 4, B, C, D denote non-negative real constants such

that lo(x)| <4, |o(x)—o(x*)|=C|x—=x*|,
whenever x%,<x<1x,+a, and %, <x*<x,+a; and
ltl=B, [t -t =Dly—y*,

whenever y,< y<1y,+5, and y,<y*<y,+b. (The existence of these constants
4, B, C, D follows from the assumptions made about the functions ¢(x) and 7 (y)
in any of the three theorems of Section 2.) Then, given (%, y) in R, one has
=2 %, and y;<y=<y,,, for some suitable pair of integers £ and I, with
0<k<m—1 and 0=</<n—1. Hence

Uo,1+1— Y1, ly yll+

U U
l mn x y|<luk0|+lu01|+luool+l k+l° k°||x xk|+ Vier— Vi

1— X

3 M w0y ) E M= ) by = 30 +

i=1g=1
k
+ 2 M(xi— 2, ) (y—y) + M(x—x) (y — ),
1:=1
where M =0 is an upper bound for the absolute value of the function f (see the

hypotheses of Theorems 1 to 3). Thus, by use of the definitions of the constants
A, B, C, D7just given, it follows that

|ty (%,9)| <24+ B+ Ca+ Db+ Mab,
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where the numerical constant on the right-hand side does not depend on the
point (¥, y) of R or on the pair of positive integers (m, #). This proves that the
double sequence of continuous functions {«,,, (%, y)} is equibounded in absolute
value on R.

Now, for each pair of positive integers (m, #), let the positive numbers a,,

and §, be defined by =, _max_ (xk+1 — )
0,1,.

and _
Bn= l_oTax Y1 — )

so that the product «,, - §, is certainly not less than the area of the largest sub-
rectangle of the subdivision of R corresponding to the pair of positive integers
(m, n). Under the additional restriction that
' lmg,=0 and Im§g, =0
m—> Q0 n— 00

(which implies, but is not implied by, the fact that the maximum area of the
largest subrectangle of the (m, )™ subdivision of R approaches zero) it will be
shown that the double sequence of continuous functions {u,,m (, y)} is an equi- .
continuous double sequence of functions on R. By this is meant that if {u,, , (x, 9}
is any singly infinite sequence of functions (w1th hm m, = hm #,=00) extracted

from the double sequence {#,,,(, y)}, then the set of all functlons Uy, n,, Where
r=1,2,3,..., is an equicontinuous set of functions.

In order to show this, one has to find an upper bound for the absolute value
of the difference u,,,(%,¥) —«,,, (%, y), where (¥,¥) and (x, y) are points of R.
There are really four cases to consider, depending on the relative positions of
the points (¥,%) and (x, y) with respect to each other namely; <% and y<y¥;
¥Sxand¥<y; x<xandy<y; ¥<« and y<¥. The first two cases are essen-
tially the same by symmetry, i.c. by interchanging the roles of (x, y) and (%,%),
and a similar remark applies to the last two cases. Only the first case mentioned
will be considered here, since the treatment in the third case is exactly analogous
to it. In the first case one has x<%, y<y and %, x< %1, <Y< ¥,4,, and
XpSES x5, YISTS yy4, for suitable pairs of integers (&, ) and (%, 7). Further,
H=x, NSy and % S X, VS Vi,

From the definition of the function %,,, it follows that

“mn(;\?:y—) - mn(x'y) = ug, o_“ko+“ol_“ol+

u
Ly YRne T ““(x-—x)—l-M(y—yl)_

XE+1— X% V41—
Upi1,0 ™ Uk,0 '“o 1417 Yo,1
— 2 (X — X)) — _ (y — ) +
xk+1 X Vi

Z Z Z Z 7= ;—1(x x;—y) (v — 3’;‘—1)] +

1=1; =1 j=

+i§1fk,f—1(’7 — %) (¥; — ¥j-1) +.=Zlf£—1,t(x; — %) (Y —y1) —

! k .
- _§lflz,i—1(x — %) (¥; — ¥i-1) —‘Elf;—m(xe — %) (y—w +
T IE =) (T — 1) — fu(x — %) (v — ).
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Hence
l’“m"(f,y) - umn(x! y)l é C(x5+l - xk) _'_ D(yl+l _yl) + anm—‘f— ZDﬁn +
+M'[(xﬁ—x0) (.VI—M))"(XI:“XO) (yl*yl)J+2Mb“m+2Maﬂn+2M“m.Bnr

in terms of the constants A, B, C, D, M which were introduced earlier. However,

X1 ¥ é (f + am) - (x - ocm) = (’? - x) + .de,
and similarly

Vi == (T +B)—(—B)=0 —y + 28,
while

(x5 — %) (¥1 — ¥o) — (% — %o} (V1 — %)
= (X + ot — o) (¥ + B0 — ¥o) — (¥ — o — %) (¥ — B — Y0
SE—2) (V=) — (x — %) (¥ —¥) +
4w, [(V = vo) + (¥ — iVoX_] + B [{(x — %) + (x — %p)]

S (¥ —xq) (V= yo) — (* — %) (¥ — ¥o) + 20, + 22,
so that finally
[t (£, 7) — th (5, ¥)] = 4(C + M b)ar,, + 4(D + Ma) B, -

+CE—x)+ Dy —y)+2Ma,p;+ M [(X— %) (¥ — ¥o) — (¥ — %o) (¥ — %) |-
Suppose >0 is given. Since
Jim 5= lim , =0

there are positive integers m, and #», such that
4(C+Mba,+4D+Ma)B,+2Ma,B, <te¢

whenever m>m, and #>#,. Further, in view of the continuity of the functions
involved, there is a number §,>>0, which does not depend on = and » and is
such that

CE—%)+ DI —y) +MUT—x)(V—y0) — (x — %) (¥ —3)] <3¢
whenever |x —%|<<é, and |y —¥|<9,. Thus, whenever m>m, and #>n, and

Ix =¥ <o, |y—¥y|l<é..
one has - -
lumn(x:y) —u,,,,,(x,y)|<e.

Now, let {#,,, (x,y)}, where lim m, = lim n, = oo, be a singly infinite sub-
r— 00

r— 00
sequence extracted from the double sequence {u,,(x, ¥)}. Given £>0, one
certainly has m, > m, and #,>>n, for all but a finite number of positive integers 7,
and hence

| Um, n, (%, F) — ton, n, (¥, ¥)] <& whenever both |x —X| <, and |y —F| <9,.

Since only a finife number of values of » are excluded and the corresponding
finite number of excluded functions u,_, are continuous (hence uniformly
continuous) on the rectangle R, it easily follows that the set of functions «,,,,_,
where 7 =1, 2,3, ..., is an equicontinuous set of functions as desired.
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It follows then from AscOLI’s theorem (see AscoLt [I] or ToNELLI [11]) that
there is a subsequence of {u,, (¥, ¥)} which converges uniformly on R to a
continuous limit function. This information is all that is really needed to com-
plete the proof of Theorem 1 of Section 2 (where f depends only on (x, y, ),
as can be easily seen by particularizing the considerations of the following sections,
and for this reason the proof will not be carried out in detail here.

The formula for #,,(x, ¥) given above was derived by carrying out a step-
by-step process such as would take place in an actual numerical solution. An
alternative derivation of the formula for #,,(x,y) will now be given. This
second derivation seems to have the advantage of leading more quickly than the
step-by-step method to a formula of the desired kind for other boundary value
problems as well as for the present one.

First, it will be recalled that if the function F(x, v) is continuous for (x, y)
in R, and the functions G(x) and H(y) are continuously differentiable on
%S xS xyt+a and Y=y y,+ 0, respectlvely (and G(xy) =H(y,)), then there
is one and only one function w(x, y) which is continuous in R, together with
ow|ox, dw|dy, and Pw/ox dy (=0%w/0y &x) and satisfies the boundary valtie
problem

B y)=F(xy) for (xy) in R
ax a:‘, v ) L Lk
w(x,¥y) = G(x) for xq= x < x4+ a,

w(xg,y) = H(y)  for ySy<yo-+b.

The function w(x, ¥) is given by the formula

vy
w(%,9) = G() + HY) — w(x. o) + [ [F(En)dsdr,
where w (%, ¥o) =G (o) = H(y).
Consider the subdivisions

Ko< < Xp< o+ < Xy < Hg+ 4,
Vo< M <¥p<<-<¥,<%¥%+b,

which were employed in the step-by-step process leading to the equation for
Umn (%, ¥). By use of this subdivision of the rectangle R, the formula for w(x, y)
may be rewritten as follows:

X

w(x,y) = G(x) + H(y) —w(xy, %) + ‘§=Z1 J fand‘dn+

Fi—1 ¥Vj—1
x 3

+3 f Ire Wdcdn+ S | [FEndsdn+] fFEnasdn.

J=1 %k Yji— i=1 X W TR ¥t
This rewriting of the equation for w(x, ¥) makes no difference under the
assumptions made about the functions F(x, v), G(x), and H(y). But it makes a
difference when the differentiability and continuity requirements concerning
F(x,y), G(x) and H(y) are relaxed slightly. Specifically, suppose that F(x, v)
is bounded in absolute value throughout R and continueus at all #uferior points
of each subrectangle Ry, with possible discontinuities allowed on the boundary
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of any such subrectangle. Suppose also that G(x) is continuous throughout
%= 2= %4+ a and continuously differentiable for éach x interior to a subinterval
(¢.e., such that x,<x<x,,, for some %) but that the derivative of G(x) need
not exist for the subdivision numbers #,. Similarly, suppose also that H (y) is
continuous throughout y,< y=< y,4 b and continuously differentiable for each y
interior to a subinterval (i.e., such that y,<<y<Cy,,, for some I} but that the
derivative of H(y) need not exist for the subdivision numbers y,. The require-
ment that G (x,) = H(y,) is still retained. Under these relaxed assumptions, the
rewritten formula for w(x, y) shows immediately that w(x, y) is continuous on
R and satisfies the partial differential equation

otw %w .

whenever (¥, y) is inferior to a subrectangle R};*. Further
w(x,y) =G(x) for %= x=< x4+ a,
w(to,y) = H(y) for yo=y=y,+0.

This last observation and the rewritten formula for w(x, y) furnish im-
mediately the desired formula for «,,, (, ¥) upon taking F(x, ), G(x), and H(y)
to be certain suitably chosen functions. One need only take for F(x, y) the
following (piecewise constant) function defined on %, < x< xy+a, Vo< Y=< Yo+ b,

.by F(x,9) =fu forlxk§x§xk+1 and y,=y=y,,

while for ¥=1%,+a and y=y,+b
F(xo+a,y) =fp-11 for 3=y <y,
F(2,y0+b) =fe, 1 for < x<x,,,,
F(xg+a,y,+b) = fm—-l,n—l,
where k=0,1,....m—1, I=0,1,...,n—1,

while for G (x) and H(y), respectively, one takes the polygonal functions (compare
the description of the Euler-Cauchy polygon method in the introduction):

o (%) + SFrd —o(®) (x — x,)

Xrt1— ¥i
G(x) = for x,=x<<x,,,, and £=0,1,...,m —1
o{xy+ a) for x =%+ a=x,,
and
7(y) + L) =) ()
Yitr— Wi
H(y) = for v, <y <y1, and I=0,1,...,n —1

T(yo+0) for y =y, +b=1y,:

In verifying this remark, it must be remembered that, in the abbreviated notation,
one has for example

g0 = (%y,¥o), . 0(%) =0, T(V) =thg,.
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§ 4. The convergence inequality

In order to complete the proof of the theorems of Section 2, one has to con-
sider the two double sequences of ““partial derivatives” with respect to x and y
of the double sequence of approximating functions of the last section. The
quotation marks enclosing the phrase ““partial derivatives” are a reminder that
these functions must be precisely defined on R, especially along the boundaries
of ghe subrectangles of R, where jumps may occur. The exact definition of
what is meant by ‘“‘partial derivatives’” will be taken up in Section 5. Since the
‘““partial derivatives’ in question are not necessarily continuous functions on R,
in considering their convergence one cannot make use of the theorem of Ascor1 [1]
on equibounded, equicontinuous sequences of functions employed in Section 3
above. Instead, appeal will be made to a theorem of ArzELA [7, pp. 119—125]
asserting the convergence of certain sequences of not necessarily continuious
functions to continuous limit functions. The lemma of the present section
furnishes an inequality concerning finite sums which serves as a basis for the
application of ARZELA’S theorem in Section 5. The result of the lemma is termed
here the “convergence inequality’’ because of the central role it plays in the
convergence proof of Section 5. It is remarked that in the theory of the ordinary
differential equation d y/d x = f(x, ¥), an entirely similar réle is played by another
convergence inequality (see, for example, Briss [2, pp. 88—89]). The proof of
the inequality of the lemma below resembles that given by M. Breror [I§,
PP. 31—32] for an inequality occurring in the theory of the ordinary differential
equation dy/dx =f(x, ). Compare also the inequality employed by H. BECKERT
[22, p. 13].

Lemma. If
(1) ¢ is a positive integer, fo, 1, - .., f; is a sequence of ¢t + 1 non-negative numbers,
and zy,2,, ..., % 15 a non-decreasing sequence of t + 1 real numbers (so that z;— z;_, =0

for 1=1,2,...,¢); i
(2) the numbers L=0 and ¢=0 are such that the inequality

:
- i=e+ L_Zlf,'—1(zi — %)
fan

is valid for 1=1,2,...,t,; then
(3) the inequality

B {1 1+ L — 5 )1Ho + Lo — 20}

holds for 1=1,2,...,1L
Proof. It will be shown by mathematical induction that

e+ Lélf,'—l(zi —z )= {'g 1+ Lz — zi—l)]} {3 + Loz — Zo)}

for {=1, 2,...,¢ which implies the desired conclusion of the lemma, since
1+ L{z;—2z_) =1 for i=1,2,...,¢ and e+ Lfy(z—2)=0.

For /=1 the asserted inequality follows from hypothesis (2).and the fact
that 14 L(z,—2)=1, because

e+ Lfy(z—2) = {1 + L(z ——-zo)}{s + L folz— zo)}-
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Now for the inductive step. Suppose that the inequality to be shown holds
for a positive integer /=<\f — 1, then it will be shown to hold also for the integer
{+1 in place of /. This is readily seen, because then, by the inductive hypothesis
and hypothesis (2) of the lemma, one has

BS e+ L3 hesly— -0 S{ LT 14 Ll — 5] He + Lol — 2}

which, together with the equality
I+1

e+ LY sl =) = {e £ LYl =5} oL (aa =20,

implies that
I+1 { +1

e+ L glf;'ﬂ(zj - Z/'-l) = £{ (14 Lz, — zz-l)]}{€.+ Lfy(z— 20)},

and the proof is complete.

It is of some interest, although it is not needed in the considerations that
follow, to point out that the inequality contained in the lemma just proved is a
finite difference analogue of an inequality due to T:-H. GRONWALL [10, p. 293],
in the continuous case. (See also G. SANSONE [21, vol. I, pp. 30—31].) Making
suitable changes (in order to conform with the present notation) in the statement
of GRONWALL’S inequality, 4s given by SANSONE, one obtains the following result:

If f(2) is a non-negative continuous function defined on the interval z,<z<
zp-+a and there exist numbers £=0 and LZ=0 such that

osi@se+ LIt

for z,<2=2z,+a, then
0= f(z) s ee"® for zp=2<2,+a.
In order to compare this last inequality .with the inequality of the lemma

proved here, for each positive integer ¢ consider the following subdivision of the
interval z,<2<2,4a:

P
p4

0 =201 52 S, =Ky, X2,=2 14,

and suppose that the hypothesis (2) of the lemma holds, with z; and f; being
replaced, respectively, by z;, and f(z;;). Then the conclision of the lemma
proved reads

[+ Lz — 21,01} e + Lolene— 70,0}

< { oL (zi.z~z;-x,z)} {8 + L fo (zl‘t . zo)}’
1=1
that is,
fz;) < e-e- {3 + Loz, — Zo)},

whose relationship in the iimit to the inequality of GRONWALL cited above,

f(2) < ee,
is clear.
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§ 5. The double sequence of functions approximating the partial derivatives
of a solution

Consider the double sequence of approximating continuous functions #,,,
defined in Section 3. It has been pointed out at the beginning of Section 4 that
the partial derivative with respect to x of u,,, exists in the usual sense and is
finite on R save possibly when x is equal to one of the finite set of numbers
{recall the abbreviated notation introduced at the end of Section 3)

x1<x2<"'<xm_1,

where jumps may occur. (Of course, it is understood that when x=x, and
X = x5+ a, by the “partial derivative with respect to x” of the function «,,,
are meant the one-sided limits

Umn (%, ¥) — twn (X0, ¥)

lim L
Iz ¥ —x
I>x
and
lim U (B, V) — U n (% + a, 3)
T—>2t+a x — (A’o+ﬂ) !
I<x+a

respectively.) A similar statement applies to the derivative with respect to y
of the function #,,, the possible jumps now occurring when ¥ is equal to one
of the finite set of numbers

1<yl - <<Vp-1,

¢

a corresponding agreement being made about the ‘‘partial derivatives with
respect to y" of the function #,, when y=1y, and y=4,+b. For reasons of
symmetry, it is clear that one may restrict attention to the x derivative, similar
considerations being applicable in the case of the y derivative: Intuitively
speaking, it will now be shown, using the lemma of Section 4, that the magnitude
of the jumps in 9#%,,,/0x can be made arbitrarily small by choosing both m and
sufficiently large.

First, consider the function w%,, on the closed subrectangle R}, where
k=0,1,...,m—1and [=0,1,...,n—1. By its very construction, the function
#,,, 15 bilinear in x and y on the subrectangle R}". In view of the formula for
,,, given in Section 3, when (x, y) is a point of the rectangle R}}* which is not
on its closed left and right-hand rectilinear boundary intervals (i.e., when the
point (¥, y) satisfies the inequalities %, <x<Xx,;, and y,<y<y,;,), then

limn_ (1, y) = 10" Uk +ka, 10— ¥m1) + fu (v — ).

ox X1 — X

On the other hand, when the point (x, ¥) is on the closed left-hand rectilinear
boundary interval
X=2%, N=Y=Vi1
then the right-hand x derivative
0 Uy (x y) — lim “mn'(x V) — Umn (X5, V)

ox T2 X —x %
Arch. Rational Mech. Anal., Vol. 1 26

>
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where x, <X¥=< x,,, and y; < y<y,,,, exists and is a linear function of y. Simi-
larly, when the point (x, y) is on the closed right-hand rectilinear boundary
interval

X=%41,  NSYEN,
then the left-hand x derivative

umn()?» y) _umn(xk+11y)

ox ’ ZT—>xpy) i—x“_l

>

where x,<%¥<x,,, and y; S y=<1y,,, exists and is a linear function of y. It is
to be noticed that the “partial derivative with respect to x” is constant on R}
for each fixed y; that is, for each y such that y, <y =<+y,., one has

otu ou o u
*aTm" (%, y) = azn (x,9) = a;m (%h41,5)

for all x satisfying x,<<x<<%,,,.

The maximum absolute value of the difference between the values of the
“partial derivative with respect to x”’ of u,,, on two subrectangles Ry and RY/”
at the same y level will now be estimated by use of the lemma of Section 4.
Suppose, for definiteness, that 2=%. For the rectangle Rf;" there are formulas
for du,, [0 x, etc., similar to those just derived for R7,*, which need not be recorded
here explicitly. One also has that for each y such that y, < y<y,,, theequality

O Uy Oty mn

.
St (4, Y) = o (1, 9) = T (2541, 9)

holds for all x satisfying xg<<x<Cxg,,. Consequently, the problem of estimating
the maximum absolute value of the difference between the values of the “partial
derivative with respect to x” of #,, on the two subrectangles R} and R}/
reduces simply to the estimation of maximum absolute value of the difference
of the two functions of v,

Ot by

ox

3+mn
(%, y) and ‘%* (%5, %),

which are linear functions of ¥ on the interval y,<y=<y,,,. In view of the
linearity of the two functions involved, the desired maximum absolute value
of their difference,

M un U
max |— % — M (xp, Y
VNS YS Ve x ( k,y) ox ( ,})
NETE v+

is just equal to the maximum of the four numbers

umn

a+
P (%) Yig1) — o7 (%5, Y14+1)

>

A

e e ) — =57 (%, 3)

’

atu otu
—a;ﬂ (%es Yig1) — 6:” (%5, y1)|,
Mgy, Uy,

P (%, 1) — _EVL (%5, Yi41)
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It is to be noticed that only the estimation of the first two of these numbers
requires special attention, since it will turn out that the last two can be made
arbitrarily small whenever the difference y,,;— ¥, is chosen sufficiently small,
the reason for this being the continuity of é*u,,,/0x with respect to y for each
fixed x. For example,

otu otu
o (an, i) — Tt (35, )|

< l Uy n o*

u, otu,
% (%r> Yi1) — 6:” (%5, ¥it1) m2

(%5, Y1) — o (%5, ¥1)].

Uy n
¥

+|%

Further, since the first number is obtainable from the second merely by replacing
{ by 141, all that remains is to estimate, for each pair of fixed integers k=%,

the % +1 numbers
My, * Uy

&
x (k. y1) — % (xﬁ:yz)l,

where [=0,1,...,#. For [=0 this absolute value can be made arbitrarily
small, and the lemma of Section 4 will now be used in showing that the absolute

values for /=1, ..., n can also be made arbitrarily small.
Now, from the definition of a+;‘;”” (xx, ) and a+;‘;” (%%, ¥ (recall, for

example, that u,,,(x, ), for x,<x=<x,,,, is a linear function of the single
variable x) together with the previous formula for 8*u,,,/0x obtained in this
section, it follows that (recall that, for example, %,,, (%31, V1) =%11,)

& u otu Up 11,0 — Uzl UE 41,1 U1
Tt (%, Y1) — =2 (x5, V) = — = —
ox ox Epp1— X Xf41— X
!
Ykt+r,0 — Uro  UE41,0— Uk o
= : AL : 2> fia—Fr ) (¥ — v, forl=1,...,n.
Xrt1— Xp XE+1— X ’Zl ! & ) ! ! )

The proof that the absolute value of this last difference can be made arbitrarily
small provided that m and # are chosen sufficiently large will now be completed,
at first under the hypothesis required of the function in Theorem 2, i.e., that f
satisfies a Lipschitz condition in all three of its last arguments z, $, ¢ (see hypo-
thesis (1) of Theorem 2). The argument will be carried out first in this case
because it is somewhat simpler than the corresponding argument when f satisfies
a Lipschitz condition only in its last two arguments p, ¢ (see hypothesis (1) of
Theorem 3). It will also be supposed at first, again for the sake of simplicity in
writing, that the function f(x, y, 2, $, g) does not depend on x and v, that is
f=t@59.

Accordingly, under the hypothesis (1) of Theorem 2, one has that (recall the
description of the abbreviated notation f, ;_, introduced in Section 3):

Ur+1,j—1 Hp,j—1 ' UE+1,j—1— UE,j—1
lfk,i—l - fﬁ.i—ll =L {l Ug, 51— “ﬁ,i—ll + Xpy1— % - Xpy— X +
Uk — Yk j-1 YR UE,j-1

+

L

26*

Yi— Vi-1 Yi—Yi—1
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and consequently

Uk t1,0 — Uk, UE 41,01 — UE

otu otu
| 3:" (26, v1) — ‘a:—" (%, ¥1)

Xptr— ¥ ARt1— %R
< |%r+1,0 — Yko  UE+1,0 U0 +
T K x4 XE41— XE
!
Upt1,j—1— Uk, j—1 UE 1,71 UE j—1
+L'Z l”k,f- “’571|+ - -
i=1 Frt1— Xk FRr1— Ak
YUkj = Ukj—1  WE,; UL

+

Vi = Y1 y-—y, -1 }(y’ Y1)

The term in the last inequality which involves the difference quotients with
respect to y requires special attention. Consider the function u,,, on the rectangle
Rg7_1. From the formula for u,,, given in Section 3 it follows that
-1

Up,j—1 == Yp,0 T Ug j_1 — uoo+Z th Li-1(®— %) (v — vy,

and i—1
U, j == Wy, 0 1 Ug,; — Ugo + '21 Zlfi—l,]—l(xi — %) (O — vy +
k =t=
+ _Zlfi—l,i—l (i = %) (v, — ¥7—1);
ie
hence
Uk,j — YUk, j—1 _ Uo,; — Ug,j—3 f;
= x
3’7'* yi—l }’ _ y7 +,§ i—1,7— 1( )
Similarly
Uk,j T MEi—1 _ Ho,j — Yo, j—1 + 3 — %
YVi—¥i—1 J"‘y; 1 ,Z LT 3 1),
and thus
YUk, — Ykg-1 Yk YR -1 Z f (% — %;_y)
_ = _ 1o (% — %),
Yi— ¥i—1 Yi— Vi1 nL, T

Further, in view of this

] k
“k,i—“k,i—l_uﬁi—“.z-, o (x—x —y,
. y'—yj 1 Y — ¥, (yl yl 1 ,Zl 1=Z lft 1,j— l(x xl"'l) y]—l)
r R
=M % x| 2 05— M=M| 5 (m—x))|-b=Mbfg—x).
= k+1 j=1 i=k+1

The inequality for

a+u,,,

n +umu
(xkr yl) “oxr (xﬁr yl)‘
may now be rewritten in the form

Ukt1,0— Uk, 0 __ UE+1,0 Yk
Xht1— ¥ Xh41— ¥

+

Upt1,0— Upl  UE41,1— UEL | <
Xpr1— X XE 41— X

l
F L 3ty oy — g 1] (0 — yi—1) + M b (x5 — x,) +
i=1

Uet1,j—1 = Y1 UE+1,j—1 YE, 1
Xr+1— % XE+1— Xk

(y;—y;-1) forl=1,2,...,n.
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This last inequality is precisely of the same type as that of hypothesis (2) of
the lemma in Section 4, upon identifying, in particular, ¢ with #, the {; and z;
occurring there (for j=0,1, ..., #) with the present

Urtr,j — Yrj  UR41,; Uk
Fr41— ¥p Y41 X2

and y;, respectively, and the ¢ of the lemma with

Upkt1,0— YUk,0 _ ME+1,0 R0
Fp41— X FE1— ¥R

!
+L le Up,j—1— “k,j—1| (v;i— yi—1) + Mb(xz— xk)} s
j=

which, as will now be shown, can be made arbitrarily small merely by choosing
m and # sufficiently large and |x,— x| sufficiently small (in view of the assumed
continuity of the derivative ¢’(x) and the equicontinuity of any subsequence
{ttm,n, (%, )}, with ,l_lpolo m, ='1_i>rf>1o #,= oo, which was shown in Section3). In

max
0sk< ﬁsm—l{

+

verifying this, one can use the mean value theorem of the differential calculus,
since for k=1, ..., m—1
Urbt1,0— Uko  UE+1,0— k0
Fe+1 Fp AR+ Ak
where x,<xjy <%,.,; and xp<xg <5,;. Let £>0 be given, then there exist
(see Section 3) positive integers m, and n, and a positive number §, such that
whenever m,>m,, n,>n, and |x,— xg| <, one has

=0'(%) — ' (%),

1
max {L,le Up 1 “E,;'—ll (¥~ ¥5—1) + Mb(xp— xk)} <je,

0Sk<ksm—1

where u(x, y) is written for «,,_, (x, ¥). Also, in view of the uniform continuity
of the function ¢'(x) on the interval x,= x= x4 a, it follows that
1

<?€-

“k+i,o — Uro _ UE41,0— Uk o
Fp+1— X YE1— X

Consequently, from the conclusion of the lemma of Section 4 it follows that

Upiy,1— Yp,1 UL 41,1 UE, 1
X1 — ¥ FE+1— ¥R

<{ [T t1+20—y-DIH{e+L elumy0} S { I] 0=} ot Lelyi—0)

=el{e+ Le(y,— v} for1=1,2,...,n.

(It should be noticed that the last inequality also holds for 7=0.)

The last inequality has been obtained under the fwo assumptions that the
function f satisfies a Lipschitz condition in all three variables z, p, ¢ (hypothesis
(1) of Theorem 2) and that f does not depend explicitly on x and y; that is,
f=/f(z, ¢, q). The derivation of a similar inequality, in the case when f=
7(x, v, z, p, q) satisfies only a Lipschitz condition in the two variables , ¢ (hypo-
thesis (1) of Theorem 3) will now be sketched. As in the previous case, the initial
step, where the Lipschitz condition is applied, is in estimating the absolute value




380 J. B. D1az:

of the difference f, ;_,—fg ;—;. This can now be done as follows by adding and
subtracting the number

. . . uk-‘*l,j-’l — uk,i—l . “k,i — uk,i_l
f XEs Yi-15 UE 15 - » )
Xrt1— ¥ Yi— Vi1

to the difference in question. One obtains

. . TN e i TS bk NS
fk,fd—fk,fﬂ:f(xk» Yi—1s Yg,j—1> — — -

Trr1— Xk Yi—¥i—1
. . T e S W N R R s SO
—f(xkl Yimw Wi Xr+1— Xk ; Y= Y- )T
' Uptr,j—-1 Ykj~1 | Uk Unj—1
XET Vi 4t Up g DI TRITE Y i
+f( B2 Yioar ko Xrt1— ¥k ¥ Y )
. . . BE4r, -1 Uk -1 “E,j““ﬁ,j——1
—f Xgs Yi-15 Uk j-15 - x _ ’ T
kE+1 XE }7 y]—l

Using this and the Lipschitz condition with respect to p and g, one has

Upty,l— Ul UE+1,0— Uk

Xri1— %k XE+17 Xk
!
Upt1,0 — %e0o  UE+1,0~ Uko
S| Rt R L M fi i — fri—a| (0 — e )
= k,i—-1 k-1 \Y, Yi- 1
Xpt1— Xp XEy1— Xk a !
Upt+1,0— Uk0  UE+1,0— Uk, 0
= - +
Frt1— X XEr1— ¥k
1
30 [ 0ty gy ST )
= ko Yicts Mhg— Fhpgr— X Y Y
Upr1,j—1 " Mrg-1 Wk — Uk, -
— H*es Vi g j-1s — JIE =) 0= yi-0)
( ! 1 Xpt1— X TYi— i !
l
+LZ { Upt1,i-1 " Uk, i1 UE4r,j -1 MR +
e} Frt1— %k XR+17= Xk
Up,j — Uk, j—1 Uk, UEj-1 }(y,_y )
i 1)
Vi— ¥i—1 ¥i — ¥Yi-1 !

The term in the last summation involving the explicit difference quotients with
respect to y may be handled exactly as before, yielding the same result:
e U1 WEj T YR
=1 Yi— Vi1 Yi— 3’771

Thus, one has finally

(Vi = ¥-) = Mb(xg— x).

Yky1,0— Uko  YEi1,0— Uk o

Xr+1— Xk Xy — X

+

g1,y T Upy MRy, U ‘ -
Xpt+1—~ g XE+1— Xk

y Yi—1s Ug -1

»

Upty,j—1— Ypj—1 Ui — “k,j—x') -

Xe+1— ¥ Yi—¥i—1
. . L Wkt 1 Wiy U p T g 1)
_ f(xk: Yi-1; WE,i—1) PN, T 5, ) (}’;'— yi—l) +
2 i

!

V| Wptr, 1 k-1 UE,i—1- YEj—1
+ Mb(xg— %) + L U Y K. bt e bt 1Y b (VIO VI

) ;1 Xr+1— ¥k XE+1— Xk ( ! -1

for [=1,2,...,n
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This inequality is again precisely of the same type as that of hypothesis (2)
of the lemma jn Section 4, upon identifying, in particular, ¢ with #, the f; and 2,
occurring there (for =0, 1, ..., #) with the present

’“kﬂ,j“ Wi WE+1,i MR '
Frt1— ¥p XE+1— Xk

and y,, respectively, and the ¢ of the lemma with

Ur+1,0 — k0 _ HE41,0— Y0
Fht1— X TEp1— ¥R

max
0sk<ksm-1

!
+2
=1

+

Ukt1,j—1 7 Ukj—1 “k-f_”k.i—l)

f(xk; Yi—15 % 5-1;

Ferr— % ' ¥i— ¥
) . . Mer i1 T Yk Uk Uk
- f(xk:' Yi—15 Ygj—1; PR ; “yj_ - ) ¥i—¥i-0) + M b(x—2x,) ¢,

which (as will now be indicated, without entering into the detailed argument)
can be made arbitrarily small (¢.e., less than any positive number given in ad-
vance) merely by choosing 7 and # sufficiently large and |x,— xg| sufficiently
small. In showing this, use is made of the assumed continuity of the derivative -
o'(x); of the equicontinuity of any subsequence {u, ., (%, )} with ylin;xo m,=

lim %, = oo, which was shown in Section 3; and of the uniform continuity of the
—> 00

function f(x, y, z, $,¢) on any closed and bounded set of points (x, 9, z, p, q)
satisfying

‘(r,y)inR, —Z=z5Z, —PSp<P, —Q=g¢=90,
with Z, P, Q positive numbers. Notice that it can readily be seen, from the

definition of #,, and of the difference quotients involved, that there exist
positive numbers Z, P, () such that

ERES4
Ml T ¥ < P for k=0,1,...,m —1 and l=0,1,...,n,
Xhtr— #p -
M1 Ypt <Q fork=0,1,....,m and I=0,1,...,n—1
Yitr— ¥4

and for any pair of positive integers m and #, where one uses the abbreviated
notation, u,;=u,,,(x,, y,), efc. In particular, since

Yet1,0 = Uil _ Ukt1,0— %0
Fr+1— ¥k Fr+1— Fk

P=C+ Mb,

!
-l-Z fri-1(¥i — ¥i-1)
in

one may choose

in terms of the constants C, M and b of Sections 2 and 3. This being granted,
one obtains exactly as before, by an application of the lemma of Section 4, that
if-£>0 is given, then there exist positive integers s, and #, and a positive
number §, such that whenever m,>m, and n,>n,, and |x,— xg| <4, then

Upgr,1— ¥ UE 1,0 — U
Rl Bkl PR E",§eu’{s+L e(h—y)} for I=0,1,2,...,n.
Frp1— e Fh+1— 4k
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It is now time to define the double sequence of functions {p,,, (¥, ¥)} cor-
responding to the double sequence {um(x, y)} of Section 3. The double sequence
{Pmn (%, y)} will be, roughly speaking, a sequence of functions approximating
the partial derivative with respect to x of a solution. In view of the possibility
of jumps in du,,,/0x, the function p,,,(x, ¥) has to be defined carefully in R,
to make sure it is single-valued. For each pair of positive integers s and #,
the function p,,, is defined as follows, for points (x, ¥} in the closed rectangle K:

a—g;”i (x,v) whenever x,<<x < x,., forsome 2=0,1,...,m—1,
Pun (%, 9) = zgxﬂ (x,y) whenever x =x, for some k=0,1,...,m—1,
G tmn (x,¥) whenever x =x,, =x,+4b.
cx
The function p,,, possibly has jump discontinuities only when x==x,, ..., %,,_;

and is continuous in the two independent variables x and y at all other points
of R.

This double sequence of functions {p,,, (¥, ¥)}, as may be readily seen from
the formulas given for ou,,,/0x, &*u,,,/0x and 8 u,,,[/0x given earlier in this
section, is equibounded in absolute value on R. That is to say, there is a positive
number P, which is independent of m, #» and of (x, ), such that

[Pmu(xr y)[ g P
for any positive integers m and », and any point (%, y) of R.

Let {p,,,} denote any singly infinite subsequence of functions (with
lim m, = lim n, =o0) extracted from the double sequence {p,,,(x, y)}. Let £>0.

§—> 00

From the preceding considerations it follows that there exist positive integers m,
and #, and a number §,>0 such that whenever (¥,¥) and (x, y) are points of
R satisfying

|x —x| <6, |y—¥|<d.,

and m,>m,, n,>n,, then
lpm,n,(i; 3—}) - Pm.n,(x: y)l <e.

(In ARzELA’s terminology [7, p. 119], the subsequence of {p, ,, (%, ¥)} for which
m,>m, and n,>n, is equioscillating by less than &. This can be proved by an
argument similar to that used in Section 3 in showing that the sequence {«,,.,..(¥,)}
is equicontinuous. There are again four cases to consider, depending on the relative
pesitions of the points (¥,¥) and (x, ¥) with respect to each other. Asin Section 3,
only the case when x<x and y=<7% need be considered in detail. Here one has
GEXZ Xy ISYS Yy and X5 SXS %545 VISV S ¥y, for suitable pairs of
integers (k,[) and (k, 7). Further x,<x5; v, <y; and %1 < %115 Vi< Y141
The inequalities deduced earlier in this section for

Uk1,1— U1 WEra,1— UE, L
Frt1 ™ ¥ XE+17 ¥R
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may then readily be employed to obtain the desired result, the details being
as follows. Now

?mn(f!y) — ﬁmn(x’ y) = [Pmn(iry) - ?mn(’?t y)J + [_pmn(f' y) - Pmn(xry)]’

where the point (%, y) is in the subrectangle Rj;" because xp<X¥=x;,, and
v, < y=<1¥.,- This, together with the definition of the function p,,,, implies the
inequality

Ipmn(’?ty) - Pmn(x)_y)l § Ipmn(’?: 37) - pmn(’?l y)l + lpmn(’?» y) - pmn(xr y)l
= (I 4 g — ) o} — (BT 4y — i fuf| +

XE41— A FE41— ¥k
UE 11,1 — YE,L Up 41,0 — Ur,l
+ {m + (- /El}—{m + =i
l UE41, I — ®E T %E41,0 ¥R ‘ ' UE4, — UE  Uhtrl U l +
FE+1— Ak X411 — A% X411 — X% Xp+1— ¥k

+ (v —y1) far] +2[(y — v) fud| 4 | (v — 9) fud]

Zt fﬁ (y y. )l + l Uk 41,1 — Uk, Up 3,1~ Ug,l
1Y — Y —
F=i+1 ! ! ! XE41 ¥R Xp41 ™ *p

+4MB,,

in case %< x=x,,, for some integer £=0,1,...,m —1 (this only excludes
%= %y+a, which will be treated separately below) and the integer % is chosen
(if possible) so that g <Z< xz,,, with 2=0,1, ..., m—1 (if £ =xy+a, which
is seemingly excluded at first, the inequality just written still continues to hold,
but with % replaced by m —1). If x =x,+a, a case definitely excluded above,
then one must necessarily have ¥ = x,+a (= x,,) too, and then

[ Bn (Z.7) — Pma (%, 9)]
{ﬁilLU+w 91) o1} — RN 4 (y mm14

Xy — ¥, Koy = X,

+2MB,.

= l ) Z fm-1,i-2(¥;— Y1)
i=I+1

These inequalities now readily furnish the desired “‘equioscillation’”” property of
the singly infinite sequence {p,,,.}.

Since the sequence of functions. {;’),,,, ,,} is equibounded in absolute value, and
since for each £>>0 there are positive integers m, and #, and a number §,>0
such that for all points (%,7) and (x, ) of R satisfying lx x| <6, |ly—¥|<és
and for all m, and n, satisfying m,>m,, n,>>n, one has

l?”‘.’fs (’7' 7) - Pm,»,(x; y)] <¢g,

it follows from a theorem of ARZELA [7, pp. 119—125] that there is a continuous
function p(x, y) defined on R and a subsequence of the sequence {p, ,,‘} which
converges uniformly to the continuous function #(x, ) on R. For a proof of
this particular result needed here, carried out under the equivalent hypothesis
that the given sequence of functions has zero ‘““Grenzschwankung’ (see CARA-
THEODORY [17, p.3] for the definition of this term), reference is made to
H. BECKERT [22, pp. 24—27].
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For reasons of symmetry, without further discussion it is clear how the

double sequence {qmn(x, y)}, which approximates the y derivative of a solution

- 1s defined. It is also clear that there is a positive number @, which is independent
of m, n and of (x, y) such that

[ (2, )| < Q

for any positive integers m and » and any point (x,y) of R. Let {qmm} denote
any singly infinite subsequence of functions with lim s, :tlim n; =o0 extracted
— 0

. {00
from the double sequence of functions {g,,,(x, ¥)}. Again, by ARZELA’S theorem,
one concludes that there is a comtinuous function ¢(x, y) defined on R and a
subsequence of the sequence {qmlm (x, y)} which converges uniformly to q(x, v)
on R. ' :

§ 6. The existence of a solution

Consider the double sequences of functions {umn(x, y)}, {pmn(x, y)}, and
{gun(#, v} In Section 5 it was pointed out that there exist positive numbers
Z, P, and @ such that for any positive integers m, » and any (x, ¥) in R, one has

(0N ZZ, | Ppa B WS P, [gua(2.9)] = 0.

It is remarked, since use will be made of this fact immediately, that the continuous
function f(x, v, 2, p, q) is uniformly continuous in {x, y, 2, p, ¢) on the closed and
bounded five dimensional set of points defined by

X=X+ a5 V=YYt b, ]z]éZ, |p| <P, lﬂég-

That is, given £>0 there is §,>0 (which may be chosen to be less than g, for
later convenience) such that whenever (%, #,,%;, 9., 7,) and (%,, 75, Z,, Ps, )
satisfy the inequalities

xugiigxo_}_“: yo§37¢~_<—3’o+“: Izilézl ]ﬁ]éP: ]‘Z[éo for 2:12

and

l‘q—‘lv‘—_i2!<6€? l:)_jl.b_:‘_/2]<ae: i—z-l—_zzl<6sx 151“$2I<65: !‘?_1_{72E<56,
then
| £, Y171, P1, §1) — F(Fa, Va0 2o oy Ta)| < e

Let {#,, . (x, ¥)}, where lim m, = lim#, =00, be a singly infinite subsequence
¥ =0 =00 N

of the double sequence {thn (%, y)}, and suppose further that (see Section 3)
Hm w,,.,, (%, y) = w (%, ),

where the convergence to the continuous function % (x, ¥) holds over the rectangle
R. From Section 5, it follows that the corresponding subsequence {j)mmr(x, y)}
itself contains a subsequence which converges uniformly on R to a continuous
function 4 (x, y). For simplicity, suppose the subscripts have been chosen so
that the subsequence {Pm, nr} itself converges uniformly on R to (%, ). Making
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a similar agreement about subscripts, it may also be supposed that the cor-
responding subsequence {gm,», (#, ¥)} itself converges uniformly on R to a con-
tinuous function ¢(x, y). Summarizing, one concludes that

lim u,,,, (1, y) = u(%, %),
fl—ig.lopmrnr(x' y) = P(x! y) )

Bm g, 0, (£.3) =4(x,5),

the convergence to the continuous functions #, p, ¢ being uniform on R. It will
now be shown that the function #(x, y) is a solution of the boundary value
problem under study.

In view of the above mentioned uniform continuity of f on a certain closed
and bounded five-dimensional set of points, it follows that

K £(5, 9, thn (5, 3), P (), G (5, 9)) = 1{%, 3, 8(2,9), B(2,9). 4(%,9)).
the convergence to the continuous limit function being again uniform on R.
Furthermore, since the limit function
Hzy, u(x,9), #(%,9), ¢(%.9))

is continuous on R, the following Riemann integrals exist for all (¥, y) in R:

x ¥

J JHEmu& ). pEn), 9 n) dédy,

%o Yo

S HEy w9 plE D). 9E9) 88,

yf F(x, g u(x,m), p(x.9), g(x, 7)) dn;

the order of integration with respect ta & and  may be interchanged in the
double integral without altering its value. All this information will now be used
in order to show that the function p is precisely the x derivative of the function
u and that the function g is precisely the y derivative of the function .

Let £¢>0, and let 8,>0 be such that £> §,>>0 (the restriction ¢> 6, is made
for later convenience) and that also

[/ (Fr, 107, B @) — FFs V2 Zas B2, To)| < €
whenever the points (%, ¥;, Z;, $;, §;) satisfy both

XWSE=SxgFa, V=V=ve+a |%|=Z |p|SP |70,
and
I’?l—{‘:2|<6e: Iyl_y2l<6e’ IEIKT'E2|<651 |_p—1_—¢_)2|<651 Iq_l—q—2|<6z'

In view of the uniform continuity of the functions #(x, y), #(x, ) and ¢{x, ¥)
on R, there is another number 8 >0 (which for convenience will be chosen such
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that ¢>4,>6F >0) such that

‘“(51:771) —u(by, )| <O <e,
|G m) — & m)| <6 <e,
lg(&m) — (€ mo)| <6<,
whenever the points (&, ), (£,%,) of R satisfy the inequalities
|6 — &| < 8F,  |m— 7]2|'< &r.
Further, there is a positive integer N, such that
|4 (8,7) — s, (6, )| < 65 <6,
| 7) — Pmm (&) < OF <O,
1g(E. 1) — Gmm (&, )| < OF <6,

and (cf. Section 3 for the definitions of «,, and ﬂ”) also

U, < OF <8, B, < OF <4,
whenever

mr>]\Te: nr>]vs:

and (£, %) is any point of the rectangle R.

Let (x, 9) be a point of R and m, and #, be positive integers such that m, > N,
and n,>N,. These positive integers m, and 7, and the numbers ¢, 6,, 6F will
be supposed fixed during the immediate discussion. The notation of Section 2
(fot example, writing x, instead of x,, ;) will be used in the next computation
for simplicity in writing. There are integers & and /, with 0<k=m,—1 and
0=<I=m,—1, such that x,<x<x,,; and ¥, Zy=<9y,,1, i.¢., such that the point
(%, ¥) being examined lies in the closed subrectangle Ryy™ . Recall that ¢(0) =7(0)

and consider the difference

omy (%, ) — [o(x)+r(y ) —o(0) +f ff(& n,u(&mn), &), 9 n) dédn],

X Yo

which may be written

~—

ton, (3,9) = [01(2) + 7() = 0(0) +

+,‘§1 ,§l, ‘fj‘y,_fy,f(f”i’“(5»77),?(5.17).q(E,n)) d&dn+
+,.=ll xkfxy’_‘f(f mowuE ), n), g (& m) dEdn +
Jﬂé x:y, F&muE ), pEn) g ) dEdny +

+ f [HEm u . pE ). ) dedn}

=
S
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Recaliing the definition of #,, , (¥, ¥) from Section 2, and the fact that

fi-l,i~1 = f(xi—l » Vi~1» ”m,n,(x‘—l» yj—x)» Pm,n,(xi~1_ yj—l)» Iy, (%i—1s Yj'—l)v

from Sections 2 and 3, one has, for example, that

|[fic1,j—1— HEm uE ), pE ), &)
S| F (i1 Vet Y m%im1s Vim1)s Poemel Xims Vi 1) Gy Fim1s Vic1)) —
— F(%iys ¥jms (Himy, Y1), P (Kiy, ¥im), 4%y, ¥5-0)] +
F [F(Fimrs Yjmrs (1, Y1), P (Ko, 1), %y, i) —
—fEn, wiEm, pE ), g )] < 2¢,
whenever x; ;&< x; and y;_; <% <vy;. Consequently, the absolute value of the

difference #,,,,—[...] is less than (see Section 2 for the definition of the con-
stants C -and D)

|o() —o ()| +170) = 70| +C-(x —x) + D (y —3) +
+ 2800~ 2) (= 30) + 2606 — %) ( 3 0~ 3-0) +

k

+ 26y — 9 [ 2 (50— 50) + 2605 — 1) (v — )

i=1
S2¢(C+D+ab+ebt+ea+t &)

whenever m,> N, and »,> N,, and hence

u(x,y) =0c(x) + () —a(0) + [ [ H&n u(E ), ?(é,n),q(f.n)) dédny

%o Yo
for any (x, y) in R. From this last equality it follows that 6#/dx, du/ey, and
Pulox dy (= *ufdy dx) exist and are continuous throughout the rectangle R.
As a matter of fact

¥y
P w3 =00 + [ Hxm u(z ), 5 0), ¢(xm) dn,
Ve

Fo(9) = Y0) + [ 165,469, 26.9).2(6.9) 4,

hil 2 ) 2
T T hy) = g (19) =1 (19,5 9), P (5,9, (5, )),

for any (x,y) of R. )

The proofs of Theorems 2 and 3 will be complete once it is shown that
duldx=p and dujdy=g. It suffices to consider only 8u/dx. Let £>0 be given,
and the numbers £>6,>48F>0 and m,>N,, #,>N, be as in the argument
just carried out. Let (x, y) be a point of R. There are two cases to consider:
either x,<x<<x,,, and y, < y=<+y,,, for suitable integers £ and /, with 0<k<
m,—2 and O=IZn,—1 or %, 1S¥=%,=%+a, and y,Sy<y,,, with
0<!zn,—1. Consider the difference

Pmem(%,9) — [0’(’6) +yfyf(x, n.%(x,7), p(%. 1), ¢(x.7)) dn]:
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which may be written (in either of the two cases mentioned, with 2=m,—1 in
the second case)

Bmens ) = [0'(0) + 3 [ 15 m ulen), o), glxm)) dy +

=1 ¥j—1
+ I f(xn, ), e, alen) da-

Recalling the definition of p,, , (%, ¥) from Section 5, and the fact that from
Sections 2 and 3

ficyj1= f(xi—p Yi-1, Yy m(Xi1 Yi-1)s Py (¥io1 Yj—1hs I, (%1, J’;'Al)) )
one has again, for example, that
Ifi-'l,]'—l - f(Et 7]’ u(f)n)) P(E; 77)! Q(E, 7]))' < 26,

whenever x; ;<¢<x, and y;_;<n=<+y,. Besides, the mean value theorem of
the differential calculus and the definition of the constant C of Section2 imply
that

o T e g0 = |/ (0%) — 0'(3)| < C|#* — %] = Cav,
Fe+1 7 %k
Consequently, the absolute value of the difference p,, , (%, ¥) —[...] is less than

k
eC - 26(2(x,-—x,-_l))—{—Zs(x—xk)_S:s(C—f—2a),

Ti=1

whenever m,> N, and #,> N,, and hence

p(x,y) =d'(x) +yf fx o u(x,m), p(x,m), ¢(x,7m)) dn

for any (x, ¥) in R. Since the right hand side of the last equation is already
ou
ox
metry one has also that

9(x.9) = 70) + [ 1(E,9, %(E 9, pE ), a(6,9)) dE

known to be equal to (%, y), it follows that -»g-g—s;&, as desired. By sym-

for any (x, ) in R, from which it follows that du/2y =g, and the proof is complete.

Under the hypotheses of Theorem 3, the preceding argument shows that any
singly infinite subsequence {,,,(x,y)}, where limm,=co and lim n,=oo,

7—>00

contains a subsequence which converges uniformly on R to a solution. On the
other hand, under the hypotheses of Theorem 2 (in: which case there is but one
solution) the preceding argument implies that the whole.double seyurnce {u,, ,(x, )}
converges to the solution, ¢.e. that

1im umn (x’ y)

m—= 00
”n—00

is the solution, the convergence being uniform on R.
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