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1. Introduction

The fundamental principle in dimensional analysis is known as the Pi Theorem.
While the ideas involved were used by earlier authors, BuckiNGHAM [1] stated
the theorem essentially as follows:

If an equation in n arguments is dimensionally homogeneous with respect to
m fundamental units, it can be expressed as a relation between n —m independent
dimensionless arguments.

It is well known that this useful practical rule is not strictly correct [2]. We
shall give a simple, constructive proof of the theorem in its rigorous form. This
makes no use of partial differentiation [3] or abstract spaces [4, §] and is based
upon a simple idea already used in dealing with homogeneous functions. Although
dimensional quantities may be regarded as elements of a vector space defined
by a set of postulates [6], the Pi Theorem needs no elaborate logical setting.
The proof given in § 4 depends only on matrix algebra. However we shall sketch
two other recent treatments, due to BIRKHOFF [7] and DroBoT [§] respectively,
at the end of this paper.

In applying the Pi Theorem to actual problems, considerations beyond the
domain of pure mathematics may enter. Thus certain “paradoxes” have arisen
which have occasioned much discussion [9]. These paradoxes are not due to
any failure of the Pi Theorem; for this is a straightforward mathematical pro-
position of universal validity. The successful application of dimensional analysis
nearly always depends on a real understanding of the essential variables involved
in the problem. But for every physical assumption, the Pi Theorem gives a
corresponding answer; and experiment alone can decide which of several answers
most nearly matches the facts. We proceed therefore, without physics or meta-
“physics [9], to lay down a few definitions essential for a precise statement of the
Pi Theorem.

2. Dimensional Matrix

We consider problems in which the physical quantities X; involved have
positive measures x; which depend upon a system of m fundamental umits
0,0, ..., U,. When these units are changed to

(1) U=Ul (>0,
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the positive variables x; also change. If the new value x] is related to the old
by the equation

(2) Xl = fangen | fumy,

AN

we say that x; (strictly X;) has the dimensions

(ailr Aigy---s aim)
in the units U}, 4, ..., U,. If all a;;=0, x; is said to be dimensionless. In any
case the dimensions a;; are real numbers.
The dimensions of # quantities X; may be arranged in a rectangular z xm

matrix:

|
| @y Bye e dyy
I
Xp | Ag1 Qgg --- dagy
Xy anl an2 anm

We denote this dimensional matrix (a;;) by A.

In mechanics the fundamental units are of length L, time T, and mass M,
and m=:3. For example in dealing with the speed of sound v in a gas, the addi-
tional variables involved are the pressure p, density g, and viscosity u of the gas;
and the dimensional matrix has the form:

'L T M
vl 1 —1 0
p.—4 —2 1
e —3% 01
po—1 —1 1

Lemma. If x, x,, ..., x,, have the dimensional matrix A and the products
(3) ;== xbitabiz  xbin (t=1,2,...,9)

have the exponential matrix (b;;)) =B, then v,,9y,,..., v, have the dimensional
wmatrix BA.

Proof. From (2) we have

yy = aphiaghie | xbin gl g flimy,
where ¢;;==b,,a,;+---+b;,a,;. Thus the dimensional matrix (c,;) of the y’s
is C== BA.

A matrix is said to be of rank r if it contains at least one non-zero determinant
of order r, while all determinants of higher order which the matrix may contain
arc zero. If the matrix contains #o determinants of order »+ 1, it will be of
rank 7 if it contains one non-zero r-rowed determinant. Thus if m<<n, the n xm
dimensional matrix 4 is of rank m when it contains a single non-zero m-rowed
determinant. This is the usual situation in dimensional analysis.
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3. Isobaric Functions

Let the measure x of the physical quantity be expressed as a function of

Xy, Koy oony X0

x=f(xg, %9, ..., %,).
If this equation holds for all changes of units, it becomes
% = f(x1, x5, ..., %)
when U = Uj/t;. Hence if x has the dimensions (a,, 4, ..., a,,), we have from (2)

foafl . fomy = ftonghe famg, ).

Thus under the given unit change the function satisfies the identity in ¢, 45, ..., ¢,
(4) Fleotan  fhmyy | fongia flamy ) = @il g, K, )
Such a function is said to be isobaric with the dimensions (g,, 4,, ..., a,). We

use the term ‘‘isobaric”” (Greek isos, equal; barus, heavy) in preference to the
more cumbersome phrase “‘dimensionally homogeneous

We note that isobaric functions relative to m fundamental units U, ..., U,
are also isobaric with respect to any subset of these units, say U, U}, ..., U
(k<<m); for in the identity (4) we need only put {,,,=t;,,=---=¢,=1. Thus
the isobaric functions relative to U], U, ..., U; form a larger class than the
functions isobaric relative to U, U, ..., U, (m>k). In brief, the fewer the
fundamental units, the larger the class of corresponding isobaric functions. We
shall later have occasion to use this fact in explaining an alleged paradox.

If the sum

(5) f*615\1+62x2+ +Cu n

with dimensionless coefficients is isobaric, each of its terms must have the same
dimensions. For if we apply (4) and put #;=¢ and all other #'s equal to 1, we get
1150y Xy 1 0y g+ - o BWic, x, = 19 f
or
flarj—aj %+ Hazi— oy xy 4 oon - P e x = f.

Since the right-hand side of this identity in ¢ is independent of ¢, the same must
be true of the left-hand side; that is

G=ay; = -=a,;=a; (f=1,2,...,m).
All rows of the dimensional matrix are now identical.

The product
(6) f=abixh,  xf»

is an isobaric function whose dimension a; in any unit U, is obtained by multiplying *
the dimensions of its factors by their exponents and adding the results:

(7) kla”-l—kzaz]-—I----—l—k,,a,”-=a]
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For if we change only U, say U’ =Uj/t, we have
(talixl)kx (ta”xa)k“- coo o= i@yt Raazi T+ f.
Since this is true for all >0, we see that f is isobaric with the dimension a;

given by (7) with respect to the unit in question.

4. The Pi Theorem
Let the function | in an equation

(8) Flxg, %9, ...,%,) =0

with n arguments be isobaric with respect to m fundamental units Uy, U, ..., U,.
Then if the nxm dimensional matrix of x,, ..., x, 1s of rank r =n —k, the given
equation is equivalent fo

(9) 1, L, A, .., ) =0

in which the first v arguments ave 1, and the 7's are n —r independent and dimen-
stonless products formed from x, ..., x,.

Proof. Let us first consider a special case. In ordinary analysis a function
is said to be homogeneous of degree a, if for any t>0, '

()

(10) Flxg, txy, .o tx,) = f (2, %5, ..., %)
is an identity in ¢. From our present point of view f is an isobaric function of
dimension ¢ with respect to a single unit Uj; and its arguments x,, %,, ..., %,

have the dimensional matrix consisting of a column of » ones. Since (10) is an
identity in ¢ it will hold when ¢=1/x,; then we have

£ x, -
/(1, T x;) =27 f(xy, %g, .0 %)
Hence the equation f(x,, x,, ..., x,) =0 is equivalent to the equation
o .
1, 22, .., =
f( *y - "’1)
in the n—1 dimensionless products @, =xy/x;, ..., @, =x,/x;. Since the

dimensional matrix is of rank 1, we have proved the Pi Theorem for this case.
The proof in the general case consists in a natural extension of this reasoning.

By suitably numbering the arguments x; and the units U; we can bring a
non-singular » X matrix P into the upper left corner of the dimensional matrix
A =(a;;). Then A may be written as a matrix of matrices

P
11 A=
. (Q

If n =7+ &, the sub-matrices P, Q, R, S are respectively r X7, kxr, vk, kxk.
We first show that the sub-matrix
(12) S=QP1R.

Since 4 is of rank 7, the last £ rows of 4, namely (Q, S), are linear combinations
of the first*r rows (P, R). Thus there exists a £ xX# matrix C such that ¢ =CP,
S=CR; hence C=QPand S=QP'R.

After this preliminary, the proof in the general case is based on the same
idea as that used in the preceding special case. In the defining equation (4)

];) where det P 4= 0.
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of an isobaric function we set the first » arguments equal to 1; if we put

t,yy=---=t,=1 in these equations we can then determine #, ..., f, uniquely
since det P==0. These {-values then define a change of units which converts
f(%, %9, ..., %,, %,44, ..., %,) into a multiple of /(1,1, ..., 1, 7, ..., ;). However

we present the argument in a modified form which is easier to follow.
If the » X7 matrix P1=(b,;), consider the r quantities

(13) y; = xbingbie | ybir t=1,2,...,7.

Since x;, %5, ..., ¥, have the » x m dimensional matrix (P, R), the lemma shows
that the quantities y; have the X dimensional matrix

P(P,R) = (I, P'R),
where I, is the unit » x# matrix. Now take

1 1

=1 =", 1=
n T oy

in the defining equation (4) of an isobaric function. Equation (8) is then equi-

valent to
(14) f("xrl x'z':"'xi’:, fr_-*:1_;-.-,2):0

tl ’ tr+1:‘_"'=tm‘—-1

R 27 % 2y
where the # quantities
(15) - Z; =y yaiz L yhr 1=1,2,...,n.
Since their # x 7 exponential matrix 15( ), the lemma shows that the z’s have
the dimensional matrix 4

Lo)t7m=(g grme) (o )

in view of (12). Thus z, ..., 2, have the same dimensional malrix as x,, ..., x,,;
consequently all the arguments x;jz; in (14) are dimensionless. '

Finally, if we substitute y; from (13) into (15) we have
(16) -2y = XL x L A 1=1,2,...,n.

. .. (C
To find the # x7 exponential matrix ( ’
%

()0 =(G gpar):

/

C,P=P, C,=I and CP=¢Q, C,=QP2

) we have from the lemma

hence

The 2’s in (16) therefore have the exponential matrix

I,
C = ’ .
(t7) (@Pﬂ)

that is, z;=x; ({=1, 2, ..., r) whereas 2,,,, ..., 2, have the exponential matrix
Q P, Equation (14) now becomes

(18) f(1,1,...,1,f'-+-!,...,11)=0,

Zri1 Zn
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an equation with » —r dimensionless arguments, which are obviously independent
since each contains an x; (in the numerator) that none of the others contain.
On writing

(19) *f’ii:n,', ’L.=1,2,...,k,

“r+i
in (18) we obtain the equation (9) required by the theorem. These dimensionless
arguments are readily found since z,.,,...,%,.; are given by (16) with the

exponential matrix Q P,

The above proof now enables us to state the Pi Theorem in a still more specific
form.

Let %y, x,, ..., x, have the n X m dimensional matrix of rank v =n—*k:

P R
(20) 4= ,
Q¢ QPR
where P is a non-singular v Xr matrix. Then if f(x,, x,, ..., x,) Is an isobaric

Junction with respect to m fundamental unils, the equation (8) 1s equivalent to equation
(9) in which

= aragie L xdn 1=1,2,..., k%,

are k=mn-—r independent and dimensionless quantities with the k X n exponential
matrix
(21) E=(—-QP%1)
where I, 1s the kX k unit matrix.
In brief, the Pi Theorem states that
(22) EA =o0.

As an example, consider the 6 x4 dimensional matrix of rank 3:

G L U4 g

v 0—1 0 —1
Xy 0—4 3 2
4 Xy —2 07 {' 0
X1 3 =1 2
X5, 01 2 —2 —1
xg —1 1 2 4

To verify that 4 is rank 3 we note that the vectors [x,], [#;], [%s] in the last
three rows are linear combinations of [x,], [x,], [5]; for example

(¥a] =—§ %] — & [x:] — & [xl].

We may take the 3 X3 matrix in the upper left corner as P since det P =6.
Then Q is the matrix in the lower left corner and.

13 -1\ /=% § -\ [—F-%-}
QP1= 12 -2 -1 0 o0])= 0 —% %
VAT I SV ES B S
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The dimensionless products have the exponential matrix
7

$ ¥+ #1000
E=(—QPYL)=|0 3 3 01 0);
5 —3—% 0 0 1

hence ; .
m=xfxdxixn, wm=xlafx,, m=atxgtxsixg.
If we wish to avoid fractional exponents, nf, n3, a3 may be taken as the di-
mensionless products.
We may readily verify that E4A =0, thus checking the calculation. The fact
that S= Q@ P-1R, also shows that A is of rank 3.

5. Fundamental Units

In a certain area of knowledge let the quantities X involved belong to a
Certain class € which includes the real numbers. The quantities U}, U}, ..., U,
is said to form a set of fundamental units in the class € if every X €€ may be
expressed uniquely in the form

(23) X=xUsUn.. U, -x>0;

here x is the measure of X and a,, a,, ..., a,, are real numbers which give the
dimensions of X in the units Ui, U, ..., U, respectively. The dimensidns of X
form a vector which in MAXWELL’S notation is denoted by

(24) . [X]=(a,,4a,..-,a,).

It is customary, however, to write x for X in (24) ; then [x] denotes the dimensions
of the physical variable X whose positive measure is x. We shall adopt this
convention. :

When the units are fundamental X = x, a pure number, when and only when
X is dimensionless, that is, when [X] =0, the zero vector. Thus when the units
are fundamental,

(25) [X]=0 implies X =x, a positive number.
It U, 0, ..., U, form a system of fundamental units, the system
Vi= U Up2.. Ulbim, 1=1,2,...,m,

is also fundamental provided det b,;5=0. For the system of linear, homogeneous
equations which stéte that X = x VoV, Vo

is dimensionless in the units U, has the solution «, =a,="-- =a,, =0 when and
only when det b;;==0; then X =x, a positive number.

In mechanics units of length, time and mass (L, T, M) are usually chosen
as fundamental. But engineers often prefer to regard units of length, time and
force (L, T, F) as fundamental. This is permissible since F =L T-2M and the
determinant

1
0
f1



42 Louis BraND:

To illustrate the importance of the choice of fundamental units let us consider
the following problem [1I] which leads to an alleged paradox in dimensional
analysis.

A ball of diameter 4 is fixed in a stream of liquid and kept at a temperature
¥ above that of the liquid at a great distance from the ball. If the velocity of
the stream is v and the liquid has the heat capacity ¢ (per unit volume) and
thermal conductivity %, find the rate » at which heat is transferred from the ball
to the liquid.

Solution 1. Units of length, time, mass and temperature (L, T, M, H) taken
as fundamental.

The dimensions of calories are those of energy, L2T-2M. Since c is given in
calories per degree per cubic centimeter,

[¢] =(L*T*M)[HL3=L1T2:MHL

The thermal conductivity & is given-as calories per second per square centimeter
per unit of temperature gradient; hence

O LTEM g

[k] = TLHELAY =LT3MH™

The rate » of heat transfer is given in calories per second; hence
[r]=L2T2MT1

Thus we have the dimensional matrix:

S T M H
d. 1 00 o0
o110 OPP
Ei 1 —~3 41—
. 0 0 0 1
¢ —1 —2 1 —1
r 2 2 1 -1 Q-

This matrix has the rank 4; for the 4 x4 matrix P has det P= —1. Hence
there are 6 — 4 = 2 dimensionless products. Since

1 0 0 0

pi_[1—1 00 . QP_1:<-~1, 1, 1, 0)
2 -3 1 1 1, o0, 1, t)’
0 0 0 1

. 1, 1, —1, , 1,
E=(-oPypy=( " ooy
-1, 0, —1, —1, 0, 1,
* To find P-! partition P into four 2x2 ma’criccs('C g) then since B=0 we
e a1 At 0 :
have P71 = ( DA l)‘l)'
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they are my=dvktc, my=dlk19lr,

Thus a relation between the six variables may be put in the form &, =f(m,), or
() r=f(m)dkb.

Solution 2. "Units of length, time and mass (L, T, M) taken as fundamental.

- If the temperature of a body is regarded as a measure of the kinetic energy
of its molecules, we have H=1L2T2M. Our dimensional matrix is now

L T M
di 1 00
k{—1—1 0;P
dl 2-2 ¢
c|—3 00
v 1—1 0}Q.
ri 2-—3 1

The rank is 3 since.the 3 X3 matrix P has-det P= —1. The Pi Theorem now
gives 6 — 3 =3 dimensionless products. Since

1 0 0 -3 0 0
Pl=1| —1 —1 0\), QP1= 2 10
—4 -2 1, 1 1 1
3 0 0100
E=(—QP-1,I3)=(—-2—1. 0010},
—1—-1-—-1 0 0 1

they are
m=d%, my=d7klv, my=d k19 1r.

A relation between the six variables may be put in the form n;=g(n,, n,) or
(ii) r =g, my) dRD.

Since functions of two variables form a much wider class than functions of
one variable, the added knowledge that H=L?T2M given by the molecular
theory of heat seems, as Lord RAYLEIGH said, to “put us in a worse position
than before’” [12] when the desired relation was given by (i). The explanation
of this apparent paradox is given in § 3; for solution 2 with three units admits
a larger class of isobaric functions than solution 1 with four units.

The paradox may be explained also as follows [13]. The assumption that
L, T, M, H are fundamental units implies that

X =xL*T°M°H*
is dimensionless when and only when

(iii) a=b=c=d=0.



44 Louis BRAND:

In solution 2 the assumption that L, T, M are fundamental units implies that
X=xL*T°M°(L2T2M)*

is dimensionless when and only when

(iv) a=—2d, b=2d, c¢=—d.

Now conditions (iv) are included in (i1i) when 4=0, and are therefore less
restrictive than conditions (iii). Thus the Pi Theorem gives formula (i) under
one theory, formula (ii) under another; only experiment can decide which is
correct.

6. Recent Developments

In 1914 BuckiNncHAM [I] proved the Pi Theorem for functions capable of
being expanded in Maclaurin series. This restriction is not imposed in BRIDGMAN’S
proof, but the functions are assumed to be differentiable and the proof depends
on the solution of a linear, partial differential equation of the first order [3].
The problem, however, is strictly algebraic and differentiability is not a relevant
requirement. Purely algebraic proofs have been given by LANGHAAR [4] and

" BIRKHOFF [7]; but neither author gives the theorem in the specific form stated
in §4, where the precise function of the dimensionless arguments is given as
well as their exponential matrix. BIRKHOFF’s argument is difficult to follow in
view of its extreme concision and a variety of misprints; moreover his definition
of ““unit-free”’ functions f as those for which “‘the locus defined by f=0 is in-
variant under all transformations [of units]” is not well adapted to a sharp proof.

S. DroBOT in his recent paper Oxn the Foundations of Dimensional Analysis 5]
aims “‘to construct the Dimensional Analysis by means of quite simple algebraic
methods, namely using the theory of linear space”. In part Il of his paper the
usual postulates for a linear (or vector) space X over the field of real numbers
are given. The operations involved are the addition of elements of 2" and their
multiplication by numbers. He then proves two theorems on the form of func-
tions whose arguments, as well as the function itself, are elements of 2. In part
III this entire theory is carried over bodily to a “multiplicative form of linear
space” IT whose postulates are precise analogues of those for 2. The elements
of IT are called ‘“dimensional quantities”, and the positive numbers are regarded
as a subclass of /1. The operations involved are the multiplication of elements
in IT and the raising them to real powers. If 4,, 4,, ..., 4,, are ‘“dimensionally
independent” elements (i.e. a system of units) any element P, of IT can be uniquely
represented in the form

(i) B=mAn... Abim
where 7;, $;1, ..., p;» are real numbers and 7; is positive. The two theorems of

part IT are now combined and stated in the following multiplicative form ap-
propriate to an n-dimensional space J7:

Let (A,,...,4,;B,....,B) be a dimensionally invariant and homogeneous
function. If A,, A,, ..., 4,, (m< n) are dimensionally independent and the P, have
the form (i), then

(ii) D(4,,...,4,; B,....B) =qpAl... Al
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where the positive coefficient @ does not depend on the A's, and the real exponents
1; depend neither on the A’s nor on m,, ..., 7,.

This theorem, which the author regards as basic, gives the form of a function
clement of JI. It states what @ does nof depend upon; and later the author
casually remarks that ¢ does depend upon the positive coefficients #,, ..., x,
and the exponents p;, of the elements F, ..., F, that appear in @. But since
the nature of this dependence on p;, is never stated, this theorem is no sub-
stitute for the Pi Theorem. Indeed in the examples cited, the coefficient ¢ is
a. function of the 7 dimensionless quantities 7y, My, ..., T, wWhich appear in the
P’s. Since there are m+» arguments in @ and s units (the A’s), this suggests
the Pi Theorem in the form first given by BuckiNGHAM in which the rank of
the dimensional matrix is not considered.

DroBoT concludes his paper with a number of illuminating examples. One
of these disposes very clearly of Lord RayLEIGH'S paradox; and others deal
with the theory of quality control by sampling and particular solutions of partial
differential equations.
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