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Unification in Boolean Rings 
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Abstract. We show that two Boolean terms which are unifiable have a most general unifier, which can be 
described using the terms themselves and a single unifier. Techniques for finding a single unifier are given. 
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1. Introduction 

Unification, or the solution of equations, in particular algebraic theories has attracted 

a great deal of  attention among computer scientists in recent years, as it is a basic 

inference mechanism in algebraic manipulation of formulae, automated reasoning 
and some programming languages. A detailed account is given in survey paper [16]. 

This paper is concerned with unifying Boolean terms, such as those arising in set 

theory, and the propositional and predicate calculus. Rather than working with union 

and intersection we take as our primitive operators on sets symmetric difference, 
denoted by + ,  and intersection, denoted by • or just by concatenation. This makes 

the terms we are looking at into a Boolean ring, that is, a commutative ring in which 

every element x satisfies x • x = x and x + x = 0. The empty set corresponds to 0 
and the universal set to 1. 

This way of dealing with Boolean terms appeared in Boole's book, The Mathematical 

Analysis o f  Logic, in 1847. A comprehensive account of  Boole's work is given in 

Hailpern [3]. It gives rise to a rather convenient decision procedure for the propositional 

calculus. For  + represents exclusive or, • represents and and 0 and 1 represent.false 
and true respectively. Then we can transform any proposition into a polynomial in the 

Boolean ring by replacing ~ p  by 1 ÷ p and p /x q by p • q and so on, and the 
proposition will be a tautology if and only if the polynomial is identically eoL, ai to 1. 
For example (p ~ q) ~ ((p v r) --+ (q v r)) becomes 

1 + (1 + p  + p q )  + (1 + p  +pq) (1  + (p + r + p r )  + 

+ (p + r + p r ) ( q  + r + qr)), 

which reduces to 1 after multiplying up and simplifying using x ,  x = x and 

1 + 1 = 0. This procedure is also described in Herbrand's thesis [4], and in [19] and [8]. 
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Boole also investigated solving equatins, or unification. His method involved 
successive elimination of variables, and leads to a simple test for the existence of a 
solution. 

T H EOR EM 1 (Boole). The equa t ion  

f ( x ~ , . . . , x n )  = 0 

over the Boo lean  ring B has  a so lu t ion  i f  a n d  on ly  i f  

[ ~ f ( a l  . . . .  ,a , , )  = O, 

where  the p r o d u c t  is t a k e n  over  al l  e l e m e n t s  (al . . . .  , a,,) o f  {0, 1} n. 

L6wenheim [10] gave a formula for the most general solution of a Boolean equation, 
expressed in terms of a particular solution. Expressed in Boolean ring terms this is 

T H EOR EM 2 (L6wenheim). L e t  s = s (x  I, . . . , xn) a n d  t = t(Xl . . . .  , xn) be two  

t e rms  over  a Boo lean  r ing B, a n d  let  b~, . . . , bn be e l e m e n t s  o f  B wi th  

s(b~, . . . , b~) = t(b~, . . . , bn). 

Then  the subs t i t u t ion  

x , - - ,  x; + (s(x'~ . . . . .  x'~) + t(xl . . . . .  x ' ,))(x; + bi) 

is the m o s t  genera l  uni f ier  o f  s a n d  t. 

For example, let s = a x  + by, t = a. One solution to s = t is 

x - * a ,  y - + O .  

Thus a x  + b y  and a have the most general unifier 

x ~ x" + (a + ax '  + b y ' ) ( x '  + a), 

y --+ y" + (a + ax '  + b y ' ) ( y '  + O) 

which simplifies to 

x ~ x '  + ax" + b x ' y '  + aby '  + a, 

y ~ y" + ay '  + by '  + a x ' y ' .  

These results, and many others, including techniques for finding a particular 
solution, can be found in Rudeanu's book [15]. L6wenheim's theorem has been 
rediscovered many times, for example in [11]. Boole's technique has been used in 
hardware verification in [2]. 

We shall build on this work by describing a method for finding particular solutions 
for any equation over any Boolean ring. Taken with Theorem 2, this gives an 
algorithm for finding the most general unifier of two Boolean terms. Boolean rings are 
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described in Section 2, and L6wenheim's  theorem is proved in Section 3. A normal  

form for the elements o f  a Boolean ring is given in Section 4, and the algori thm is in 

Section 5. In Section 6 we discuss how our  method is used for unification in sets and 

in formulae o f  the proposi t ional  calculus. 

2. Boolean Rings 

In this section and the next we collect some background  material about  Boolean rings, 

in particular two kinds o f  canonical form and a lemma which leads to a straightforward 

p r o o f  o f  L6wenheim's  theorem. 

A set B containing an element 0 is a Boolean R ing  under the opera t ions  + and • 

if for all a, b, c ~ B we have 

a + b  = b + a  

(a + b) + c = a +  (b + c) 

a + O  = a 

a + ( - a )  = 0 
E,  

( a , b ) , c  = a , ( b * c )  

a , ( b  + c) = a , b  + a , c  

(a + b ) , c  = a , c  + b , c  

a , a  = a 

where 0 is the zero element and - a  is the additive inverse o f  a. It then follows that 

• is commutat ive  and every element is its own additive inverse, that is 

a , b  = b , a  

and 

a + a  = O. 

An element l o f  B with the proper ty  that 

1 , a  = a , 1  = a 

for all a in A is called an identity element. In the sequel we will repeatedly make use 

o f  the identities a • (1 + a) -- 0, and a k = a for k ¢ 0. The Boolean ring with two 

elements, 0 and l, will be denoted by F. In the sequel we work only with finite Boolean 

rings, which always have an identity element. 

For  our  purposes there are two impor tant  examples. The power set ~ ( S )  o f  a set 

S with n elements forms a Boolean ring with 2 n elements under the operat ions o f  

symmetric difference ( + )  and intersection (,), where 1 = S and 0 = ~5, the empty 

set. The set o f  all well-formed formulae o f  the proposit ional  calculus on set o f  n 

symbols for proposi t ions forms a Boolean ring with 2 n elements under the operat ions 

o f  exclusive or ( + )  and conjunct ion (,), where 1 is true and 0 is fa lse .  

It is a consequence o f  the following theorem that these two are isomorphic.  
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T H E O R E M  3 (Stone). Any finite Boolean ring is isomorphic to the power set o f  a set. 

I f  C is a set with n elements we may form the free algebra -Y-(C, Y)E over C, which 
is just the term algebra over C with signature Y~ = { + , . ,  0, 1}, factored by the 

congruence induced by the equations E above. Any element b of  Y(C,  Z)e can be 
expressed, by repeatedly applying the distributive law, as 

b = bo + blV~ + " ' "  + b~vn 

where bi e F and each v~ is a product of  elements of  C, in which each element of C 

appears at most once. Thus each vi is of  the form 

vu H x = I - [  "~ ~-  X 

x ~ U  x ~ C  

where U is a non-empty finite subset of C, and ex = 1 if x e U and ex = 0 otherwise. 

I f  we define v~ to be 1, we obtain 

b = ~ buvu, 
U~_C 

where each by is an element o fF .  The 2" elements v~ form a basis for Y-(C, Z)E as a 
vector space over F, and Y-(C, X)e has 2 2. elements. 

A Boolean ring B is said to be generated over F by a subset C if each element b of  
B can be written as a sum of products of  elements of  C, that is 

= ~_~ buvu 
U ~ C  

b 

where 

7-) U = [ I  x, v~ = 1 and b U6F .  
x 6 U  

Thus J - (C,  Y~)E is generated by C. 

A Boolean ring B is often described in terms of a set of generators C = {c~, . . . ,  cn} 
and relations w~ = 0 . . . . .  wk = 0 on terms w i. Formally we write 

B =- (el . . . . .  c~lw~ . . . . .  wk). 

This means that B is isomorphic to the quotient of  J - (C,  E)E by the subring of 

J ( C ,  E) E generated by the elements Wl . . . . .  wk. Thus if q5 is the natural homo- 

morphism from Y(C,  Z) E onto B, B is generated by {c~q5 . . . . .  G~b}. In practice we 
often drop all mention of ~b and refer to the ci as elements of  B. 

For example, the Boolean ring Q generated by a and b subject to ab + a = 0 

consists of  the 8 elements 

{ra~b(9 + s(a~ + 1)b~b + t(a~ + 1)(bq5 + 1)lr, s, t ~ F}, 

which are all distinct. It  is isomorphic to the quotient o f Y ( { a ,  b}, Y~)E by the subring 
{ab + a, 0} .  

We now define a subset of  a Boolean ring called an orthogonal basis, which gives 
rise to a normal form for the elements. 
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A subset D = {dj . . . .  , d,,} of  B is called an orthogonal basis for B if 

(a) D is a basis for B as a vector space over F. This means that each b e B can be 

expressed as a linear combination of elements of  D, 

b = Lbid i  
i = 1  

where b~ ~ F, and that the elements of  D are linearly independent, that is, 

0 = L bi4 
i - - I  

if and only if each bi = O. 
(b) The elements of  D are orthogonal, that is, 

4 4  = 0 for i C j. 

Thus 

D = {ab, (a + 1)b, (a + 1)(b + 1)} 

is an orthogonal basis for the Boolean ring Q above. 

It follows from Stone's theorem that the finite Boolean ring B is isomorphic to the 

power set of  a set, and so it must contain a subset of  elements which correspond to 
the singleton sets under this isomorphism. In fact this subset is just the orthogonal 

basis. In section 4 we shall give a direct proof  that an orthogonal basis always exists 

and is unique. 

THE POLYNOMIAL FORM OF AN ELEMENT 

To prove L6wenheim's theorem we need to investigate a different normal form, the 
polynomial form, for certain Boolean rings. Let B be any Boolean ring, V a set of  

symbols not occurring in B and B[V] the free Boolean ring over V generated by V. 

In general B will be a homomorphic  image of .Y-(D, Z)e for some D, and B[V] will 

be a homomorphic  image of J ( D  u V, £)u. 

Any element b of  B[V] can be expressed as 

b = bo + blvj  + "'" + b,,% 

where bi~ B and each vi is of  the form 

v~ l - I x  = lrl ~ 
x E U  x E C  

where U is a non-empty finite subset of  C, and ex = 1 if x e U and e X = 0 otherwise. 
I f  we define v~ to be 1, we obtain 

b = ~, bvvu, 
w_c 

where each by is an element of  B. We call this form the polynomial form of b. Two 
elements with the same polynomial form are equal. We use the polynomial form in 
the next section to prove L6wenheim's theorem. 
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3. Proof of LBwenheim's Theorem 

I f  b is in B[V] and b~ = 0 then b is said to be homogeneous. 

We can consider an element u o f  B[V] as a function o f  the elements x~ . . . .  , xk o f  

C, and as a map f rom B[V] k to B[V] and write 

u = u ( x , , . . . , x ~ )  = u ( x ) .  

Similarly u(ax__ + by) denotes u(axl + byl . . . .  , axk + byk) where a, b, x~, y~ are in 

B[V]. In this notat ion,  u(x) is homogeneous  if and only if u(O) = O. 

The following lemma gives a useful proper ty  o f  homogeneous  terms which we shall 

use frequently. 

L E M M A  1. Let  u(x_) be homogeneous. Then 

1. i f  b is in B then bu(x_) = u(bx) 

2. if  x_ = b~x~ + . . .  + b ,x  and b~bj = O for  i 4= j then 

u(x_) = b~u(x_~) + . . .  + b~u(x_~) 

Proof  
1. We have 

u(x)  = 
i = l  

where for each 

b u ( x )  = 
i = 1  

ai [-I xe':~ 
x~v 

i not  all the e~ are O. Then 

aib I-I Xe~~ 
x~V 

a~b~' l-I (x) eix 
i~l x6V 

ai H (bx) . . . .  
i~1 x~V 

= u ( b x )  

since for each value o f  i we have b = b k' where ki 

2. Observe that  biN = bi_x~ for each i. Then 

b,u(x_,)  + . . .  + b~u(xn)  

= u ( b l x l )  + . . .  + u ( b . x )  

= u(b,x_) + . . .  + u(b~x_) 

= ( b  1 - ~  • • • - ~  hn)U(X ) 

= u ( ( b l  + . . .  + b . )x_)  

u(blx_~ + . . .  + bnx~). 

now prove LSwenheim's  theorem rather easily. We can 

= ~ x ~  veix  • 

[] 
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T H E O R E M  4. Let  s (x) ,  t (x )  ~ B, w__ ~ B n such that s(w_) = t(w). Then the substitution 

y = x_ + ( s ( x )  + t(x))(_x + ,~) 

is a mgu o f  the two terms s (x )  and t(x) .  

Proof. First we show that  the above substitution is indeed a unifier. We can write 

s(~)  + t(__x) = u(_x) + a, 

where u(x) is homogeneous  and a ~ B. Then u(__w) = a, since s(__w) = t(w). 

s ( y )  + t ( y )  = u ( y )  + a = u(x_ + (u(x__) + a) (x  + w)) + a 

= u((l + u(x_) + a)x_ + (u(x) + a)w__) + a 

= (1 + u(x_) + a)u(x_) + (u(x_) + a)u(w) + a b y l e m m a l  

= 0 

It follows that  s (y )  = t(y) .  

N o w  suppose there exists some solution _z, i.e. s(z) = t(z). We need to show that 

_z_ is an instantiation o f £ .  For tunate ly  x = z_ will do: z + (s(~) + t(z_))(_z + w) = z_ 

because s(z) + t(~) = 0. Therefore y is indeed a most  general solution. 

R E M A R K .  It is usually necessary to introduce new variables in the unification step 

of  a unification algorithm, but in this case we do not  need to do this as the mgu 

substitutes all variables present in the original two terms. 

4. The Orthogonal Normal Form 

In this section we consider the structure o f  the arbitrary Boolean ring, and show that 

we can always find a canonical  form for the elements in terms of  an or thogonal  basis. 

We shall show that  every Boolean ring has a unique or thogonal  basis, which can 

be described in terms of  a set o f  generators. 

T H E O R E M  5. Le t  B be a Boolean ring. Then 

1. I f  C = {cl, • • . , cn) is a set o f  generators o f  B and U ~_ C let 

v U = l q u  lq  ( l + w ) .  
u~U w~CIU 

Then the non-zero v ~ are all distinct, and f o r m  an orthogonal basis o f  B. This 

orthogonal basis is unique. 

2. I f  B has a presentation as 

B = ( c l  . . . .  , c ~ J w l , . . . , w k )  

then 

{(vU)~bl(1 + w,) . . .  (l + w~)v ~ ¢ 0 in J ( C ,  Z)s} 

f o r m s  an orthogonal basis o f  B. 
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E X A M P L E .  Let R be the Boolean ring on a, b, c subject to ab + bc + ca = 0. There 

are eight elements v U, o f  the form fi/7~, where 2 represents x or 2 = 1 + x. Of  these, 

a b c =  {tbe = a b c  = ab~ = 0, 

and the rest 

abc, abe, ab? and ~/Tg 

are non-zero and distinct, and form an or thogonal  basis for B. 

The easiest way to determine this is to apply par t  2 o f  the theorem to determine 

which v U satisfy 

(ab + bc + ca)v U = 0 

in ~-({a, b, c}, E)e. 
Notice that a l though we may choose many other generating sets for R, for example 

{a, a + b, a + b + c}, they will all give rise, by theorem 5, to the same or thogonal  

basis. 

Experts can deduce this theorem from standard results about  semisimple Artinian 

rings - see [5] for example. We will present a direct proof.  

We first collect some properties o f  the v v. 

L E M M A  2. Let  C be a f ini te  subset o f  the Boolean ring B, and f o r  any U ~_ C let 

= [ i x  
x~U 

VU 

and 

7) U = [ I x  H ( l + y )  
xEU y~CIU 

Then 

1. vVv w = 0 f o r  U v a W. 

2. v v v w  = v v i f  W ~_ U and 0 otherwise. 

3. 1 = Z v ~ c  vv .  

4. I f  p = Ev~cbVv  U with b v e F then p v  v = bey  v e {0 ,  vV}. 

Proof. 

1. If  U and W are different then there will be some element y which contributes y to 

one term and 1 + y to the other, so that  the produc t  is zero. 
2. I f  there is an element y in W but not  in U then y(1 + y) appears in the product  

v v v w ,  which is then zero. Otherwise vvvve = v u. 

3. The p roof  is by induction on I Cl. I f  C = {c}, then 1 = c + (1 + c) as required. 

Suppose C = D u {c}, where D is non empty. By induction 1 = Eu~_Dv v = 

[(1 + c) + c]£w_vv v = 2w~c  vw. 

4. By (1), pv  v = bVv v, and since b v e F, we have p v  v e {0 ,  vV}. 

Proo f  o f  Theorem, Part  1. We show first the non-zero v v are distinct. For  suppose 
U ¢ W a n d  0 ¢ v U = v w. Multiplying both  sides by v U and applying Lemma 2 gives 

v v = 0, which is a contradiction. 
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N o w  let T be the set of  non-zero v c'. It follows from Lemma 2 that the elements 

of  T are or thogonal .  To show that  they are a basis, we first show they are linearly 

independent.  Suppose that 

~ b , t  = O, 
t ~ T  

for some b, E F, and that s c T with b~. # 0. N o w  

0 = s ~ b , t  = sbs = 1 , s  = s, 
t ~ T  

which is a contradict ion,  and so the elements o f  T are linearly independent. We also 

need to show that  if b e B then b is a linear combinat ion  o f  elements o f  7'. N o w  

b = Z ~ , ~ c b v v  U with each b U ~ F. We have 

VU ~- VU1 = "UU E VW' 
W e  C 

which, by Lemma 2, is a linear combinat ion  o f  elements o f  T, since each v ~ . v W i s  either 

0 or v W. Thus b is a linear combinat ion  o f  elements o f  T. 

To show that T is unique, we must  show that if P is another  or thogonal  basis then 

P = T. So suppose that p G P. We have 

p = l p  = ~ p v  v ,  
Uc_C 

and so there must  be a subset U of  C with p v  U -A 0. N o w  since T is an or thogonal  

basis it follows from lemma 2 that p v  U = v v ,  and since P is an or thogonal  basis that  

p v  v = p .  Thus p e T, and hence P _c T, and, by applying the above argument  with 

P and T interchanged, T = P. 

P a r t  2. We know from P a r t  1 that  v V O  is a basis element if and only if it is 

non-zero. N o w  if rug5 = O then 

i k 

vU =-- E wiai 
i - I  

for some al . . . .  ak ~ 3 ( C ,  £)L and so 

vV(1 + w l ) ' ' ' ( 1  + w~) = 0. 

Conversely if 

vV(l + w l ) ' ' ' ( l  + wk) = 0 

then vV~b = 0q5 = 0 as required. 

5. Finding Particular Solutions 

In this section we describe how to find a particular solution to a Boolean equation by 

using an or thogonal  basis. 
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I f  we want  to test if an equat ion has a solution we can use Boole 's  criterion of  
theorem 1. This involves testing whether  a certain Boolean expression which depends 
only on the equat ion is zero or not. Thus  an equat ion over  some Boolean ring B'  has 

a solution in B'  if and only if it has a solution in B, the subring of  B '  generated by 
the coefficients appear ing  in the equat ion,  and so when looking for a part icular  

solution we need only consider B. 

Since B is finite and enumerable ,  there is a trivial way to find a part icular  solution. 
All one needs to do is to test all possible valuations.  The  p rob lem itself is NP-comple te  

since it also covers the special case where C = { }, i.e. proposi t ional  formulae:  

finding a part icular  solution to p = 1 is equivalent  to determining the satisfiability of  

p. Therefore  it is unlikely that  we can find a sub-exponent ia l  solution. However  our  

method  is significantly better  than this. 

We shall describe a technique for determining whether  or not  an equat ion has a 
solution, and producing one if it has. We shall then describe a more  efficient modifi-  

cat ion which can be used when we already know, for  example by applying Boole 's  

criterion, that  the equat ion has a solution. 

We begin with an example.  We want  to find a solution in B = T({a,  b}, Z,)e to 

a x y  + by = a. 

Let u(_x) = a x y  + by, where_x = (x, y). N o w  using the or thogonal  normal  form we 

see that  B is a vector  space over F = {0, 1} with basis D = {ab = dl,  ab  = d2, 

8b = d3, 85 = d4} where ? = (1 + c). This means  that  each c E B can be expressed 

uniquely as 

4 
c = ~, cidi with c i s F  

i=1 

We have di~ = 0 for i ¢ j and, by l emma 2, cd~ = c~d~ e {di, 0} for  any c e B. 

N o w  suppose that  

X = Xld 1 + x2d 2 ÷ x3d 3 q- x4d 4 

y = yld~ + y2d2 + ygd3 ÷ y4d4 

X = dlX.1 ÷ d2x  2 + d3x 3 ÷ d4x  4 

We have 

u(x_) 

and 

and thus 

where x_ i = (xi, yi). 

= u(dl_x 1 + d2x_~ + d3~3 + d4x__4) 

= d lU(Xl )  -[- d2u(x_.2 ) Ai- d3b/(x3) -~ d4L/(x4) by  L e m m a  1 

= dl(axly  , ÷ by1) ÷ d2(ax2y2 ÷ by2) ÷ d3(ay3y3 ÷ by3) ÷ 

÷ d4(ax4Y4 ÷ bye) 

= dl(X,y 1 + Yi) + d2(x2y2) + d3(y3)  + d4(O) 

So  u ( x )  = d lUl(Xl  ) ÷ • • - ÷ d4L/4(X4) w h e r e  ui(x_i) is a polynomia l  in xi, yi w i t h  

coefficients in F. 
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N o w  since a = d~ + d2, we may equate coefficients o f  the di in u(x_) = a to deduce 

that this has a solution in B if and only if the four equations 

ui(~l)  = x l y l  + y l  = 1 

U2(X2 ) = X2y 2 = 1 

u3(~3)  = y3 = 0 (1)  

u4(x_4) = 0 = 0 

have a solution. It is easy to find solutions to these equations. For  the third and fourth 

one, just set 

x3 = Y3 = x4 = Y4 = 0. 

For  the first, find the shortest word on the left hand side, y~, and set the variables 

appearing in it to 1 and the other  variables to 0, to get the solution 

Xl = 0, yl = 1. 

Similarly for the second: x2 = Y2 = 1. 

Thus we have a solution 

x = d2 = a b  = a + ab, 

y = dl + d 2 = a b + a b  = a. 

The equations (1) were so easy to solve because they were independent,  i.e. each 

variable appeared only in one o f  them. This is not  an accident - it always happens, 

as can be seen by generalizing the argument  o f  the above example. We do this below. 

However  first we consider an example o f  two terms which cannot  be unified. Let 

u(x_) = a x  = b. We have 

x = drx l  + d2x2 + d3x3 + d4x4, 

hence 

ad~x,  + a d 2 x  2 + a d 3 x  3 + a d 4 x  4 = dl + d3, 

that  is 

x l d l  + x 2 d 2  = dl + d3, 

which gives, on equating coefficients, 

xl = 1, x2 = 0 , 0  = 1 ,0  = 0 

which clearly has no solution. Thus a x  and b cannot  be unified. Of  course we could 
show this more  directly by using Boole 's  test. 

In general then, this is our  algorithm. Let B'  be a Boolean ring, and let s(x) = t(_x) 

be an equat ion over B'. The algori thm to determine if the equation s(_x) = t(x) has 

a solution in B '  and to compute  one if it has can be broken up as follows. 
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1. Normalize s(x) + t(x) as u(x) + ao where u(x) = a~v~(x) + - . .  + a r v r ( x )  is 

homogeneous ,  at ~ B '  and the v~(x) are pairwise distinct strings of  variables in _x 

as described above. Let B be the subring of  B'  generated by the at, and let 

D = {d~,  . . . , din} be an or thogonal  basis for B, which exists by Theorem 5. 

2. For  each xi in _x = (x~, . . . , x,) write xi = d~x~l + " • • + dmxjm where the x~j lie 

in F. Substituting this back into u we get 

u(x_) = u(d,x_~ + . . .  + d,.x_ m) 

= d , u ( x l )  + . . .  + dmu(x  m) 

where _x_j = ( X l j ,  . . . , x , j ) .  For  each j we have 

4 u ( x )  = 4 Y';~ a,v,(x_) 

= : ~ ,  4 a , v , ( x  i) 

= 4 x,~N; v,(x_;) 

= 4uj 

where Nj = {i ~ {1..  r } I d j a i  -~ 0} and each v~(xj) is just v~(x_) with x 0 substituted 

for xi. Thus uj is a homogeneous  polynomial  in the variables xlj, . . . , x,j. 

3. Express a0 in terms of  the d~ and equate coefficients: 

Let 

ao = ~ p i d i  
i = 1  

where p~ ~ F. N o w  u(x) = a0 becomes 

j = |  j = l  

Since the distinct dj are linearly independent,  this equat ion is satisfied if and only 

if for each j we have uj = pj, that  is if and only if each equation 

v,(x)  = pj 
iENj 

has a solution, There are three possibilities for each equation: 

3.l. pj = 0: then x. = 0, i.e. x~j = 0 for all i, is a solution. - - j  - -  

3.2. pj = 1: 
3.2.1. Nj = { }: then there is no solution because 1 = Z~,I }. = 0 has no 

solution. Hence s and t are not  unifiable. 
3.2.2. N i ¢ { }: the equation always has a solution. F r o m  among  the v~(_xj) 

select one with non-zero coefficient, i.e. i ~ Nj, such that  there is no 

smaller set o f  variables in U/, i.e. there is no k ~ N: with vk ( x )  containing 
fewer variables than % ( x j ) .  Set all x~j in v~(__xj) to I and all other x~j to 
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0. Then v i (x )  is 1 and all other v~(x_/) are either larger or of the same 

size but different from vi(x/). In both cases they must contain some xtj 
not in %(xj) which means they evaluate to 0. 

The complete algorithm for finding a special solution is given below in a more 

formal and concise notation. Since all sets involved are finite, even the quantified 

expressions are in principle executable. The nondeterministic choice of shortest strings 

of variables is embodied in the let rain ~ . . .  construct. 

sol (s,t) = 

let ao+alvl+"'+arvr =s+t in 

l e t  p l d l  + ""  + p m d m  = ao in 
let A = {i EE {1..re} I p, = i} in 
let N(i E A) = {j E {1..r} I dwj ¢ O} in 

if 3iEA:N(i)={} then fail 

, l a e  l e t  rein E { f :  A ~ {1..r} I Y(i) E N(i) ^ Vj E N(i ) :  Iv1(,)l <_ Iv?} in 
l e t  I( i  e {1..n}) = { j  e A l z, e v~i.(j)} in 

{~ -~ }2,~(o dj I i e {i...}} 

Computing a special solution is the only algorithmic part  in our unification 
algorithm. Once a particular solution has been derived, it just has to be substituted 

into the formula for the general solution. 
If  we already know that our equation has a solution we can refine the algorithm as 

follows. Step 3.2.1 can never occur, and if step 3.1 occurs we just set x; = 0. Thus we 

only need to consider case 3.2.2, that is those j  for which pj = 1, which are just those 

for which ~ a  0 # O. 
In some circumstances we can use the above method to find the general solution of 

an equation, by finding the most general solution to each equation in 3.1 and 3.2, 
which gives us a solution of the form 

, = f , d ,  + . . .  + Z , A ~ , ,  

where each d i is some function of parameters taking values in F. Notice that in this 

case we cannot restrict attention to the subring B od B' generated by the coefficients 

of  the equation; we must work with an orthogonal basis for B'. An example is given 
in section 6. 

6. Applications in Set  Theory and the Proposit ional  Calculus 

UNIFICATION IN SET THEORY 

We have seen that the power set of any set S = {st, • . • , s, } forms a Boolean ring 
B(S) under the operations of  symmetric difference ( + )  and intersection. To apply our 
methods we need to find an orthogonal basis of B(S). 

L E M M A  3. The elements of S form an orthogonal basis for B(S). 
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Proo f .  The elements o f  S are or thogonal ,  since sisj = 0 for i ~ j. Any  element of  

B ( S )  can be written as a linear combinat ion  o f  elements o f  S; the sum of  the elements 

it contains. I f  

i=t~ 

bisi = 0 
i=l 

with the bi ~ F then, for each j multiplying by sj gives bjsj = 0, and so bj = 0. Thus 

the s~ are linearly independent,  and so form an or thogonal  basis for B ( S ) .  

R E M A R K .  We could also prove this lemma by noting that  B ( S )  is isomorphic to 

( f i , . . . , t , [ t ~  + ' ' '  + t, + 1, t~t i ( f o r i  # j ) ) ,  

and applying theorem 5 par t  2 to get an or thogonal  basis, which simplifies to 

{ t l , . . . ,  t~}. 

E X A M P L E .  Suppose we want  to solve the equation 

c x y  + x a  + y b  + c = 0 (2) 

in B ( { a ,  b, c, ql . . . . .  qn}). Since a, b and c are the only constants appearing in the 

equation we look for a solution in B ( { a ,  b, c}). Applying Boole's test (Theorem 1) 

gives us 

(1 + c)(1 + a)(1 + b)c  = 0 

so that the equat ion has a solution. Let a part icular solution be 

x = ra + sb + tc, 

y = r 'a  + s 'b + t'c. 

The equat ion has constant  term c, and ac = bc  = 0, so that  we apply step 3.1 for the 

basis vectors a and b and set r = r' = s = s'  = 0. Since cc = c :/= O, we equate 
coefficients o f  c, which gives tt" = 1, so t = t' : 1 completes our  particular solution, 

x = y = c. Thus a most  general unifier for (2) is 

x--+ c + x(1 + a + c) + x y b ,  

y--* c + y(1 + b + c) + x y a .  

We could also do this example by finding the most  general solutions to the equations 

obtained by equating coefficients. I f  we do this we must  work in the ring B ( { a ,  b, c, 

q l ,  . . . , q,, }). Substituting for x and y in (2) and equating coefficients gives us 

r ~- 0 ,  

s' = 0, 

and 

tt" = 1. 
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The most  general solutions for x and y are thus r = 0, s '  = 0 and t = F = 1, giving 

x = sb + c + ulq~ + " ' "  + unqn, 

y = ra + c + v~ql + " ' "  + vnqn. 

U N I F I C A T I O N  IN THE PROPOSITIONAL C A L C U L U S  

The set o f  well formed formulae o f  the proposi t ional  calculus on proposit ional  

symbols P = {p~ . . . .  Pn} forms a Boolean ring which is isomorphic to T ( P ,  Z)s. 

We do not  need unification to test if a proposi t ion is a tautology or  unsatisfiable - we 

merely simplify it and see if we get 1 or 0. Unifying a term involving variables with 

1 or 0 corresponds to finding the most  general values o f  those variables which makes 

the corresponding proposi t ion a tautology,  or unsatisfiable. 

One application is in the construct ion o f  derived p r o o f  rules. Suppose for example 

that  we want  to find the most  general value o f  x which will make 

( p - - - , q )  A X 

q v r  

into a derived rule. This means we must  find the most  general solution o f  

((p ~ q )  A X ) ~  (q V r) = 1, 

or, in Boolean ring notat ion,  

1 + (1 + p  + p q ) x ( 1  + q + r + qr) = 1, 

that  is 

(1 + P ) O  + q)(1 + r )x  = O. 

The most  general solution is 

x ~ x + x(1 + p ) ( 1  + q)(l + r), 

that  is, 

x . - - .~x  A ( p  V q V r). 

Thus we have shown that  for any x, 

( p - - *  q) A ( p  V q V r) A X 

q v r  

is a derived rule. Putt ing x = p v r, this reduces to the resolution rule. 

7. Concluding Remark 

The subject o f  the present paper  is a detailed exposition o f  unification in Boolean rings 

using L6wenheim's  method.  However  there is at least one other impor tant  algori thm 
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for Boolean unification, the 'successive variable elimination' technique due to Boole, 
which is used in [2] and is also discussed in detail in [15]. A comparison of both 
methods can be found in a forthcoming survey paper [12]. 
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