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1. Let A = (a,,) be an (n x n) real symmetric  matrix.  Then for a vector ~ = 
(x I . . . . .  x,) we put  

0) qA (~) =~A~'  = F, a~. x. x , .  
~ f  

The quotient 

(2) Qa (*1 
I*1' 

is called the Rayleigh quotient corresponding to ~. I f  $ is a characteristic vector 
belonging to a characteristic root 2, then the corresponding Rayleigh quotient is 2. 
Therefore the following procedure has been devised for obtaining a sequence of 
numbers 2~ (~ = 0, t . . . .  ) converging to a characteristic root: 

For any ~ o/the sequence (~ = O, t . . . .  ) lind an approximate solution $~ o/the 
homogeneous system 

put 

q~ (~) (~ = o, t . . . .  ). 
(4) x~+l-i~.1 . 

My attention was drawn to this method by  JOHN TODD, who used it in his 
lectures as long ago as t945. I t  appears to converge fairly well in numerical 
practice. In what  follows I give some theoretical results on the convergence 
of this method. 

2. The crucial point in the discussion of the above method is of course a 
suitable rule for the computation of the "approximate  solution" ~:~ of (3)- 
The rule I shall use in the first par t  of this discussion consists in taking an arbi- 
t ra ry  vector ~ 4 : 0  and in putt ing 

(5) ~', ----- (A - -  ~t, E)-X ~ ' . 

The theoretical arguments in support of this rule are given in another paper**.  

* In writing this pa.~r  I had very valuable discussions with Mr. CaR. BLAXrER. 
** A. OSTROWSKI, ,,Uber n~herungsweise AuflSsung yon Systemen homo~gener 

linearer Gleiehungen", Journal of Applied Mathematics and Physics (ZAMP), Basle, 
Vol. $ (1957), pp. 280--285. 
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Since the formulae (4), (5) are invariant, for our discussion we can introduce 
normal coordinates from the beginning and therefore wi thout  loss of general i ty  
pu t  

(6) Qa (~) - -  /~, x~, 
v=l 

where 

(7) p~ ~ #~ ~ " "  ~ / * .  

are the character is t ic  roots of A,  ordered increasingly. Then, if 

( 8 )  ~ = (y, . . . . .  y . ) ,  

we have  f rom (5) 
= . . . .  , _ _  ( y l  , y.  ) 

\ # ~  - -  ~.~ . . . .  /~n- ~ ~ ' 

Y~ 

and  finally 

~=1 ( t l~-  ;t")~ 
(9) 2,+~ --  (x = 0, ~ , . . . ) .  

3. The explession on the r ight  side in (9), if all p roducts / t .y~  in the numera to r  
are replaced b y  Px Y,~ or tt,, y*,, reduces to/~x a n d / t . ,  respectively.  We see t ha t  in 
any-case  

0 0 )  ~ < 2 . < m  ( ~ = ~  . . . .  ) .  

In  the  expression on the right side of (9) a / t .  drops out if the corresponding y. 
vanishes.  Denote  the remaining distinct tt. in increasing order b y  

( l t )  a~ < a~ < . . .  < am. 

Then the formula  (9) becomes 

0 2 )  2 . + , -  "=~ (~ = 0, t . . . .  ) ,  

/ , l= l  (a /z -  z")2 

~'here the coefficients Pu are all pos#ive. 

4. Denote  one of the a .  by  a and the corresponding Pu by  p. By  subt rac t ing  
f rom both  sides of (t2) we obtain  

(t3) 2 . . x  - a  = 

~=lp .  a . - a  
rn a u _ a  

Y" P" ( ~ . - ~ . . i ;  = (a _ 2,:) , _ .=1 

where in the last  sumsj the  te rms with the index t* for which a .  = a are to be 
omit ted.  F rom this formuln we see tha t  if one 2~ gets sufficiently near  to a, 
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the whole sequence ~ tends to o. Then dividing the first and  the last te rm 
of (t3) by  (2 . - - a )  a, we obta in  

(t4) t~+x--"  ! ~-~, p~, (3.~--+o'). (~-~), ~-~ ~ . - ~  

We see that in this case the convergence is at least quadraHc. The convergence 
cguld even be faster than that, if the limit in (I 4) were 0. However, for (~---=(T, 

ot ~ = ff,n the convergence is exactly quadratic*. 

5. In order to characterize the convergence neighbourhood of (; put 

(15, a - -Min  l a . - ~ l ,  P=~,P~,. 
I f  we then assume 

(16) I~.-~l~,a  
for % :I= a it follows tha t  

1~--~1 [ ~ - - ~  1 I~--~]  4 4 

I 

In t roducing this in the numera tor  of the last te rm in (t3) and replacing the 
denominator by p, we get 

E P .  

( ~ -  ~)' ~ d p 

(t7) 

(t8) 

4 P--p 
a p 

1~+1--o I 4 P t) ,  
( ~ . -  0), ~ ~ ( ~  - 

Therefore it follows tha t  if for one index .n we have 

then the distances ] ~ . - - a  I f rom tha t  index on are s tr ict ly diminishing and 
therefore converge to  O. We see tha t  a convergence neighborhood of a is given 
by  (19). 

Of course in this way  we obtain only sequences ~ converging to those charac- 
teristic values/~,  of A which remain among the ~ .  I f  the constant  vector  ~ is 
or thogonal  to  all characterist ic vectors corresponding to a characterist ic root/~, ,  

* This result agrees with the note of WALTER NOUN, "A Variational Iteration 
Method for Solving Secular Equations", Journal of Chemical Physics, 17, 670 
(1949). In  this note W. KOHN discusses the application of the Rayleigh quotient 
method in taking one of the coordinate unit vectors for 7- He says then (in our 
notation): "A more careful analysis shows tha t  

~+~ = K~(~ ~),, 
where A'~ is in general of the order 1 .'" 
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then this characteristic root drops out, since all corresponding y2 vanish. How- 
ever, we obtain for each choice of ~/at least one characteristic root, if the start- 
ing ;t 0 is chosen near enough to such a root. In particular cases it may  be neces- 
sary to t ry  out several choices of ~l, for instance to t ry  each of the coordinate 
unit vectors. 

6. In order to discuss the global convergence situation we have to consider all 
fixed points of the iteration Jlx+ x = ~ (~.). where 

(201 ~o (;t) -- ~,=1 (a~-X)~ 

~,=1 ( ~ , -  ~t)~ 

The corresponding algebraic equation for the fixed points, ;L = q0 (~), becomes an 
equation of degree N 2m --  t .  We know already m different roots of this equa- 
tion, given by  the a~,, and we have seen that  all these fixed points are points of 
attraction.. By a theorem which we proved in another communication*, between 
two consecutive fixed points of attraction there is always at least one fixed point 
of repulsion. We see that  besides the m fixed-points (t 1) the iteration by f (~) has 
at least m --  t farther different fixed points. Therefore the iteration by f (~l) has 
exactly the 2 m -  t fixed points 

(21)  < 

where the ,9, are points of repulsion. 

In order to obtain an algebraic equation of degree m - -  t satisfied by the 0 , ,  
subtract ~ from the expression (20) and multiply by the denominator. Then we 
obtain 

= 

Therefore the polynomial equation for all fixed points is given by 

m p,  = 0, 

= / ~ = 1  

while the polynomial equation satisfied by  the 0 ,  is obtained in the form 

~ P" -~ 0. (24) (a -- a~,) E ;t - - ~  

The equation for the repulsive fixed points ~9,, given above in normal coordi- 
nates, can be written in the invariant form 

(25)  = o .  

7. Since the 0~, are points of repulsion, we have 9'(0~,)] ~ t. I t  can easily be 
shown that  at each of the points O. we have 

(26) ~0'(0,) > t .  

* A. OSTROWSKL Mathematische Miszellen XXV, ,Ober das Verhalten yon 
Iterationsfolgen im Divergenzfall", Jahresber. d. DMV, Bd. $9 (t956), pp. 69--79. 
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Indeed, if we take 2 > a , ,  in a sufficiently small neighborhood of a~ we have 

~C2) < 2  

If  2 increases, this inequality remains valid u~til we get the first point for which 
9(2)----2. This is 0~. We have therefore for sufficiently small positive ~: 

(0~ -- e) < 0~-- e. On the right side, replace # ,  by  ~ (0~), subtract ~ (0~) on both 
sides and divide by  - - e .  We obtain 

�9 (~.,.,-,~)-,pC'#',.,) > t ,  
- - s  

and from this, since e ~ 0, (26) follows immediately. 

8. The further discussion of the global convergence problem appears to present 
considerable difficulties if t reated by  the method of conjugate couples of points 
(c/. the paper cited in w 6). Indeed the determination of such couples depends on 
the solution of the equation 2 = ~0(~ (2)), 

which reduces to an algebraic equation of degree 4 m - - l ;  we may expect as 
many as m -  1 couples of conjugate points. 

Only when m -  2 is the problem solved immediately. Indeed it follows then 
from the analysis given in Section 7 that  as soon as a ~ lies in one of the open 
intervals (21, #1), (01, a~), the sequence ~ converges to a 1 in the first case and to 
22 in the second. On the other hand it follows from (10) tha t  21 lies in < 2 1 ,  a~ > .  
Therefore the decision in this case is possible after the first iterative step, as 
soon as we have determined 0x. But  here the equation (25) gives immediately 
for 01 the expression 
(27) 01 ~--- art y| - -  2axs Yl Y2 + ai~ Yat 

y! + y| 

9. In the foregoing discussion, in order to obtain 8~ we used an arbitrary fixed 
vector rj in (5). On the other hand, in the theory of direct iteration a variant due 
to H. WlELANDT* and called broken iteration is often used and consists in forming 
reeursively the vectors ~ given by  

8~ = A-I 8~-1, 

starting with an arbitrary vector ~_~=~}. In combining this idea of broken 
iteration with our rule (4) we obtain the following modification of our rule: 

For any 2~ define a vector ~ by 

(28) ~. = CA --  2; ~)-1 ~ - 1  (~ = o, 1 . . . .  ) ,  

where ~-1 is an arbitrary vector ~ :4: O, and then put 

_ Oa (~) (~ = o ,  l . . . .  ) (29) 2 , , + 1  . . . .  f f ~ j f -  �9 

I t  will turn out in this case that  the convergence is indeed considerably 
hastened, becoming cubic 5nstead of quadratic. 

�9 H. WIELANDT, ,,Beitr~ge zur mathematischen Behandlu'ng komplexer Eigen- 
wertproblerae, V: Bestimmung h6herer Eigenwerte durch gebrochene Iteration", 
]3ericht B 44/J/37 der aerodynamischen Versuchsanstalt G~ttingen, t944. 
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10. In  order to discuss this procedure we assume again without  loss of gener- 
al i ty t ha t  the coordinates are normal  and tha t  (6), (7), (8) hold. If  we again put  

~,, = (x~"~) it follows from (28) tha t  x~ ~ --  x~"-l' ' ~,--3~ ' and therefore 

x(,kJ - Y" (k = o,  t ,  .) ""  

H 0 , , - s  
(30) 

I f  we pu t  

we obtain 

k 

N,,k = I I  0 , , -  Z,) 
Ir 

( v = t  . . . . .  n;  k = 0 ,  t . . . .  ) ,  

(3t) 

y~ p, y~ 
x~ ~' - Q ~ ' ( ~ )  = 2..] _,v,, ~ ' , ,=~ N,'.~ 

~ #,, y |  

' ~ ' k +  1 - -  n 2 

I~ '~1 IPjR- 

Here we again disregard the / t ,  corresponding to the vanishing y, and denote the 
remaining d i s t inc t / , ,  by  ( I t ) .  Then (3t) becomes, with appropriate  positive lb~: 

(32) 

, , , % ~  

~.k+l  - -  ~,=1. ,', (k  = 0 ,  t . . . .  ) ,  
" #,, 
F , M ~ .  

where 
k 

(33 )  Mv, k ----- H (a, - 2,,) 
~ 0  

( / , = t  . . . . .  m; k = 0 , 1  . . . .  ). 

11. Again denote  by  a one of the a t and by  p, Mk the corresponding p , ,  M~, k . 
Then from (32) follows 

m ~,  (at'--a) PtJ 
p = l  M ~ ,  k 

(34) 2,+,  --  a = , p m p. 

where in the sums ~ '  the terms with the index ff for which a .  = a are to be omitted.  
F rom (34) put t ing  

,3, (".-"_2 L~ 

p+ x '  
l t = l  l , R 

we have again 

(36) ;'k+x - -  a = D~M~. 

Now put  

(37) d = Min [a,, - -  a l ,  P --  ~ P,,, K = - -  P (a , , , -  o'x), 
P 
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and  take  a 8 > 0 such t h a t  

(38) 

Then we have  obviously  

(39) 
, (~ 

d--r ' 

(40) K ~ < 8. 

12. Suppose now tha t  we have  for z = 0, t . . . . .  k 

(4t) I ~ - a l  ~ 8  (n = o , t  . . . . .  k). 

Then  we have  f rom (33), since % ~ a ,  

(42) IM.,~ [ ~ (d -- 81TM 

and therefore b y  (37) and  (35), since all t e r m s  in the denomina to r  of (35) are 
posit ive,  

]Dk[<_;_p Max la~-- a[ 
(d_~) ,k+ ,  , 

Ihkl < K  (d - -  8) - ~ - ~ .  

I t  follows then  f rom (39) and  (40) 

(43) [D, 8~.*+*l<Ke*k+~<e2k8 ( k = 0 , 1  . . . .  ). 

We have  now from (36), since Mff <;8 '}  § by  (41), 

(44) I , ~ + ~ - ~ l  < d ~ 8  (k=o.l  . . . .  ) .  

We see t ha t  the  sequence ;tk is convergent  to a and  we have  for each k: 
[ ) ,k-  al < 8 ,  provided only t h a t  

(45) lao- , , I  <8 .  

13. We now prove  t h a t  i/  R,---~a and i /none o~ the $k is equa; to a, then 

(46) ;t~+l-- a (zk- ~)" -->7 ( ~  oo), 

t where 7 .is a positive constant equal to one o/ the quotients (% _ a) 2 . 

We assume first  t h a t  (45) is satified. Observe  t h a t  f rom (44) and  (45) b y  
definition of Mk we have  

k 
(47) M~< 8~ H (8,~c~-1') ~ = 8 '~+~ ,,~r 

x = l  

On the o ther  hand,  if we divide bo th  sides of (36) b y  A k -  a and  use (47), it 
follows tha t  

_ ~ + , - ~  IDkMkM~_~l<!Dkl ' ~-~ = 82( H (8 l~2(x--1))~) 8~:2'[k-1} 
~'k - -  (7 ~.x=l / 

]/-"j [',.~2k+2 1 F f l ( k _ l ) t  ' 
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and therefore by (43) 

(48) ).k+ 1 -- a < ek," 

On the other hand, if we write (36) for k and k -  t and divide, we obtain 

(49) ~k+t--a = Da . 
(~ - -  a )  ~ D , - 1  ' 

therefore we have to discuss D, as given by (35)- 

14. In the formula (33) for My, k the general factor % - - ~ ,  can be written as 

(at* -- ~) (t + o ~ ) "  Therefore, putting 
k 

we have 

(5t) M~,k ~-- (at*- (7) *+1 T~,k. 

Since ~.[(r--,l.[ is convergent by (48), we see that 

(52) T~,~ -~  t. (k -~  oo), 

a--L,[ ~ I (~=0 ,  t . . . .  ) On the where tt* is finite and positive, since ~ ~ ~ - < ~ -  
other hand we have 

�9 , , a u - -  O" 

and therefore further 
o0 ~-x - -  a 

~ t = k  u = k + l [  & k + l  - U  I 

t But, by (48), the sum on the right is convergent and < 
sum on the left is t t*- T~,k, we obtain 

(53) T.,~ = t. + o ( ~  - a~+d.  

15. From this it follows further by (5t) and (37) that 

M~,,~ t~ (at.-- a) ~k+~ ~ d 2k ] 
Therefore, if we put 

; therefore, since the 

Pt* - tt* ( ~ -  o) ' 

we obtain finally for the numerator of /9 ,  in (35) the expression 

' P ;  +O[ a*§ 
1%-"[  2k ~ d2~ /" 

On the other hand the denominator in (35) can be written as p +~1,, where 

m t k 
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since o - - / , - + 0  and % - - 2 ~ - - > % - - ~ .  Therefore we now obtain 

(54) (P + n,) Dk = ~,' P'~ +O(~k+1--a] 
~=x(%--o) '~ ~ d'~ /" 

16. In  the right hand sum in (54) it could happen tha t  some v a h e s  of I q n - - o  I 
occur twice, if there are two on symmetr ic  with respect to o, and it could even 
happen tha t  two such terms cancel each other, if the corresponding p~ have the 

t sum 0. Denote the distinct quotients ( % _  o) 2 which are not  cancelled out by  

(55) 
Then we can write 

(56) 

Y =7,>9'~>"'>7,> O. 

" + O { ; t k + , _ o ~  
dllt / '  

where the sQ are non-vanishing constants, as long as there are any  terms left, 
tha t  is if v > t .  

17. But  if we 'had r = 0, it would follow flora (56) tha t  

D k = O [ ~k § - a.~. 
k d 'h 1' 

introducing this into (36) yields 

O( ~k+l- o ) ,  d,k ah+x--a= \- ~ M ~ k .  =O(M~), 

and therefore by  { 4 7 )  (d],,__O(e,,,,_x,) ' 

k U /  

which is impossible, since 0 < e < I.  Therefore we have r > t ,  and it foUows from 
(56) and (48) tha t  

(57) n k . -~ -~Z ~ (k -+ oo), 

and (46) now follows from (49). 

Thus far we have  proved (46) only under the assumption tha t  (45) holds. 
However, if we assume more generally tha t  t x -~o ,  for a certain u a we have 
12~.--a I <; 8, and our result above applies if we put  /~+~0 =/~. The theorem 
stated in Section t3 is now completely proved. 

I t  is hardly necessary to add tha t  our results hold also for Hermit ian ma-  
trices, for which the discussion above remains valid with some slight and ob- 
vious modifications. 

Note added October 1957. Professor G. FORSYTHE has directed my attention to a 
paper by S. H. CRANDALL, "Iterative procedures related to relaxation methods for 
eigenvalue problems" [Proc. Royal Soc. London, 207, 415--423 (1951)], in which the 
iteration rules (3), (4) and (28), (29) are discussed. In particular, Professor CRANDALL 
establishes the ~ubic character of convergence of @~ in the rule (28), (29). However he 
does not arrive at our asymptotic formula (46), which is the principal result of our 
paper. 
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