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1. Introduct ion 

The fundamental principle in dimensional analysis is known as the Pi Theorem. 
While the ideas involved were used by earlier authors, BUCKINGHAM [1] stated 
the theorem essentially as follows: 

I /  an equation in n arguments is dimensionally homogeneous with respect to 
m/undamental  units, it can be expressed as a relation between n -  m independent 
dimensionless arguments. 

I t  is well known that  this useful practical rule is not strictly correct [2]. We 
shall give a simple, constructive proof of the theorem in its rigorous form. This 
makes no use of partial differentiation [3] or abstract spaces [4, 5] and is based 
upon a simple idea already used in dealing with homogeneous functions. Although 
dimensional quantities may be regarded as elements of a vector space defined 
by a set of postulates [6], the Pi Theorem needs no elaborate logical setting. 
The proof given in w 4 depends only on matrix algebra. However we shall sketch 
two other recent treatments, due to BIRKHOFF [7] and DROBOT [8] respectively, 
at the end of this paper. 

In applying the Pi Theorem to actual problems, considerations beyond the 
domain of pure mathematics may enter. Thus certain "paradoxes" have arisen 
which have occasioned much discussion [9]. These paradoxes are not due to 
any failure of the Pi Theorem; for this is a straightforward mathematical pro- 
position of universal validity. The successful application of dimensionalanalysis 
nearly always depends on a real understanding of the essential variables involved 
in the problem. But for every physical assumption, the Pi Theorem gives a 
corresponding answer; and experiment alone can decide which of several answers 
most nearly matches the facts. We proceecl therefore, without physics or meta- 
physics [9], to lay down a few definitions essential for a precise statement of the 
Pi Theorem. 

2. D imens iona l  Matrix  

We consider problems in which the physical quantities X~ involved have 
positive measures xi which depend upon a system of m fundamental units 
Ul, U, . . . .  , U m. When these units are changed to 

(1) ~" = q lt i (ti > o), 
3* 
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the  pos i t ive  var iables  x i also change. I f  the  new value x" is re la ted  to the  old 
b y  the  equa t ion  

I tm . (2) x i = ~ " ~ " . . .  ~ x,, 

we say  t h a t  x i (s t r ic t ly  Xi) has the  dimensions 

(a i l ,  ai2,  . . . ,  a,, ,)  

in the  uni ts  U~, U, . . . . .  Urn. I f  all  a i i =  O, x i is sa id  to be dimensionless. In  a n y  
case the  d imensions  a~i are real  numbers .  

The d imensions  of n quant i t i es  X~ m a y  be a r ranged  in a rec tangu la r  n x m 
m a ( r i x  : 

r U~ U ~ . . .  U, ,  

X l  a l  I a 1 2  . . .  a i m  

X 2 a 2 1  a 2 2  , . .  a l m  

Xn a n  I a n 2  �9 - �9 a n m  

W e  denote  this  dimensional  matr ix  (aii) b y  A.  

In  mechanics  the  fundamen ta l  uni ts  are of length  L,  t ime T,  and  mass M,  
a n d  m =-: 3. Fo r  example  in deal ing with  the  speed of sound v in a gas, the  addi -  
t iona l  var iables  involved  are the  pressure p, dens i ty  Q, and  v i scos i ty / t  of the  gas;  
and  the  d imens iona l  m a t r i x  has  the  form: 

I L T M 

v i  t - - t  0 

p ' - - ~ . - - 2  t 

Q ' - - 3  0 t 

- - I  - - 1  I 

L e m m a .  I f  x l ,  x 2 . . . . .  x,, have the dimensional  matr ix  A and the products 

bt~ hi.. bt.  (i  = t ,  2 . . . . .  p )  (~) Y i = X l  x2 . . . x .  , 

have the exponential  nzatrix (bij) = B, then Yl, Y2 . . . . .  yp have the dimensional  
qnatrix B A .  

Proof. From (2) we have 

.v: = ~,-' ",~ x~  ~,: . . .  x ' ,~ , -  :-- q ,  t":., . . .  t",,, . . . . .  ~ ,  

where cii==b, t a l i ~ ,  . . .  +bi, ,a, ,  i. Thus the d imensional  ma t r i x  (c,i) of the y 's  
is C := B A .  

A mat r ix  is said to be of rank r if it  contains  at  least  one non-zero d e t e r m i n a n t  
of order  r, while all  de t e rminan t s  of higher  order  which the m a t r i x  m a y  conta in  
are zero. If the  ma t r i x  conta ins  no de te rminan t s  of order  r + - l ,  i t  will be of 
rank r if it conta ins  one non-zero r-rowed de te rminan t .  Thus if m < n ,  the  n • m 
d imens iona l  ma t r ix  ,4 is of rank  m when it  contains" a single non-zero m-rowed 
de te rminan t .  This is the  usual  s i tua t ion  in d imensional  analysis .  
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3. I s o b a r i c  F u n c t i o n s  

Let the  measure x of the physical  quan t i ty  be expressed as a function of 
X 1 , X 2 , . �9 . , X j ~  : 

X : ] ( X l ,  X 2 . . . . .  Xn) .  

If  this equation holds for all changes of units, it becomes 

x ' =  l (x~,  x~, . . . ,  x',,) 

when U/----- Uilt o Hence if x has the dimensions (al, a 2 . . . . .  am), we have from (2) 

~, ,~ : . . .~ , ,~  = t ( ~ , , ~ , , . . . ~ , , , ~ ,  . . . .  ). 

Thus under  the given uni t  change the function satisfies the ident i ty  in tl, t2, . . . ,  t,,,: 

Such a function is said to be-isobaric with the dimensions (aa, a 2 . . . . .  am). We 
use the term "isobar ic"  (Greek isos, equal;  barus, heavy) in preference to the 
more cumbersome phrase "dimensional ly  homogeneous" .  

We note  tha t  isobaric functions relative t o m  fundamenta l  units U 1 . . . . .  U,,, 
are also isobaric with respect to any  subset of these units, say Ut, U 2 . . . . .  U k 
(k < m ) ;  for in the ident i ty  (4) we need only pu t  tk+ 1 = tk+ 2 . . . . .  t m = t. Thus  
the isobaric functions relative to U~, U, . . . . .  Uk form a larger class than  the 
functions isobaric relative to Ut, Ua . . . . .  U,, ( m > k ) .  In  brief, the /ewer the 
/undamental units, the larger the class o/ corresponding isobaric ]unctions. We 
shall later have occasion to use this fact in explaining an alleged paradox.  

I /  the sum 

(5) / - -  cl  x l  + q x~ + . . .  + c ,, x,, 

with dimensionless coe[/icients is isobaric, each o/ its terms must have the same 
dimensions. For  if we apply (4) and pu t  t s = t and all other  t's equal to l, we get 

ta'~ G xx + t~'J c2 x2 + "'" + t~"j c,, x,, = t ~j/ 
o r  

t c~ 'J -~  ) c t x x + tl~*i-~J ) c~ x~ + . . .  + t ! ' , , s -~ l  c,, x ,  = ]. 

Since the right~hand side of this ident i ty  in t is independent  of t, the same nmst  
be true of the left-hand side; tha t  is 

a a i =  a~j . . . . . .  a, i  = a i (] = t,  2 . . . . .  m).  

All rows of the dimensional mat r ix  are now identical. 

The product 
(6) / .  k,. *, k, 

is an isobaric/unction whose.d, imension a i in any unit  U i is obtained by mult iplying " 
the dimensions o/ i ts /actors  by their exponents and adding the results: 

(7) klali + kaaii  + . . .  + k,a, ,  i = ai. 
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For  if we change only Us, say ~ ' =  Ufft, we have 

( t~-  x 0  ~, (t",; x,)k, . . . .  tk,, ,s + k:.,~ + ... 1. 

Since this is t rue for all t > 0 ,  we see tha t  / is isobaric with the dimension a i 
g i v e n  by  (7) with respect to the unit  in question. 

4. The Pi Theorem 

Let  the ]unction / in an equation 

(8) / ( x ~ ,  x~ . . . . .  x,,) = o 

with n arguments  be isobaric with respect to m / u n d a m e n t a l  uni ts  Ux, U~ . . . . .  U,,. 
Then  i] the n • m d imens ional  ma t r i x  o/ x l ,  . . . ,  x~ is o] rank  r = n -  k, the given 
equation is equivalent  to 

(9) 1 (1, I , . . . ,  t, ~ , ,  ~2 . . . . .  ,~)  = 0 

in  which t h e / i r s t  r arguments  are 1, and the ~ ' s  are n -  r independent and d imen-  
sionless products  /ormed ]rom x 1 . . . . .  x,,. 

P r o @  Let us first consider a special case. In ordinary analysis a function 
is said to be homogeneous o/ degree a, if for any  t > 0 ,  

(10) ](t  xl, t x2, .~., t x~) --- l a / ( x l ,  xz . . . . .  x,,) 

is an ident i ty  in t. From our present point of view ] is an isobaric function of 
dimension a with respect to a single unit  U~; and its arguments  x,, x 2 . . . . .  x,  
have the dimensional matr ix  consisting of a column of n ones. Since (t0) is an 
ident i ty  in t it will hold when t :  t /x1; then we have 

( x., x,_,) 
/ | '  "~I . . . . .  "ri / = X 1  a / ( X l ,  X 2 , . . .  ' Xn) .  

Hence the equation /(x~, x 2 . . . . .  x,,) = 0 is equivalent to the equation 

X2 Xn'~ 
I ~ , ~  . . . . .  - ; ,7  = o 

in the n - - t  dimensionless products  z q = x 2 1 x  1 . . . . .  z l , , _ l = x , , I x  ~. Since the 
dimensional matr ix  is of rank t, we have proved the Pi Theorem for this case. 
The proof in the general case consists in a natura l  extension of this reasoning. 

By  sui tably numbering the arguments  x i and the units [{- we can bring a 
non-singular r • r matr ix  P into the upper left corner of the dimenqional matr ix 
A = (ai/). Then A m a y  be written as a matr ix  of matrices 

( t l )  A = ( P Q  R)S , where d e t P 4 = 0 .  

If  n = r + k, the sub-matrices P,  Q, R ,  S are respectively r • r, k x r, r • k, k • k. 

We first show tha t  the sub-matr ix  

(t2) S = Q P - ~ R .  

Since A is of rank r, the last k rows of A, namely (O, S) ,  are linear combinations 
"of the f i rs t ' r  rows (P,  R). Thus there exists a k • r matr ix  C such tha t  Q =. C P ,  
S = C R ;  hence c = o P  -1 and S = Q P - 1 R .  

After  this preliminary,  the proof in the general case is based on the same 
idea as tha t  used in the preceding special case. In the defining equation (4) 
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of an isobaric funct ion we set the first r a rguments  equal  to l ;  if we put  
t ,+, . . . . .  t ,~= t in these equat ions we can then  de termine  t I . . . . .  t, uniquely  
since det  P 4=0. These t-vahies then  define a change of uni ts  which conver ts  
] (x l ,  xe . . . .  , x , ,  x,+ 1 . . . . .  x~) into a mult iple  o f ] ( 1 ,  1 . . . . .  t ,  ~1, . . . ,  :rk). However  
we present  the a rgumen t  in a modif ied form which is easier to follow. 

If  the  r •  mat r ix  p - l =  (bij), .consider the r quant i t ies  

. : x b l t x  b~2 ~'bir i : l , 2 , . . . , r .  ( t3 )  V; , ~ . . . .  , ,  

Since xl,  x 2 . . . . .  x, have  the r x m dimensional  ma t r ix  (P,  R), the l emma shows 
t h a t  the quant i t ies  Yi have  the r x m dimensional  ma t r i x  

p-1 (p ,  R) : (I,, P-~ R),  

where I ,  is the uni t  r •  mat r ix .  Now take  

1 I . . . ,  tr = t 11=~ ;1 '  t 2 =  Y*' Y,' t'+l . . . . .  t m = t  

in the defining equat ion (4) of an isobaric function. Equa t ion  (8) is then equi- 
va len t  to 

.(.) x,,l = o  
\ z  l Z2 Zr Zr + 1 gn l 

where the n quant i t ies  

( iS)  z ~ = y ~ , , ~ , , . . ,  y,",, , i - -  t , 2 ,  . . . ,  n .  

Since their  n x r  exponent ia l  ma t r i x  i s ( P )  the l emma  shows tha t  the  z's have  
the  dimensional  m a t r i x  Q ' 

in view of (t 2). T h u s  z l ,  . . . ,  z ,  have t, he same dimensional  m a t r i x  as xa . . . . .  x,,; 
consequently ell  the arguments  xdz  ~ in  (14) are dimensionless.  

Finally, if we subs t i tu te  Yi f rom (t3.) into (t 5) we have  

(16) -zi = ~ "  ~ " . , .  ~ " ,  i = t , 2 , . . . , n .  

To find the n x r exponent ia l  ma t r ix  

hence 
C, P -~- P ,  C,  = I ,  and C~ P = Q, 

The  z's in (16) therefore have  the exponent ia l  m a t r i x  

(17) C =  QP-1 ; 

C , )  have  f rom the l emma  w e  

C, 

= ~ 

Q P - 1 R  , 

Ck = O p - 1 .  

t ha t  is, z i = xi (i = t ,  2, . . . ,  r) whereas z,+ 1 . . . . .  z~ have  the exponent ia l  m a t r i x  
Q p - l .  Equa t ion  (t 4) now becomes 

Os) ,,(i. . . . . .  i. *�88 = o .  
z r + t  



40 Louis BRAND : 

an equation with n - - r  dimensionless arguments,  which are obviously independent 
since each contains an x i (in the numerator)  tha t  none of the others contain. 
On writing 

(19) X"+i=~,i, i = t , 2  . . . .  ,k ,  
.Sr + i 

in (t 8) we obtain  the equation (9) required by  the theorem. These dimensionless 
arguments  are readily found since z,+ 1 . . . . .  z,+k are given by  (16) with the 
exponential  mat r ix  Q P %  

The above proof now enables us to state the Pi Theorem in a still more specific 
f o r m .  

Le t  x l ,  x2 . . . . .  x,, have the n • m d i m e n s i o n a l  m a t r i x  o/ rank  r = n -  k :  

(20) A = O P - ~ R  ' 

where P is a n o n - s i n g u l a r  r • r m a t r i x .  Then  i /  / ( xa ,  x ,  . . . . .  x . )  is an  isobaric 

/ u n c t i o n  wi th  respect  to m / u n d a m e n t a l  un i t s ,  the equat ion (8) is  equivalent  to equat ion  

(9) in  which  
:~i = xel" x~ ; ~ ~" - . . . .  , . . . x  n , i : t , ~  k, 

are k = n -  r i ndependen t  a n d  d imens ion le s s  quan t i t i e s  w i th  the k • n e xponen t i a l  

m a t r i x  

(2t) E = (--  QP-X, .L)  

where I k is the k • k u n i t  m a t r i x .  

In  brief, the Pi Theorem states tha t  

(22) E A  = O. 

As an example, consider the 6 x 4  dimensional matr ix of rank 3: 

X 1 

X 2 

A:  xa 

X 4 

X 5 

X 6 

0 - -1  0 - - !  

0 - - 4  3 2 

- - 2  0 I 0 

i t 3 - - 1  2 

1 2 - - 2  - - 1  

- - !  1 2 4 

To verify tha t  A is rank 3 we note that  the vectors [xa], [xs], [xs] in the last 
three rows are linear combinations of [xl], [x2], Ix3/; for example 

I x , / = - -  ~ [xd - -~ I x 2 / -  ~ Ix3/. 

We may  take the 3 • 3 matr ix in the upper left corner as P since det P = 6. 
Then Q is the matr ix  in the lower left corner and.  

Q / ' " =  t 2 - 2  - 1  0 0 = 0 - � 8 9  �9 
- - I  ! ~ 4 x - - ~ -  .~ o - 3  �89 �89 
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The dimensionless products  have the exponential  matr ix  0 oo) 
E = ( - Q p - ~ , I ~ ) =  o �89 ~ o t o ; 

3 - � 8 9 1 8 9  o o 1 
hence 

~ = ~ i  ~,~ ~ ~,, ~, = ~I ~ 0 ,  ~ = ~ ~-~ ~ ~ .  
o 

If  we wish to avoid fractional  exponents,  zt~, zq, z~] m a y  be taken as the di- 
mensionless products.  

We  m a y  readily verify, t ha t  EA = O, thus checking the calculation. The fact 
tha t  S = QP-1R, also shows tha t  A is of rank  3- 

5. F u n d a m e n t a l  u n i t s  

In  a certain area of knowledge let the quanti t ies X involved belong to a 
~ertain class ~r which includes the real nmnbers.  The quanti t ies U 1, U~ . . . . .  (~  
is said to f'orm a set of lundamental units in the class ~r if every X E ~r m a y  be 
expressed uniquely in the form 

(23) X---xU~,U~,...U~", " x > 0 ;  

here x is the measure of X and a x, a 2 . . . . .  a., are real numbers  which give the  
dimensions of X in the units  U1, U2 . . . .  , U,. respectively. The dimensidms of X 
form a vector  which in MAXWELL'S nota t ion is denoted by  

(24) IX] = ( a l , a ,  . . . . .  a . )  

I t  is cus tomary,  however,  to  write x for X in (24) ; then Ex] denotes the dimensions 
of the physical  variable X whose positive measure is x. We shall adopt  this 
convention.  

When  the units  are fundamenta l  X-----x, a pure number,  when and only when 
X is dimensionless, tha t  is, when EX] = O, the zero vector.  Thus  when the units  
are fundamental ,  

(25) [X] ----- O implies X = x, a positive number.  

If  Us, U~, . . . ,  U,, form a sys tem of fundamenta l  units, the system 

V~ = U~,l  U~ ' ,  . . .  ~m~ T b, , ,  i = t ,  2 . . . . .  m ,  

is also fundamenta l  provided det b~i =[= 0. For  the system of linear, homogeneous 
equat ions which state t ha t  

x = ~ v~=, v ; , .  . . v ~ -  

is dimensionless in the units  U~ has the solution ~x = ~, . . . . .  ~,, = 0 when and 
only when det  bii:~=O; then X = x ,  a positive number.  

In  mechanics units  of length, t ime and  mass (L, T, M) are us~.ally chosen 
as fundamental .  Bu t  engineers often prefer to regard units of length, t ime and 
force (L, T, F) as fundamental .  This is permissible since F = L  T-2M and the 
determinant  

i o 1 4=o. 
t - - 2  
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To i l lus t ra te  the  impor tance  of the  choice of f lmdamenta l  Units let  us consider  
the  following p rob lem [11] which leads to an al leged p a r a d o x  in d imensional  
analysis .  

A ball ,  of d i ame te r  d is f ixed in a s t r eam of l iquid and  kep t  a t  a t emperd tu re  
v ~ above  t ha t  of the  l iquid  a t  a grea t  d is tance  from the  ball .  I f  the  veloci ty  of 
the  s t r eam is v and  the l iquid  has  the  hea t  c apac i ty  c (per uni t  volume) and  
the rmal  conduc t iv i t y  k, f ind the  ra te  r a t  which hea t  is t ransfer red  from the  ba l l  
to the  l iquid.  

So lu t i on  1. Uni ts  of length,  t ime,  mass and  t e m p e r a t u r e  (L, T, M ,  H) t aken  
as fundamenta l .  

The  d imensions  of calories are those of energy,  L 2 T-2M.  Since c is given in 
calories  pe r  degree per  cubic  cent imeter ,  

[c 3 = (L ~ T - 2 M ) / H L  s =_ L-~ T--2M H-~. 

The t he rma l  conduc t iv i t y  k is given a s  calories per  second per  square cen t imete r  
pe r  un i t  of t e m p e r a t u r e  g rad ien t  ; hence 

L'2 T-2 M 
[kJ - -  TL , (HL_ t  ) - -  L T - S M H  -1. 

The ra t e  r of hea t  t ransfer  is given in calories per  second;  hence 

[ r ]  = L 2 T - * M  T -1. 

Thus  we have  the  d imens iona l  m a t r i x :  

' L T M H 
I 

d 1 0 0 O} 

v 1 - - 1  0 0 ] p 

k ~ t - 3  t - - t  

o i  o o o t 

c - 1 - 2  1 - - t / 0  . 
/ r 2 - - 2  t - -1  

This m a t r i x  has the  r ank  4; for the  4 •  m a t r i x  P has det  P = - - I .  Hence 
there  are  6 - -  4 = 2 dimensionless  products .  Since 

, ooo) ( ) 
p - i  = t - -  I 0 - 0 , ,  Q p-1 __= --+ t ,  - -  t ,  t ,  0 

2 - - 3  t l ! ,  0, 1, 1 ' 

0 0 0 t 

E = ( - - Q P - X , I ~ J = I '  I, t , - + ! ,  O, t, 0 t 
\ - I, O, - - I ,  - + I ,  O, I ! '  

* T~ find P-~ partiti~ P int~ f~ 2 •  matrices(Ac B);  then since 
.q - t  0 , 

l+l,t,,e p 1 =: ( __ ])+IC.4-1 1)-1)" 
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t hey  are  
~1 = d v k - l  c , ~ = d - l  k - l  O- l  r . 

Thus  a re la t ion  be tween  the  six var iab les  m a y  be p u t  in the  form g i  = / ( ~ 1 ) ,  or  

(i) r = / ( z q )  d k O .  

So lu t ion  2. "Units of length,  t ime  and  mass  (L ,  T ,  214) t a k e n  as fundamen ta l .  

I f  the  t e m p e r a t u r e  of a b o d y  is r ega rded  as a measure  of the  k ine t ic  energy  
of i ts  molecules,  we have  H - - - - L 2 T - 2 M .  Our d imens iona l  m a t r i x  is now 

L T 

d t 0 

k - - t  - - t  

~9 2 - 2  

c - - 3  0 

v t - - t  

r 2 - . 3  

m a t r i x  P 
products .  

The  r a n k  is 3 s i n c e  the  3 • 3 
g ives  6 - -  3 = 3 dimensionless  

t h e y  are  

(:' ~ p-1  = t - -  t 

4 - - 2  , 

M 

~ / 
o P 

I 

~ / 
0 Q .  

t 

has  d e t  P = - - 1 .  The  Pi  Theorem now 
Since 

Q p - l =  \ 2t 11 t 

E = (--Qp-1, I3) = 
3 o o t o i )  

---2 - -1  . 0 0 t 

- - t - - t - - 1  0 0 

7q = dac, ~2 = d - * k - l v ,  ~3 = d - l k - l v ~ - l r .  

A re la t ion  be tween  the  six var iab les  m a y  be p u t  in the  form ~3----g(rq, ~2) or  

(ii) r = g (8~1, $T2) d k # .  

Since funct ions  of two var iables  form a much  wider  class t h a n  funct ions  of 
one var iab le ,  the  a d d e d  knowledge  t h a t  H : L Z T - 2 M  given b y  the  molecular  
t h e o r y  of hea t  seems, as Lord  RAYLEIGH said,  to  " p u t  us in a worse pos i t ion  
t h a n  before"  [12] when the  des i red  re l a t ion  was given b y  (i). The  exp lana t ion  
of th is  a p p a r e n t  p a r a d o x  is given in w 3 ; for solut ion 2 w i th  th ree  un i t s  admi t s  
a larger  class of i sobar ic  funct ions  t h a n  solut ion t wi th  four uni ts .  

The  p a r a d o x  m a y  be  exp la ined  also as follows [137. The a s sumpt ion  t h a t  
L,  T, M,  H are  fundamen ta l  un i t s  impl ies  t h a t  

X = x L  a T b M ' H  a 

is d imensionless  when and  only  when 

(iii) a ----- b ~ c = d : 0. 
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In  solution 2 the assumption that  L, T, M are fundamental units implies that  

X --  x L  a TbMc(L  ~ T -2M)  a 

is dimensionless when and only when 

(iv) a = --  2d, b = 2 d ,  c = - -  d. 

Now conditions (iv) are included in (iii) when d =  0, and are therefore less 
restrictive than conditions (iii). Thus the Pi Theorem gives formula (i)under 
one theory, formula (ii) under another; only experiment can decide which is 
correct. 

6. Recent Developments 

In t914 BUCKINGHAM [1] proved the Pi Theorem for functions capable of 
being expanded in Maclaurin series. This restriction is not imposed in BRIDGMAN'S 
proof, but  the functions are assumed to be differentiable and the proof depends 
on the solution of a l inear,  partial differential equation of the first order [3]. 
The problem, however, is strictly algebraic and differentiability is not a relevant 
requirement. Purely algebraic proofs have been given by  LANGHAAR [6] and 
BIRKHOFF [7]; but  neither author gives the theorem in the specific form stated 
in w 4, where the precise function of the dimensionless arguments is given as 
well as their exponential matrix.  BIRKHOFF'S argument is difficult to follow in 
view of its extreme concision and a variety of misprints; moreover his definition 
of "unit-free" functions / as those for which "the locus defined by  / =  0 is in- 
variant under all transformations [of units3" is not well adapted to a sharp proof. 

S. DROBOT in his recent paper On the Foundations o/Dimensional  Analys is  [51 
aims " to  construct the Dimensional Analysis by  meRns of quite simple algebraic 
methods, namely using the theory of linear space". In part  I I  of his paper the 
usual postulates for a linear (or vector) space Z' over the field of real numbers 
are given. The operations involved are the addition of elements of Z and their 
multiplication by  numbers. He then proves two theorems on the form of func- 
tions whose arguments, as well as the function itself, are elements of X. In part  
I I I  this entire theory is carried over bodily to a "multiplicative form of linear 
s p a c e " / / w h o s e  postulates are precise analogues of those for ~'. The elements 
of 17 are called "dimensional quantities", and the positive numbers are regarded 
as a subclass o f / / .  The operations involved are the multiplication of elements 
i n / / a n d  the raising them to real powers. If  A 1, A, . . . .  , A,~ are "dimensionally 
independent"  elements (i.e. a system of units) any element Pj of / - /can be uniquely 
represented in the form 

(i) P / =  z~iA~J . . . .  A ~  ~" 

where ~i, Pil . . . . .  Pim are real numbers and zc i is positive. The two theorems of 
part  I I  are now combined and stated in the following multiplicative form ap- 
propriate to an n-dimensional s p a c e / / :  

Let qb(A1 . . . . .  Am; 191 . . . . .  P,) be a dimensionally invariant and homogeneous 
/unction. 1 / A  1 , A 2 . . . . .  Am (m ~ n) are dimensionally independent and the Pj have 
the /orm (i), then 

(ii) ~(A I . . . . .  A~; P~, . . . ,  P,) = 9 A i ' . . .  A~  ~', 
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where the positive coefficient q~ does not depend on the A's,  and the real exponents 
]/ depend neither on the A ' s  nor on :z 1 . . . . .  ,%. 

This theorem,  which the  au tho r  regards  as basic ,  gives the  form of a funct ion 
e lement  o f / 7 .  I t  s t a t es  wha t  9 does not depend  upon ;  and  la te r  the  a u t h o r  
casua l ly  r emarks  t h a t  ~0 does depend  upon  the  posi t ive  coefficients ~ , . . . ,  ~ ,  
and  the  exponents  Pik of the  e lements  P~ . . . . .  P, t h a t  appea r  in ~ .  Bu t  since 
the  na tu re  of this  dependence  on P], is never  s t a t ed ,  th is  t heo rem is no sub- 
s t i t u t e  for the  Pi  Theorem.  Indeed  in the  examples  c i ted,  the  coefficient  9 is 
a funct ion of the  r d imensionless  quant i t i es  .~1, z~2 . . . . .  ~ ,  which a p p e a r  in the  
P ' s .  Since there  are m + r a rgumen t s  in q~ and  m uni t s  (the A's) ,  th is  suggests  
the  Pi Theorem in the  form first  g i v e n . b y  BUCKINGHAM in which  the  r a n k  of 
the d imens iona l  m a t r i x  is no t  considered.  

DROBOT concludes  his pape r  wi th  a number  of i l l umina t ing  examples .  One 
of these disposes ve ry  c lear ly  of Lord  RAYLEIGH'S p a r a d o x ;  and  o thers  dea l  
wi th  the  theo ry  of q u a l i t y  cont ro l  b y  sampl ing  and  pa r t i cu l a r  solut ions  of pa r t i a l  
d i f ferent ia l  equat ions .  

References  

i l l  BUCKIt~GHAM, E.:  On Physically Similar Systems:  I l lustrat ions of the Use of 
l)imensional Equations.  Phys. Rev. 4, No. 4, 345 (19|4). 

!2] BRI1)GMAN, P . \V . :  Dimensional Analysis, p. 43. Yale Univ. Press 1922. --  
LANGHAAR, S .  L. : Dimensional Analysis and Theory of Models, chap. 4. Wiley 
1951. 

13] BRIDGMAN, P. XV. : Op. cit., p. 38. 
~4] LANGHAAR, H. L. : Op. cir., p. 56. 
[;3] DROBOT, S.: On the Foundat ions of Dimensional Analysis. Studia Mathemat ica  

14, fasc. 1, 84--99 (1953). 
i6] DROBOT, S. : loc. cit., par t  I I I .  
17] BIRKHOFF, GARRETT: Hydrodynamic.s, Chap. 3. Princeton Univ. Press 1950. 
'8] DROBOT, S. : loc. cit. 
.gj BRIDGMAN, P. \V. :  Op. cit., p. 1 0 - - t l .  --ESNAULT-PELTERIE, R. :  Op. cit., Ex. 8, 

I~" 217. --  1)ROBOT, S.: loc. cit., par t  vii. 
I10] E.~NAVLT-PELTERIE, R.:  Dimensional Analysis. Lausanne 1950. 
i l l] BRtDGM.~N, P. \V.: Op. cit., p. 9 - - t l .  --  DROBOT, S.: loc. cit., par t  vii. -- Lord 

I(AVLEItm: Nature 15, 66 (1915). 
1121 I.ord I(AVLEmH: Nature  15, 644 (1915). 
113J l)mmtvr, S. : loc. cit., par t  vii. 

Universi ty  of Cincinnati 

(Received April 13, 1957) 


