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1. Introduction

It has been known since the time of STOKES that under suitable assumptions
on the behavior of the velocity field at infinity, there exists no steady two-
dimensional flow of a viscous fluid past an obstacle, in which the velocity com-
ponents are infinitesimals of the first order. On the other hand, flows of this
type in three dimensions are explicitly known (cf. [2]). An explanation sometimes
advanced for the discrepancy in results is that in the known flow past a sphere [2],
the assumption on the ratio of inertial to viscous forces which is used to derive
the equations of motion becomes violated in a neighborhood of infinity. In the
view of the authors, this phenomenon brings into serious question both the
physical and the mathematical validity of the known results, and makes it
imperative to investigate the sense in which the boundary problem is correctly
set. More precisely, it is natural to ask whether there exist two-dimensional
flows in which the velocity tends to its limit more slowly than has in the past
been assumed, and whether a three-dimensional flow is unique in a (physically
reasonable) class of flows for which the usual uniqueness proofs break down*.
In this paper we prove that the answer to the first question is no, to the second
yes. In fact, we show that there are no two-dimensional flows for which the
velocity is bounded, and we prove the nniqueness of a three-dimensional flow
under the single assumption that the velocity tends to a limit at infinity **. As
a corollary, we obtain representations, valid in a neighborhood of infinity, for
the velocity field of the most general such flow.

Once the uniqueness of a flow past an obstacle with prescribed velocity at
infinity is established, the continuous dependence of the velocity field on the

* In [2], SoMMERFELD dismisses this question with the remark, , Dafl die so
gewonnenen Gln. (13) und (13a) die einzig moglichen L&sungen unseres Problems
sind, haben wir zwar nicht bewiesen. Wir folgern es aber aus dem Axiom, daf jedes
richtig gestelite Problem der mathematischen Physik nur eine L&sung haben kann.
This reasoning is evidently circular. In order to establish that the problem is cor-
rectly set it is necessary to prove the uniqueness of a solution.

** After preparation of this manuscript our attention was directed to a paper of
.CHARNEs & KrakowsKl, Carnegie Inst. Tech. Technical Report No. 37 (1953), in
which a rigorous proof is given for the non-existence of a plane Stokes flow. The
proof we present here seems simpler, and applies without essential change to the proof
of uniqueness of a three-dimensional flow and to the derivation of asymptotic
representations.
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limiting speed is a direct consequence of the linearity of the equations of motion.
The existence of such a flow, despite extensive studies in this direction, is yet
to be proved.

2. Notation and definitions

Throughout this paper we use GIBBS’ notation of vector analysis. The under-
lying space is of dimension # =2 or # =3 (plane or ordinary three-space}. Points
are denoted by the letters P, Q, efc., vectors by bold face letters. By P+
we mean the end point of the vector r if it starts at P. The symbol e is reserved
for a variable unit vector or, equivalently, for a variable point on the unit sphere
(circle) w. The surface element (element of arc) of the unit sphere (circle) will
be denoted by dw. In the plane (#=2) uxv and curl w have to be regarded as
scalars.

By a slow flow, or Stokes flow, in a region, we shall mean a vector field g (P)
which satisfies the system

(2.1) Aq =gradp, divg=0

for some scalar field p(P). In the text we shall refer to a Stokes flow simply
as a flow. We assume that within the flow region q is three times and $ twice
continuously differentiable. $ is determined only up to an arbitrary additive
constant. )

By an obstacle B we shall understand a finite number of piecewise smooth
nonintersecting simple closed surfaces (curves). A solution of (2.1) defined
throughout the exterior of an obstacle B will be called a flow past B if q is con-
tinuous up to B and ¢ ==0 on B and if p and the first partial derivatives of ¢ are
bounded up to B.

The region exterior to a sphere (circle) of radius 7, and center Q shall be
denoted by € and called a neighborhood of infinity. Let v=v(P) be a vector
or scalar field defined in € Then we write v=o0(* if lim»*v(Q+re)=0
uniformly in e, and we write v =0 (r*) if |r %2 (Q -+ re€)| < const. < oo for large 7.
These properties are evidently independent of the choice of Q.

A flow defined in a neighborhood of infinity will be called uniform at infinity
if'q———qo—}—o(ﬂ, and gq, is said to be its wvelocity at infinity.

3. The basic lemmas
Lemma 1. Let % be a field which is harmonic in a neighborhood of infinity ©.
Then h has a unique decomposition h=h)+h,,
where hy is harmonic in the entir space (plane) except at oo, and
where hy is harmonic in € and, for n=3, hy=0(r) while for n=2 it is of
the form
(3.1) ho(Q + 7€) =alogr + h¥(Q +re), h¥=0("1)*

h is harmonic at oo if and only if h=0(r""*?),

* k), hy and a are uniquely determined by 4 and independent of the choice of Q,
but %}, of course, is not.
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Lemma 2. Let } be as tn lemma 1. Then the following three statements ave fully
equivalent:

0,1,2,... if n=2
h, —_ —_ , — ’ 2 3
®) o, {—1,0,1,2,... if n=3
(b) h=0("""
{c) h has an expansion of the form
3-2) h=h(Q+re)=2r"s_,(€)*
h=y+1

uniformly convergent in every compact subregion of €.

The series obtained from (3.2) by taking the gradient term by term 1s also uniformly
convergent in every compact subregion of € and hence it represents an expansion
for grad h. We have grad h=0(r"""%) and, conversely, if grad h=0{r—""%), then
h=0(r"*"1) 4 const.

These two lemmas are corollaries of well known theorems on isolated singu-
larities of harmonic functions {¢f. [1] §§ 93—95).

Lemma 3. Let & be as in lemma 1. Then the following two statements are fully
equivalent:

(a) k=0,
(b) Jh(Q+7re)dw =0 for any point Q and any r>ry**.

Proof. Assume first that (a) holds. Then by lemma 1 % is harmonic at oo.
Hence the function %(P)=%{Q+se)=s""+24(Q+s1e) is harmonic in the
neighborhood of Q and at Q. Therefore by the mean value theorem for harmonic
functions we have (w =2x or 4n)

oh(Q) = [R(Q +rle)dw =2 [A(Q +7re)dw.

On the other hand, (a) implies %(Q) = lim »*~24(Q 4 re) =0, hence that (b}
holds. e

Assume now that (b) is true. We use the decomposition & = %, 4- A, of lemma 1.
Since %, is harmonic everywhere the mean value theorem implies w#,(Q)=
f 7,(Q+re)dw. Using the same method as before and lemma 1, we get

I (Q+re)dw_{w27zalogr for n =2
20 =

wbr? for n =3,
where b= 1lim r ,(Q+re) for n=3. Therefore (b) implies

2malogr for n =2

—m(Q) ={

brt for n =3.

* For n=2 the sg(e) are trigonometric functions while for #=3 they are
spherical harmonics of order k.
** This lemma, as well as its proof, is valid also for n>3.
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These relations are possible for arbitrary @ and arbitrary large » only if 4, (Q) =0
and 4 =b=0. Hence h=h, and, for n =3, h,=o0(r?). Lemma {1 for n=2 and
lemma 2 for # =3 show that (a) holds, q. e. d.

Lemma 4. Let q be a three-dimensional flow defined in a neighborhood of
infinity G and uniform at oco. Then

(3.3) curlg =0 (r?).

Proof. We put w=curlq. By (2.1) we have Aw=curl 4q =0, i.e. w is
harmonic in §. We denote the sphere of radius r around Q by &, and the volume
between €, and &, by B,, . Then Green’s identity yields

_ _ [ow ‘w
O—wadV_deS—{—ffa?dS,
Q_}rrn Cre [

where 0/0n denotes the normal derivative in the direction away from %,, . The
first integral on the right is independent of » and will be denoted by @. For the

second we have ,‘Z’:, = ddf w(Q-+re) and dS=r*dw. Thus

(3.4) e fw(Q tre)dw=—ar
Integration with respect to r yields
(3.5) wfw(Q—{—re)dw:ar‘l—{—b.
We multiply this by #2 and integrate again with respect to 7, obtaining
(3.6) fwav="a+Zb+e,
Byr

where ¢ is independent of ». Another Green's identity yields

3.7) feurlgdV = [qxndS+ [gxndS,
ror Cre €
where m is the unit normal vector directed away from %, ,. Again, the first

integral on the right is independent of » and will be denoted by d, the second
can be written in the form

fgxndS=1[q(Q+7e) xedw.

r

Hence from (3.6) and (3.7) we get
(3.8) [q(Q+re)xedw:—;—a+ Lot (c—ar,
By hypothesis, q is uniform at oo, 7.e. lim ¢ (Q 4 »e) = ¢q, uniformiy in e. Hence,

letting r—oc in (3.8) yields b=0 and ¢,% [ edw=0=23}a. From (3.5) and

lemma 3 for =3 follows then w=0(r"?%), q.¢. d.
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Lemma 5. Let q be a plane flow defined and bounded in a neighborhood of
infinity €. Then
(3.9) curlg =0 (r 1) *.
The proof of this lemma is analogous to that of lemma 4. Surface integrals

are to be replaced by line integrals and volume integrals by area integrals.
w=curl ¢ is now a scalar field. In place of (3.4) we get

—;;fw(Q +re)ydo =—ar?,
so that @
(3.10) Jw(Q+7re)dw = —alogr +b.

Instead of (3.8), we now have

fq(Q+er) Xedw = —ar(%logr—%) + %b—l—(c—d)r‘l.

It suffices here to assume that ¢ is bounded in order to conclude that a=0
and b=0. From (3.10) and lemma 3 for # =2 follows w=0(r"), ¢q. ¢. d.

4. Uniqueness of three-dimensional flows

Theorem I. For any obstacle B there is at most one three-dimensional flow ¢
past B which is uniform at infinity and has a prescribed velocity at infinity q,.

Proof. Since the equations (2.1) are linear, it is sufficient to prove that
Qo =0 implies ¢ =0.

By lemma 4 we have
(4.1) w=curlqg =0(?

and hence, by lemma 2,
—curlw = —curlcurlqg = Aqg =grad p =0 (r3).

From lemma 2 follows that- p =0 (r"2) + const., but since we are free to adjust p
by an additive constant, we may assume

4.2) p=0("?.

Consider now the Green’s identity

(4.3) f(curt@)2dV=[q-AqdV + fcurlq-(q xn)dS,
B 8 =1

* Professor TRUESDELL has pointed out to us that our proof of non-existence
of plane flows can be viewed as an application of a theorem of HameL and Kasmpi
DE FERIET, which asserts that in a plane motion adhering to a fixed boundary the
vorticity is orthogonal to every harmonic function. But in a slow plane motion the
vorticity is harmonic. Therefore the vorticity is zero, from which one concludes
easily that the velocity-is zero. To make this argument rigorous in our case it is
necessary to find a suitable estimate on the behavior of the vorticity at infinity.
This estimate is provided py lemma 5.
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valid for any smooth vector field ¢ with div ¢ =0 defined in a finite region 8
with piesewise smooth boundary &. We apply this identity to the flow q and
the region B, between the obstacle B and a sphere &, so large that B lies interior
to €,. By (2.1) we have q - Aq=gq - grad p=div{pg), so that (4.3) can be
transformed into

(4.4) J(curlq)%lV:f[pq-n—curlq-(qxn)]dS.
. &

Here we have made use of the fact that ¢ =0 on B. It follows from (4.1), (4.2),
and g =o0(1) that the surface integral in (4.4) tendr to zero as r— co. Hence

(4.5) Q{(curlq)2dV=O,

where 3 is the region exterior to . Since curl q is continuous, it follows that
curl ¢ =0 throughout 8B. Together with div ¢ =0, this implies 4¢ =0. But
g=0 on B and g =0(1); hence, by the maximum and minimum principle for
harmonic functions, applied to each component of q, it follows that ¢ =0, g.e.d.

5. Non-existence of plane flows

Theorem II. For any obstacle B, any bounded plane flow q past B is the
state of rest q =0.

Proof. An argument analogous to that used in the proof of theorem I shows
that from lemma 5 follows

(5.1) w=curlg=0(7"), p=0(@7".

Also, we have

(5.2) [ (curlq)?dA = [[pq-n — curlq(q xm)]ds,
%, &

where ¥, is the region between B and a large circle €,. But here we can conclude
from (5.1) and the boundedness of g only that the integral

(5.3) I= [ (curlq)?d4 = [w?dA
9 %

over the exterior % of B is convergent. However, we know thétv w is harmonic
in ¥ and that w=0{(r"?). Hence, by lemma 2, (3.2), w is of the form

(5.9) w=w(Q +re) =rts(e)+0({?,
and therefore
(5.5) w=1r2sy+ 0.

Let ¥,,, be an area between two circles €, and G, both exterior to %, so that
Y, is contained in Y. We then have from (5.5)

fw“dA = Iog7y~fsﬁdw + fO(r“’) dA.
ﬂr.r ’ w mvor .
This must tend to a finite limit as r — o0, because the integral (5.3) converges.

The second term on the right certainly converges and hence, since log —;l is
0
not bounded as 7— , we can conclude that [sjdw=0 and hence s,=0.
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Therefore, by (5.4), w=0(?), from which, as before, p =0(r"?) follows. Going
back to (5.2) we see now that the integral on the right in fact tends to zero as
r— oo and hence, as in the proof of theorem I, we conclude that curl g=0,
divg=0 and Aq =0 throughout . Thus g is harmonic in a neighborhood
of infinity. Since q is also bounded, it follows from lemma 1 for # =2 that ¢
is harmonic at oo and hence uniform at infinity. Therefore, for some choice
of a Cartesian coordinate system, we have ¢,—¢,, ¢,~>0, where ¢, and ¢, are
the components of q. As before, the maximum principle for harmonic functions
implies g,=0. Therefore curl ¢ = %’ =0,divg= %Zf =0, and hence ¢, = const.
But, since ¢,=0 on B, we must have ¢, =0 everywhere, ¢. e. d.

6. Representation formulas
The following theorem establishes a one-to-one correspondence between three-
dimensional flows with given velocity at infinity and vector fields which are
harmonic at infinity.

Theorem III. Let q be a flow defined in a neighborhood of infinity € with
veloctty at infinity qo. Then there is a harmonic vector field u, defined in € and
harimonic at infinity such that

(6.1) q=q,+ u + grad yp,
where
(6.2) p=yp(Q+re)=—1r[stdivu(Q +se)ds.

Conversely, if w is an arbitrary harmonic vecior field defined in & and harmonic
at infinity, then (6.1) and (6.2) give a flow with velocity at infinity q,.
Proof. Consider the differential equation

(6.3) A(ry) —r2 Ay =63+ 4r SL=p(Q +7e).
A special solution is
(6.4) x=2(Q+re)=3r"1[stp(Q +se)ds.

The integral converges because of (4.2); moreover,
(6.3) ¥y=0@"2, Ayxy=0(0@", grad(r?y) =0({7).
Applying Laplace’s operator to (6.3) and observing that 4p=0 we get

a —

144y + 47—8741;( =0,

hence Ay =c(e)»#*. This is compatible with (6.5) only if c(€) =0. Thus Ax=0
and, by (6.3), 4 (r*y) ==#. Hence 4[q —q,—grad (r*y)] =grad p —grad A{r?y)=0
i.e. w=¢q—¢q,—grad(r?y) is harmonic. From (6.5), ¢ —q,=0(1), and from

lemma 1 it follows that u is harmonic at infinity. Also, we have

diva = — divgrad(r®y) = — A({2y) = — P,
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hence =172y in (6.2). Thus the first part of the theorem is proved. The second
part can be verified immediately.

By use of the series expansion (3.2) for u, 7.c.

oo
(6.6) w=Yr+s, (@),
k=1
it follows easily as a corollary of theorem III that any tlow which is uniform
at infinity can be represented by an expansion

(6.7) q=qo+ 27" [sk—l(") - 3(‘27;‘_3 sira(e)],
k=1

where the spherical harmonic vectors s7(e) are defined in terms of the s, (e) by

6.8 sf(e) = r*lgraddivir**'s,_,(€)], k=2,3....
1

Conversely, for any set of spherical harmonic vectors 8,(e) such that (6.6) con-
verges uniformly in some neighborhood of infinity, (6.7) and (6.8) define a flow
with velocity at infinity q,. The classical Stokes flow past a sphere of radius
re [2] corresponds to

So=—27,9,, S;=473[q,—3e(qy-€)], S, =8;=8=:-=0.

Theorem IV. Let q denole a flow defined in a neighborhood of infinity € with
velocity at infinity q,. Then there ave harmonic vector fields S and H, defined
in € and harmonic at infinity, such that

6 divH=0

(69) divA@p:Q) =0, KR=0(?,
and such that

(6.10) q=q,+cul() +H.

Conversely, if H and S.are harmonic vector fields defined in &, harmonic at infinity
and satisfying (6.9), then (6.10) represents a flow with velocity at infinity q,.
Proof. Define

o

(6.11) . Q= —1rifstcurlq(Q +se)ds.

Then, as in the proof of theorem III, AR =0, 4 (2 Q)= —curl q,

A{q — curl»? Q) = Aq + curlcurl ¢ =0,
hence
q=q,+curl*Q + H

for a harmonic vector H. Since curl ¢ =0 (r"?), we have £ =0 (r"%) and curl 2Q =
O(r). Hence H=0(1). By lemma 2, 2 and H are harmonic at infinity.
If, conversely, H and & are harmonic in ¢ and at infinity and satisfy (6.9),

then if we set
q=gq,+curl”?Q + H,
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then div ¢ =0 and — curl Aq=4A472Q =0, hence there is a scalar p such that
Aq=grad p. Also, one can see that q=¢q,+0(r™), g.e. d.

7. Representation of a flow past an obstacle

If the flow is defined throughout the exterior 8 of an obstacle B and g =0
on B the results of the preceding section can be made more specific. For we
may set

(7.1) @(Q) = — T‘;frl curl g (P) 4V
B

where 7 is the distance between @ and P. This integral in general does not
converge absolutely, but it exists in the sense of a principal value as the limit
of integrals over concentric spheres with center at Q or at any arbitrary point.
This is the case because by (6.1) and (6.6) we have

rcurl q= ricurlu =r3s,xe+ 0(r%, s,=const.,
and f edw=0. Since n:curlq=0 on B, one can show that A¢ =curl ¢ and

d1v<p 0, hence — curl curlep = Aep =curl q, which implies the existence of a
scalar % such that ¢ =q,—curl¢ | grad 2. The function # may be multi-valued
if B is not simply connected, but grad % is single-valued in L. Evidently,
divgradh=A4h=0. Also, simple estimates on (7.1), using curl ¢ =0(r2),
show that curlep=0(r1). Hence grad 2=0(r"'), and, for any given deter-
mination of % in a (simply connected) neighborhood € of infinity, » =0 (log 7).
By lemma 2, % tends to a limit at infinity in €. Thus follows

Theorem V. Every flow past B with velocity at infinity q, admzts the repre-
sentation, valid in the exterior B of B,

(7.2) q = qo— curlep + grad &,

where «p is defined by (7.1), and where h is harmonic in B. If B 1s simply conmected,
h is single valued and may be chosen to be harmonsc at infinity. Otherwise, any
determination of h tends to a finite limit at infinity.

We may combine this result with the results of §6 to obhtain still other
representations.

Theorem V1. If B is star-shaped relative to a point Q, every flow past B which
s uniform at infinity admits the representation

(7.3) q=q(Q+ er) =q,+ curl 2 | curl H 4- grad %,

where H and h are harmowic in B and at infinity and Q is defined by (6.11). If ¥
1s not star-shaped, (7.3) are valid in any star-shaped neighborhood of infinity in
the flow.

Proof. If ¢ is defined by (7.1), & by (6.11), then A{ep 4 7282) =0. Hence
@ =—(»?Q + H) for a harmonic vector H. Using (7.2),

q =q,-+ curl 2 - curl H 4 grad 4.
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From (6.9) and (7.1) we find 282 =0(1), ¢ =0 (log#). Hence H=0(log ) and,
using lemma 2, we may assume H is harmonic at infinity. This yields (7.3);.
For the classical Stokes flow past a unit sphere with center ¢ we obtain

for q(Q +e7)
q=9q,— % curl (72 curl %) - % curl (curl %‘l) ,

q9Q=q,— -g»curl (rzcurI%‘L) — %grad (f,ygl)

This work was supported by contract NONR 22809 of the Office of Naval Research
with the University of Southern California.
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