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1. Introduction 

I t  has been known since the time of STOKES that under suitable assumptions 
on the behavior of the velocity field at infinity, there exists no steady two- 
dimensional flow of a viscous fluid past an obstacle, in which the velocity com- 
ponents are infinitesimals of the first order. On the other hand, flows of this 
type in three dimensions are explicitly known (c]. [2~). An explanation sometimes 
advanced for the discrepancy in results is that  in the known flow past a sphere [2], 
the assumption on the ratio of inertial to viscous forces which is used to derive 
the equations of motion becomes violated in a neighborhood of infinity. In the 
view of the authors, this phenomenon brings into serious ciuestion both the 
physical and the mathematical validity of the known results, and makes it 
imperative to investigate the sense in which the boundary problem is correctly 
set. More precisely, it is natural to ask whether there exist two-dimensional 
flows in which the velocity tends to its limit more slowly than has in the past 
been assumed, and whether a three-dimensional flow is unique in a (physically 
reasonable) class of flows for which the usual uniqueness proofs break down *. 
In this paper we prove that the answer to the first question is no, to the second 
yes. In fact, we show that there are no two-dimensional flows for which the 
velocity is bounded, and we prove the ~niqueness of a three-dimensional flow 
under the single assumption that  the velocity tends to a limit at infinity**. As 
a corollary, we obtain representations, valid in a neighborhood of infinity, for 
the velocity field of the most general such flow. 

Once the uniqueness of a flow past an obstacle with prescribed velocity at 
infinity is established, the continuous dependence of the velocity field on the 

* In [2], SOMMERFELD dismisses this question with the remark, ,,DAB die so 
gewonnenen Gln. (13) und (t3a) die einzig m6glichen L6sungen unseres Problems 
sind, haben wit zwar nicht bewiesen. Wir folgern es aber aus dem Axiom, dab jedes 
richtig gestellte Problem der mathematischen Physik nur eine LSsung haben kann." 
This reasoning is evidently circular. In order to establish that the problem is cor- 
rectly set it is necessary to prove the uniqueness of a solution. 

t* After preparation of this manuscript our attention was directed to a paper of 
.CHARNES • KRAKOWSKI, Carnegie Inst. Tech. Technical Report No. 37 (1953), in 
which a rigorous proof is given for the non-existence of a plane Stokes flow. The 
proof we present here seems simpler, and applies without essential change to the proof 
of uniqueness of a three-dimensional flow and to the derivation of asymptotic 
representations. 
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| imi t ing  speed is a d i rec t  consequence of the  l i nea r i ty  of the  equat ions  of motion.  
The exis tence of such a flow, despi te  extens ive  s tudies  in this  direct ion,  is ye t  
to  be proved.  

2. Notat ion and definit ions 

Throughou t  this  paper  we use GIBBS' no ta t ion  of vec tor  analysis.  The  under-  
ly ing space is of d imension  n = 2 or  n = 3 (plane or o rd ina ry  three-space) .  Poin ts  
are deno ted  b y  t h e  le t ters  P, Q, etc., vectors  b y  bold  face let ters .  B y  P + r 
we mean  the  end po in t  of the  vec tor  r if i t  s t a r t s  a t  P .  The symbol  e is reserved 
for a var iab le  un i t  vec tor  or, equiva lent ly ,  for a var iab le  po in t  on the  uni t  sphere 
(circle) co. The  surface e lement  (element of arc) of the  uni t  sphere (circle) will  
be deno ted  b y  da~. In  the  plane (n = 2) u • v and curl u have  to be regarded  as 
scalars .  

By  a slow/low, or Stokes ]low, in a region, we shall  mean  a vec tor  field q (P) 
which satisfies the  sys tem 

(2.t) A q  = grad  p, d i v q  = 0 

for some scalar  field p (P).  In  the  t ex t  we shall  refer to a Stokes flow s imply  
as a / l o w .  We assume t h a t  within the  flow region q is three  t imes and  p twice 
con t inuous ly  different iable ,  p is de te rmined  only  up  to an a r b i t r a r y  add i t ive  
cons tan t .  

By an obstacle t3 we shal l  unde r s t and  a f inite number  of piecewise smooth  
nonin tersec t ing  s imple  closed surfaces (curves). A solut ion of (2.t) def ined 
th roughou t  the  ex te r ior  of an obstacle  93 will  be called a / l o w  past 93 if q is con- 
t inuous  up to  93 and  q = 0 on 93 and  if p and  the  first  pa r t i a l  der iva t ives  of q are 
bounded  up  to  ~ .  

The region exter ior  to a sphere (circle) of rad ius  r o and  center  Q shall  be 
deno ted  b y  ~ and  cal led a neighborhood of infinity. Let  v = v (P) be a vec tor  
or  scalar  field def ined in ~. Then we wr i te  v = o ( r  k) if l im r - k v ( Q + r e ) = 0  

r - - + o o  

uni fo rmly  in e, and  we wri te  v = 0 (r k) if I r-kv (Q + re)[ < const.  < oo for large r. 
These  proper t ies  are ev iden t ly  independen t  o f . the  choice of Q. 

A flow defined in a ne ighborhood  of in f in i ty  will  be called uniform at infinity 
if q = q0 + o (t) ,  and  qo is sa id  to  b e  i ts  velocity at infinity. 

I 

3. The  basic lernrnas 

L e m r n a  1. Let h be a field which is harmonic in a neighborhood o/ infinity ~:. 
Then h has a unique decomposition h =h  i + h2, 

where h 1 is harmonic in the entir space (plane) except at oo, and 

where h 2 is harmonic in ~ and, /or n = 3 ,  h2=O(r -x) whilb /or n = 2  it is o/ 
the ]orm 

(3.1) h 2 (Q + r e) - -  a'log r + h~(Q + r e),  h* = 0 (r -z) *. 

h is ha,~monic at oo i~ and only i /h=O(r-n+2).  

~r h t  ' h2 and a are uniquely determined by h and independent of t hecho i ce  of Q, 
but  h*, of course, is not. 
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L e m m a  2. Let h be as in lemma 1. Then the/ollowing three s~atements are/ully 
equivalent: 

0, t ,  2, . . .  if n = 2 
(a) h = o ( r - ' ) ,  ~ - - - - -  

- - t , 0 , 1 , 2  . . . .  if n =  3 

0~) h = 0 (r - ' - 1 )  

(c) h has an expansion o/the ]orm 

(3-2) h = h(Q + re) = ~. r-~sk_l(e) *, 
k = v + l  

uni/ormly convergent in every compact subregion o/ 4. 

The series obtained/tom (3.2) by taking the gradient term by term is also uni/ormly 
convergent in every compact subregion o~ ~ and hence it represents an expansion 
/or grad h. We have grad h=O(r  -'-~) and, conversely, i /grad h=O(r-~-i} ,  then 
h = 0 ( r - ' -x )  + const. 

These two lemmas are corollaries of well known theorems on isolated singu- 
larities of harmonic  functions (ct. [13 w167 93--95).  

L e m m a  3. Let h be as in lemma 1. Then the/ollowing two statements are ]ully 
equivalent: 
(a) h = 0 (r-n+1), 

(b) f h (Q + r e) do~ = 0 /or any point Q and any r > r o** 
co 

Proo/. Assume first t ha t  (a) holds. Then by  lemma t h is harmonic  at  oo. 
Hence the function h(P)=h(Q+se ) -~s - "+~h(Q+s- l e )  is harmonic  in the 
neighborhood of Q and  at Q. Therefore by  the mean value theorem for harmonic  
functions we have (oJ = 2zr or 4zr) 

coh(Q) = f h(Q + r-le) do = r ~-~ f h(Q + re) do.  
c o  

On the other  hand, (a) implies h ( Q ) = l i ~ r ' - Z h ( Q + r e ) = O ,  hence tha t  (b) 
holds. 

Assume now tha t  (b) is true. We use the decomposit ion h = h 1 + h 2 of lemma t. 
Since /h is harmonic  everywhere the mean  value theorem implies oJhl(Q)= 
fha(Q+re)doJ. Using the same method as before and lemma 4, we get  

~o 

{ ~  2 z t a l o g r  for n = 2 
f h~(Q + r e) d~o = br -1 for n =  3, 

co 

where b = lira r h~(Q+re) for n = 3 .  Therefore (b) implies 
, - - - ~  OO 

= 1 2 z r a l ~  for n = 2  
- -  hi (Q) | b r-1 for n ---- 3- 

* For n=2 the s~(e) are trigonometric functions while for n = 3  they are 
spherical harmonics of order k. 

** This lemma, as well as its proof, is valid also for n-> 3- 

7* 
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These relations are possible for a rb i t rary  Q and arbi t rary  large r only if h a (Q) ~ 0 
and a = b = 0. Hence h = h2 and, for n = 3, h2---- o (rq). Lemma t for n ---- 2 and 
lemma 2 for n = 3 show tha t  (a) holds, q. e. d. 

Lernrna 4. Let q be a three-dimensional /low de/ined in a neighborhood o[ 
in]inity ~ and uni/orm at oo. Then 

(3.3) curl q = 0 (r-2). 

Proo]. We put  w = c u r l q .  By  (2.1) we have f l w = c u r l A q ~ 0 ,  i.e. w is 
harmonic  in ft. We denote the sphere of radius r around Q by  ~ ,  and the volume 
between ~,o and ~ ,  by  93,,o. Then Green's ident i ty  yields 

Ow dS  ' o-_f w v:f ds+f  
where O/On denotes the normal  derivative in the direction away from 93,,0. The 
first integral on the r ight is independent  of r and will be denoted by  a. For  the 

second we have Ow _ d ~n -- dr w ( Q + r e )  and dS=rZdoJ. Thus 

"f (3.4) dr w (O + re) do9 = -- ar  -2. 
co 

Integrat ion with respect to r yields 

(3.5) f w(O + re) do  = ar-l  + b. 
to 

We mult iply  this by  r z and integrate again with respect to r, obtaining 

(L6) f w d V - - "  ~ --- a +  b + c ,  
2 

~Jor 

where e is independent  of r. Another  Green's ident i ty  yields 

().7) f c u r l q d V =  f q • n t i s  + f q • n d S ,  
~ro r ~ro ~ r  

where n is the unit  normal  vector directed away from ~,0,. Again, the first 
integral on the right is independent of r and will be denoted by  d, the second 
can be writ ten in the form 

f q • n d S  =r~ f q(Q + re) • edo~. 
~ r  t o  

Hence from (L6) and (3.7) we get 

f I a +  r _ b + ( c _ d )  r_Z. (~.8) q(Q + re) • ed~o = 2 3 
~o 

By hypothesis,  q is uniform at co, i.e. l i m q ( Q + r e )  - -q0  uniformly in e. Hence, 
r - - a -  o o  

letting r--->o~ in (3.8) yields b = 0  and qo•189  From (3-5) and 
o~ 

lemma 3 for n = 3 follows then w = O  (r-Z), q. e. d. 
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L e m m a  5. Let q be a plane /low defined and bounded in a neighborhood o/ 
infinity ~. Then 

(3.9) cur l  q = 0 (r -1) * 

T h c  proo/ of th i s  l e m m a  is ana logous  to  t h a t  of l e m m a  4. Surface  in t eg ra l s  
are to  be  rep laced  b y  l ine  in teg ra l s  a n d  v o l u m e  in tegra l s  b y  a rea  in tegra ls .  
w = cur l  q is n o w  a sca la r  field. I n  place of (3.4) we get  

a~  w (Q + r e)  doJ = - -  a r-~, 

so t h a t  ~o 

(3.t0) f w (Q + re) do~ = -- a l o g r  + b. 
oJ  

I n s t e a d  of (3-8), we n o w  h a v e  

f ,IQ + e r )  xed~o  = -  a r  ( ~ l o g r - - 4 ) +  2 b  + ( c - - d ) r  -1. 
OJ 

I t  suffices here  to a s sume  t h a t  q is bounc]ed in  o rder  to  conc lude  t h a t  a = 0 
a n d  b = 0 .  F r o m  (3.t0) a n d  l e m m a  ) for n = 2  follows w=O(r-1), q. e. d. 

4. Uniqueness of t h r e e - d i m e n s i o n a l  f lows  

T h e o r e m  I. For any obstacle 93 there is at most one three-dimensional ~low q 
past 93 which is uni/orm at infinity and has a prescribed vdocity at infinity qo. 

Proo/. Since t h e  e q u a t i o n s  (2.t) are  l inear ,  i t  is suf f ic ien t  to  p rove  t h a t  

q0 ----- 0 impl i e s  q ----- 0. 

B y  l e m m a  4 we have  

(4. t) w ---- cur l  q ---- 0 (r -z) 

a n d  hence,  b y  l e m m a  2, 

- -  cur l  t e  = - -  cur l  cur l  q = A q = g rad  p = O (r-8). 

F r o m  l e m m a  2 follows t h a t  p ~ - 0  (r -z) + cons t . ,  b u t  s ince we are free to  a d j u s t  p 
b y  an  a d d i t i v e  c o n s t a n t ,  we m a y  a s s u m e  

(4.2) p = 0 (r-z). 

Cons ider  n o w  the  Gre en ' s  i d e n t i t y  

(4.3) f (curl  q)adV = f q .  z] q d V + .f curl  q -  (q • n)  d S ,  

* Professor TRUESDELL has pointed ou t  to us tha t  our  proof of non-existence 
of plane flows can be viewed as an  appl icat ion of a theorem of HAMEL and  KA.MPI:; 
DE FERIET, which asserts tha t  in a plane mot ion adher ing to it fixed bounda ry  the 
vor t ic i ty  is or thogonal  to every harmonic  function.  But  in a slow plane mot ion tile 
vor t ic i ty  is harmonic.  Therefore the  vor t ic i tv  is zero, from which one concludes 
easily t h a t  the  veloci ty- is  zero. To make this a rgument  rigorous in our  case it  is 
necessary to find a sui table es t imate  on the behavior  of the vor t ic i ty  a t  inf ini ty.  
This es t imate  is provided oy lemma 5. 
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valid for any smooth vector field q with div q = 0 defined in a finite region 
with piesewise smooth boundary 6 .  We apply this identity to the flow q and 
the region ~ ,  between the obstacle ~3 and a sphere 6 ,  so large that  ~ lies interior 
to ~ , .  By (2.1) we have q . A q = q . g r a d p = d i v ~ p q ) ,  so that  (4.3) can be 
transformed into 

(4.4) f (curl q)2 d V = f [p q - n  - -  curl q .  (q x n)] d S. 

Here we have made use of the fact that  q = 0  on ~. I t  follows from (4.t), (4.2), 
and q = o ( t )  that  the surface integral in (4.4) ten& to zero as r -+oo.  Hence 

(4.5) f (curl q) 2 d V = 0, 

where ~ is the region exterior to ~.  Since curl q is continuous, it follows tha t  
curl q-----0 throughout ~.  Together with div q = 0, this implies A q = 0 .  But  
q = 0 on ~ and q = o (t); hence, by  the maximum and minimum principle for 
harmonic functions, applied to each component of q, it follows that  q = 0, q. e. d. 

5. Non-ex i s t ence  of  plane f lows  

T h e o r e m  II .  For any obstacle f3, any bounded plane ~low q past ~ is the 
state o/ rest q =--O. 

Proo[. An argument analogous to that  used in the proof of theorem I shows 
tha t  from lemma 5 follows 

(5 . t )  ~ = curl  q = o (r-O, p = O Cr-1). 

Also, we have 

(5.2) f (curl q) '  dA = f [p q .  n -- curl q (q • n)] as ,  
91, ~r 

where 92, is the region between ~ and a large circle ~,. But  here we can conclude 
from (5.1) and the boundedness of q only that  the integral 

(5.3) I = f (curlq)~dA = f w 2 d A  

over the exterior 92 of ~ is convergent. However, we know that  w is harmonic 
in 92 and tha t  w-=O(r-1). Hence, by  lemma 2, (3.2), w is of the form 

(5.4) w = w(O + re) = r-Xso(e) + O(r-z), 

and therefore 

(5.5) ~ ,  = r - ' s ~  + o (r-~). 

Let 92,., be an area between two circles g,. and ~, both exterior to ~, so that  
92,~ is contained in 92. We then have from (5.5) 

f  ,aA=log  f sgao)+ f o(,-.laa 
~ I , o  , 0~ %~ . 

This must  tend to a finite limit as r -+  oo, because the integral (5.3) converges. 

The second term on the right certainly converges and hence, since log-~- i s  
ro 

not bounded as r--~ , we can conclude tha t  f s~ do ) - -0  and hence s0=0 .  
w 
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Therefore, by  (5.4), w=O(r-~),  from which, as before, p = D ( r  -2) follows. Going 
back  to (5.2) we see now t h a t  the integral on the r ight  in fact  tends to zero as 
r--~ oo and hence, as in the proof of theorem I, we conclude t h a t  curl q = 0 ,  
div q----0 and A q = 0 th roughout  91. Thus q is harmonic  in a neighborhood 
of infinity. Since q is also bounded,  i t  follows from 1emma I for n = 2 tha t  q 
is harmonic  at  oo and hence uniform at  infinity. Therefore, for some choice 
of a Cartesian coordinate system, we have q,---~qo, qy--~O, where q, .and qy are 
the components  of q.  As before, the m a x imum principle for harmonic  functions 

0q, aq~ 
implies qy ~ 0. Therefore curl q = - ~ -  = 0, div q = ~x- = 0, and hence q~ = const. 

But,  since q~ = 0 on !3, we must  have q, ~ 0 everywhere, q. e. d. 

6. Represen ta t ion  f o r m u l a s  

The following theorem establishes a one-to-one correspondence between three- 
dimensional flows with given velocity at  infinity and vector  fields which are 
harmonic  at  infinity. 

T h e o r e m  I I I .  Let q be a flow defined in a neighborhood of infinity ~ with 
velocity at infinity qo. Then there is a harmonic vector field u, defined in ~ and 
harmonic at infinity such that 

(6.1) 
where 

(6.2) 

q = qo + u + grad ~0, 

o 0  

~p =~v(Q + re) = - �88 r~ f s�89 + se) ds. 
r 

Conversely, if u is an arbitrary harmonic vector field defined in ~ and harmonic 
at infinity, then (6.1) and (6.2) give a flow with velocity at infinity qo. 

Proof. Consider the differential equat ion 

(6.3) A (rZz) -- r2Ag = 6 g + 4r ~ z  _ p(Q + re) .  

A special solution is 
o o  

(6.4) Z = z ( Q  + r e )  = �88 r-~ f s�89 p(Q + se) ds. 
r 

The integral  converges because of (4.2) ; moreover,  

(6.5) • = 0 (r-2), A z = O (r-'), grad(r~x) = O(r-X). 

Applying Laplace 's  opera tor  to (6.3) and observing tha t  A p = 0  we get  

t 4 A z  + 4r ~-r-A x = 0 ,  

hence A Z =c(e)r-V~.. This is compatible with (6.5) only if c(e) = 0 .  Thus A Z - 0  
and, by  (6.3), A (r2X) =~b. Hence A [q --qo--grad(r~z)  ~ = g r a d  p - -  gradA(r~x)-----0 
i.e. u = q - - q o - - g r a d ( r 2 x )  is harmonic.  F rom (6.5), q - - q o = o ( l ) ,  and from 
lemma I it follows tha t  u is harmonic  at  infinity. Also, we have 

div u = - -  div grad (r ~ )  = - -  A (r s Z) = - -  P,  
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hence ~0 = r2x in (6.2). Thus the first par t  of the theo§ is proved. The second 
pa r t  can be verified immediately.  

By  use of the series expansion (3.2) for u, i.e. 

oo 

(6.6) u = V r-kSk_l  (e), 
k = l  

it follows easily as a corollary of theorem I I I  tha t  any  flow which is uniform 
at  inf ini ty can be represented by  an expansion 

(6.7) q = q o +  ~ r - k  sk - l (e )  2(2k - -  1) 8~+1(e )  , 
k = l  

where the spherical harmonic vectors s~(e) are defined in terms of the sk(e) by  
o 

(6.8) s~(e) = rk+Xgraddiv[r-k+ls~_l(e)] ,  k =- 2, 3 . . . . .  

Conversely, for any  set of spherical harmonic vectors sk (e) such tha t  (6.6) con- 
verges uniformly in some neighborhood of infinity, (6.7) and (6.8) define a flow 
with velocity at  infinity q0. The classical Stokes flow past  a sphere of radius 
r 0 [2] corresponds to 

3 r 1 3 S o = - - ~  oqo,  s2=-aro[qo--3e(qo'e)], s l = s s = s 4  . . . . .  0 .  

T h e o r e m  IV. Let q denote a [low defined in a neighborhood o[ in f in i ty  (2 with 
velocity at in f in i ty  qo. Then there are harmonic vector [ields ~'~ and H,  defined 
in (2 and harmonic at infinity,  such that 

div H = 0 
(6.9) 

div A (r 2 ~ )  ----- 0, ~ = O (r-2), 
and such that 

(6.10) q = qo + curl(  r2 ~ )  + H .  

Conversely, i / 1 t  and ~ .are  harmonic vector fields defined in ~, harmonic at in f in i ty  
and satis/ying (6.9), then (6.t0) represents a /low with velocity at in f in i ty  qo. 

Proo]. Define 
oo 

- -  -~ r , f s~ curl q (Q + s e) ds .  (6AQ ~ = 1 -~ 
r 

Then, as in the proof of theorem I I I ,  A ~ = 0 ,  A (r 2 f l ) = - - c u r l  q,  

A (q --  curl r 2 ~ )  ----- A q + curl curl q = , 0 ,  
hence 

q = q o +  cu r l r  2 ~  + H  

for a harmonic vector  H. Since curl q = 0 (r-2), we have ~ = 0 (r -2) and curl r 2 ~ = 
O(r-1). Hence H = o ( l ) .  By  lemma 2, f l  and H are harmnnic at  infinity. 

If, conversely, H and ~ are harmonic in ~ and at infinity and satisfy (6.9), 
then if we set 

q = qo + curl r ~ ~ + H ,  
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then div  q = 0  and - - c u r l  A q = A  A rZ~----O, hence there is a scalar p such tha t  
A q = grad p. Also, one can see tha t  q = qo P- 0 (r-I), q. e. d. 

7. Represen ta t ion  of a f low pas t  an  obstacle  

If  the flow is defined th roughout  the exterior 93 of an obstacle 93 and q = 0 
on 93 the results of the preceding section can be made more specific. For  we 
m a y  set 

(7.1) q~(Q)--- 4z~l fr-lcurlq(P)dV 
where r is the distance between Q and P.  This integral in general does not  
converge absolutely, bu t  it exists in the sense of a principal value as the limit 
of integrals over concentric spheres with center at  Q or at  any  a rb i t ra ry  point. 
This is the case because b y  (6.1) and (6.6) we have 

r -x curl q = r -a curl u = r -s s o • e + 0 (r-4), S O = cons t . ,  

and  f e d e o = 0 .  Since n .  c u r l q = 0  on 93, one can show tha t  A q ~ = c u r l q  and 
eo 

div q~ = 0, hence - -  curl curl q~ ---- Aq~ = curl q,  Which implies the existence of a 
scalar h such tha t  q = qo - -  curl ~ + grad h. The function h may  be mult i-valued 
if 93 is not  s imply connected,  bu t  grad h is single-valued in 93. Evident ly ,  
d i v g r a d h = A h = O .  Also, simple estimates on (7,•), using curlq=O(r-2), 
show tha t  cur lq~=O(r-1) .  Hence gradh=O(r-1), and, for any  given deter- 
minat ion of h in a (simply connected) neighborhood ~ of infinity, h = 0 (log r). 
B y  lemma 2, h tends to a l imit at  infinity in ~. Thus follows 

T h e o r e m  V. Every /low past 93 with velocity at infinity qo admits the repre- 
sentation, valid in the exterior 93 o] 93, 

(7.2) q = q0 - -  curlq~ + grad h, 

whereq~ is delined by (7A), and where h is harmonic in 93. I[ 93 is simply connected, 
h is single valued and may be chosen to be harmonic at infinity. Otherwise, any 
determination o] h tends to a finite limit at infinity. 

We m a y  combine this result with the results of w 6 to obtain still other  
representations.  

T h e o r e m  VI.  I] ?3 is star-shaped relative to a point Q, every/low past 93 which 
is uni]orm at infinity admits the representation 

(7.3) q = q (Q + e r) = qo + curl r ~ ~ + curl H + grad h, 

where H and h are harmonic in ~ and at infinity and ~ is defined by (6.t I). / ]  93 
is not star-shaped, (7.3) are valid in any star-shaped neighborhood o/ in/inity in 
the /low. 

Proo]. If  ~o is defined by  (7A), ~ by  (6.t l) ,  then A ( q ~ + r ~ ) = 0 .  Hence 
~ = - - ( r 2 ~ + H )  for a harmonic  vector  H.  Using (7.2), 

q ---- qo + curl r s ~ + curl H + grad h. 
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From (6.9) and (7.t) we find r*~=O(t), q~=O( log r ) .  Hence lt=O(logr) and, 
using lemma 2, we m a y  assume / / i s  harmonic  at infinity. This yields (7.3)1. 

For  the classical Stokes flow past  a unit  sphere with center Q we obtain 
for q(Q +er) 

L curl (curl ~~ 

4 4- " 
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