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Abstract 

This article deals with a boundary-layer problem arising in the kinetic theory 
of  gases when the mean free path of molecules tends to zero. The model considered 
here is the stationary, nonlinear Boltzmann equation in one dimension with a 
slightly perturbed reflection boundary condition. We restrict our attention to 
the case of hard spheres collisions, with GRAD'S cutoff assumption. Existence, 
uniqueness and asymptotic behavior are derived by means of energy estimates. 

1. Introduction 

This work is devoted to the boundary-layer problem for the Boltzmann equa- 
tion 

~ g x f :  a ( f , f )  -k $i (x > 0, ~ C R a) (1.1) 

where $1 is a small source. Such a problem arises when the boundary layer for the 
full Boltzmann equation as the mean free path tends to zero is considered; ef. 
GRAD [10]. The distribution is supposed to vary rapidly in the direction perpendicu- 
lar to the boundary; therefore, spatial dependence is supposed one-dimensional 
while the three-dimensional velocity is retained. 

We seek a solution of (1.1) satisfying a specular reflection condition at the 
boundary x : 0: 

f(O, ~) : f (O ,  R~) -k h~(R~), ~ > 0 (1.2) 

with 

: (~t, ~2, ~3) and R~ ~ - - -  (--~1, ~2, ~3) 

and the condition at infinity 

lira f(x, ~) = M(~) = (2~t) -3/2 exp (-- [~ [2/2) �9 (1.3) 
x - ~  + r 
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The collision operator Q(f , f )  is defined by (cf. CERCIGNANI [5], GRAD [111, and 
TRUESDELL & MUNCASTER [14]): 

with 

QOe, f )  = f [f(( ' )f(~')  - f(~)f(~)] q(r - ~, to) d~ do) (1.4) 

~' = ~ -  ( ( ~ -  ~ ) . ~ ) t o ,  
(1.5) 

r  ~ +  ((~ - ~). to) to. 

We consider collision kernels for hard sphere gas satisfying the angular cutoff 
assumption as proposed in GRAD [10, 11]: 

q(r -- ~, ~o) = a(~ -- ~). to (a constant > 0). (1.6) 

In view of condition (1.3), we linearize Q around the Maxwellian distribution 
M(~) and take 

f = M + M ll2 u 

so that (1.1) becomes 

with 

~1 G u + Lu = rF(u,  u) + S (a) 

u(O, ~) = u(O, R~) + h(R~), el ~ 0 (b) 

lim u(x, ~) = 0 (c) 
x---~ oo 

(1.7) 

Lu = - -2M lt2 Q(M, M 112 u),  
(1.8) 

vF(u, u) = M -llz Q(M 112 u, M 1/2 u). 

The main idea in proving the well-posedness of (1.7) is to consider the linear asso- 
ciated problem (by discarding vF(u, u) in (l.7a)) and to use the results of  BARDOS, 
CAFLISCH, & NICOLAENKO [2] and CERCtONANI [6]. Notice that the linear problem 
associated to (1.7a-b) admits a four-dimensional affine space of solutions since an 
element of the kernel of L having a zero mass flux in the x-direction is a solution 
of the homogeneous problem. This allows us to choose the solution of  (1.7) that 
vanishes at infinity. Then rF(u, u) also vanishes at infinity and can be considered 
as a small perturbation. The solution of  (1.7) is obtained by means of  the 
Banach fixed point theorem in the space 

E =  {u, f e 2vx dx f (1 + I~l)f(x,~)2 d~ + f suple~'Xf(x,~)f d~ < ~} 

(for small enough y), which seems well adapted to our problem. We thus prove 
new estimates which provide the main difference from the work in [2] and [6]. 
Let us point out that this paper does not answer the question of the existence of 
a solution for the problem with a given incoming distribution at the wall. 

Linear boundary-layer problems have motivated a large literature, see AR- 
THUR & CERCIGNANI [1] for the BGK model, MASLOVA [12], GOLSE • POUPAUD 
[9], the latter giving a precise description of the rate of convergence for hard and 
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soft potentials. In [4], CAFLISCH has studied a weakly nonlinear problem with a 
Dirac mass at infinity. In [13], VAN OER MEE discusses representations of these 
boundary layer equations as integral equations. In [15], Ut~AI & ASANO give 
theorems of existence, uniqueness and stability for the full nonlinear Boltzmann 
equation for a three-dimensional flow past an obstacle with specular or reverse 
reflection conditions at the boundary and a (non absolute) Maxwellian distribution 
at infinity. The main result of the present work is the following: 

Theorem. Consider the half-space problem 

~t ~xf : Q( f , f )  + S~, x > O, 

f(0, ~) - - f (0 ,  R~) § h~(R~), ~, > O, (1.9) 

f (x ,  ~) ~ M(~) as x ~ + c~ 

where M(~) = (2n) -312 e -1~1212. Assume that hi is such that 

f ~lhlM '/2 d~ ~- f ~l~2hiM '/2 d~ ---- f ~l~3hlM '/2 d~ ---- f ~j [212 hi M '12 d~ = 0 

and that St satisfies orthogonal properties that will be listed below. Then, for small 
h~ and S~ (in a sense that involves in particular exponential decay of  S~(x, ~) as x 
goes to infinity), there is a unique solution f of  the above problem, decaying exponen- 
tially as x goes to infinity. 

Remark. To simplify the subsequent technicalities, we will assume that hi satisfies 
moreover: 

f $~hlM ~/2 d~ = 0.  (1.10) 

This additional assumption does not restrict the generality of the above statement; 
we refer to Remark 3.1 for further comments. 

This paper is organized as follows: in Section 2, we recall the basic properties 
of the operators L a n d / "  and state the assumptions and the main results. Section 3 
is devoted to the linear problem with a source term. The nonlinear problem is 
solved in Section 4. 

2. Notations and main results 

The properties of the operators L and ~,/' defined in (1.8) have been thoroughly 
analyzed in [5, 1 0]. In particular, the linearized collision operator L is a nonnegative 
self-adjoint unbounded operator on L2(R~). 

Because of the cutoff assumption (1.6), L can be split as 

L = , ( O - -  K (2.1) 

where ~,(~:) is the frequency of collisions satisfying the hard sphere condition 

~o(I q- It[) "< ~'(0 < ~(1 q- [~]) (2.2) 
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and K is a compact operator on L2(R~) which can be written in the form 

gv(t) = f k(t, r v(O de, 
with [tOl, [31 

The domain of L is 

f k(t,  ~)2 d~ ~ C ( 1  -~- I t l ) - ' .  

(2.3) 

(2.4) 

and 

and u u E L2(R~) (2.8) 

Ilfli 2 = f f (O2  dt for f E  L2(R~), (2.9) 
R 3 

l!lfl]] 2 =  f f ( x , t ) 2 d x d t  f o r f E L 2 ( R + •  (2.10) 
R+xR 3 

Ilfll~,e = f sup (e 2w' If(x, 0 Ib at .  (2.11) 

and 

We shall denote by L2(R 3, L~~ 
tions equipped with the norm II "[[2.r (respectively [Iv '/2. IlL 

Theorem 2.1. Let S and h be given such that 

vSE N(L) • for a.e. x, t lhE N(L) l ,  

II SII2,ro < oo, IlleVo%'/2Sl]l < oo for some 70 > 0, 

tl v'/2 hll < o~. 

(respectively L2(v d})) the space of func- 

(2.12) 

(2.13) 

mainly use the orthogonality relations 

f ~r(u, u) w~ dt ---- 0, V ~x = 0 . . . . .  4 

and some estimates proved in the Appendix. 
Finally, we introduce the notations 

D(L) = {u E L2(R~), v($) '/2 u E L2(R~)} (2.5) 

and its nullspace N(L) is spanned by (~P~)~=o,...,4, where 

v,o(O = M(O '/~, 
~oi(t) = tiM(t) '12, i ---- 1, 2, 3, (2.6) 

1/-'4(t) : (It  12/3 -- 1) n ( t )  I/2 . 

Any function u can be split uniquely as follows: 

u =  w, + q~, 

where q~ E N(L) is called the hydrodynamic part and w~ E R(L) = N(L) • the 
kinetic part. We have, for some /z > 0: 

u u E D(L) f uLu dt >= t z f v(t) w~ dr. (2.7) 
R 3 R3 

The nonlinear term v/" has also particular properties described in [5, I0]. We shall 
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Then, for 0 small enough, the problem 

~t ~x u + Lu = vF(u, u) + OrS, 

u(O, ~) = u(O, R~) + 0h(R~), ~, > 0, (2.15) 

v '/2 u E U(R+ x R  3) 

has a unique solution satisfying the estimate 

inull~,~ + [lle~X~'/~ultl ~ c~(!l~'z: h[I + nis[[~ + Ilte~X~'~s[ll) (2.16) 

for any 7 such that 0 < ~, < inf (~o, ~'o)- 

In this statement, the function h is given for ~t ~ 0, and we have assumed that 
it is extended by 0 for ~t > 0. This convention will be used throughout the paper. 

3. The linear problem 

This section is devoted to the study of the linear problem with a source term 

~ ~x u + Lu = vS, (3.1) 

u(O, ~) = u(O, R~) + h(R~), ~1 >: O, (3.2) 

,pl/2 U E L2(R + • (3.3) 

We prove the existence of a unique solution satisfying some estimates which will 
be used in Section 4 for the nonlinear problem. 

Proposition 3.1. Let S and h satisfy (2.12)-(2.14). Then the system (3.1)-(3.3) 
has a unique solution, and it satisfies the inequality 

[lle~X~ '/2 ulli + Ilu[l~,~ =< C~(llle:~X ~ '/2 Sill + IlsIl~,~ + tl ~'/~ hll) (3.4) 

for 0 < ~' < inf (Vo, ~'o). 

Remark. This result is close to that of [2, 5, 9]. The proof is also inspired by those 
papers. The main new point is this estimate in L2(R~, L~~ +)). It ensures uniqueness 
for the nonlinear problem. As mentioned in the introduction, one can add any 
linear combination of 0P,)~=o,2.3,4 and still get a solution of (3.1)-(3.2). 

Proof of Proposition 3.1. Let •(x) be a C 2 nonnegative function defined for x :> 0 
such that g ( 0 ) =  1 and Z ( x ) = O  for x ~  1, and let us write 

v(x, ~) = u(x, ~) + z(x) h(O. 

Eqs. (3.1)-(3.3) read, when restricted to a slab 

~1 ~x v + Lv = vS" = vS + ~ h  ~xZ + Lhz(x),  (3.6) 

v(0, ~) = v(0, R~); v(B, ~) ---- v(B, R~). (3.7) 
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We introduce the penalized system 

el Oxv" + Lv" + ev" = ~'S', (3.8), 

v*(O, ~) = v'(O, Re), v'(B, e) = v*(a, R~) ~x >= 0. (3.9)~ 

The proof  is organized as follows: we first have uniform estimates in e for 
u ' defined for x E (0, B) and pass to the limit in e. We then write uniform estimates 
in B and pass to the limit as B ~ oo in a weak sense. We then prove estimates 
(3.4)-(3.5) and finally the uniqueness theorem. 

One easily verifies that S '  has the same properties as S. Classical theorems suffice 
to prove that the system (3.8),-(3.9), has a unique solution [5] such that v~/2v" E L 2. 
To prove uniform estimates with respect to e, one first writes 

f v(Ow:(x, O2dxd#<=(1/lO f v(e)S'(x,~)2dxde. (3.10) 
[0,B] x R a [0,B] x R a 

To show that q~ remains bounded in L2([0, B] • one uses a contradiction 
argument: suppose that A" = f qo,(x, ~)2 dx d~ tends to oo when e -+ 0 

[O,B] x E3 
and write g" = v'/A'. Then g" satisfies 

and 

~ Oxg" = (l/A,) (--Lw,e + vS') -- eg" 

M~I ~g" ~ 0 in L2([0, B] •  s) when e --~ 0. 

(3.11) 

(3.12) 

Moreover, g" is bounded in L2([0, B] XR3). Then use of  the compactness theo- 
rem of  GOLSE, PERTHAME & SEYTIS [8] shows that there is a subsequence of  g" 
such that q~, (and therefore g', from the fact that w~, ~ 0) converges strongly 
L2([0, B] •  3) to a function Q 6 N(L) for a.e. x with Q independent of  x. On 
the other hand, multiplying (3.8), by ~p~ (0~ = 0, 2, 3, 4) and integrating over x 
and ~e shows that 

B 

f fev,.axa~=o, 0~ = 0,2, 3, 4, (3.13) 

and 

f ~v'(z, 0 de + ~ f ~oV~(S, 0 de ds = O. 
[O,z] 

(3.14) 

Therefore Q = 0, which contradicts Ilg'[I ~ 1. Finally, it is easy to pass to the 
limit in (3.8), and so obtain a unique solution of  

~1 Oxvn + Lvn = vS', 0 < x < B, (3.15) 

vs(O, R$) = vn(O, ~), vn(B, R$) ---- vn(B, ~), 81 >= O, (3.16) 

B 

f f vB(x, ~1 v'~ d~ dx = O, o~ = O, 2, 3, 4. (3.17) 
0 
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(i) Uniform estimates with respect to B for the solution v of (3.15)-(3.17) 

One first has 

B B 

f f~(r (1/~) f f~(r (3.18) 
0 I~ 3 0 1~ a 

Multiplying (3.15) by ~ (2 _< o~ _< 4), and integrating R~, one obtains 

f ~1 y~vB(x, ~) d~ = O, u x E [0, B], 0~ = 2, 3, 4. (3.19) 

Multiplying by Yo, one has 

f v,~v~(x, ~) d~ -- o, v x ~ [0, ~1. (3.20) 

Consequently, qo n has the special form 

qvs(x) = (bg(x) + b~(x) ~2 + b~(x) ~3 -]- b~(x) (1~ [2/3 -- 1)) M '12 . (3.21) 

Combining (3.19) and (3.21) delivers 

f ~lqoB(x, ~)2 = O, u x E [0, B], (3.22) 

f ~qon(x, ~) w~8(x, ~) d~ ----- 0, (3.23) 

f ~lvn(x, ~)2 d~ ~ f ~lwon(x, ~)2 d~. (3.24) 

Now we need to prove that q~s is uniformly bounded with respect to B in 
some space of distributions. First multiply (3.6) by ~pl, and integrate over R~: 

~ f ~,w,v,(x, ~) d~ = O. (3.25) 

Then, as in [6], multiply (3.15) by L-~(~dp~), 2 --< a <_ 4, and integrate over R~: 

Ox f ~tL-'(~et~p~) vn(x, ~) d~ ~- f ,(~) S'(x, ~) L-'(~l~p~) d~ (3.26) 

(notice that L-a(~l~,~)decays exponentially as I~ I--+ 0% which will be of constant 
use in the sequel) since 

f L-~(~,V~)Lwo~(x, ~) d~ = f ~W~w,~(x, ~) de = 0 

by (3.19) and (3.21). Introduce then the functions 

O~(x) = f ~p~vn(x, ~) d~, (3.27) 

O~(x) ---- f ~tL-~(~o~) vB(x, ~) d~, o~ = 2, 3, 4; 

these ~ (~ = 1 . . . . .  4) are defined in [0, B] and satisfy the relation 

Sup II eeX n ~ x ~  II~=t0,~ < ~ .  (3.28) 
1 < : c ~ 4 , 0 < B <  

Remark 3.1. Hypothesis (1.10) has been used to obtain (3.25). If (1.10) is not 
satisfied, an additional term of the form (OxZ)f ~t hwt d~ appears in (3.25), 
but because Z has compact support, ~b~ still satisfies (3.28). 
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NOW, we split # ~  as  follows: 

a~tx)  = f e~L-'(8,r~) q. .  de + f 8 , L - ' ( ~ v ~ )  wo. de, ~ = 2, 3, 4. 

From (3.18), we know that 

w~B ---> w in L2(dx  (~ ,pl/2 de) weakly. 

In order to carry this fact from w~B to q~n, we shall use the lemma 

Lemma 3.2. The matrix of  entries 

mlj = f ~l~Pi~o0 de, 

m~l = f r ~o de, 

is invertible. 

Proof. Notice that mja = 0 

mla = f ~W~Wa d# for/3 --~ 2, 3, 4; 

m~a = f 8~L-'(8~V,~) Wa de 

(3.29) 

(3.30) 

(3.31) 

for o~,fl = 2, 3 ,4 ;  

for / 3 = 2 , 3 , 4 ,  and that the block 
(m~a; o~, fl = 2, 3, 4) is invertible because it is the matrix of  the following scalar 
product 

f ,  g-+ f fLg  dS, 

defined on span (L-l(w81~p~), ~ = 2, 3, 4). 

From (3.17) and (3.28), one can extract from q~ a subsequence that converges 
in LZ(dx | ~ dO when B goes to -k oo. Use of Lemma 3.2 with (3.29) and (3.30), 
(3.31) ensures that 

qos --~ q in L2(dx 0 v de) weakly. 

Taking v ---- w + q, we obtain a weak solution of  

(3.32) 

(3.33) 

(3.34) 

(3.35) 

satisfying 

8t 8xv + Lv = vS', x > O, 

v(O, 2) = v(O, nS), 8~ > o 

7 f ~(8) w~(x, 2) de dx ~ C 7 f vS'2( x, 2) de dx, 
0 0 

f 8~r~wo de = f 81Wv de -- O, ~ = O, 2, 3, 4, 

f S, w~ dS~- f s,vZ d# >~ O, 

qv E L~or L2(v de)). (3.36) 
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(ii) L2-estimates on the solution v 

First we proceed as in [2] to obtain that 

oo 

f f v(~) Wu(X, ~)2 e2./x d~ dx ~ (C/(v o -- 7)) ? f v(~) S '2 e 27x d~ dx. (3.37) 
0 0 

Then we multiply (3.32) by L-l(~t~v~), or = 2, 3, 4, and integrate over R~• [x,y] 

f ~,L-~(~vo,) v(y, 0 d~ -- f ~tL-'($t~'~) v(x, ~) d~ 

Y 

= f f L-'(#,~,~) ~,S'(z, 0 d# dz. (3.38) 
x 

Also, multiplying (3.32) by ~vl, we obtain the invariance relation 

f ~ , v ( x ,  0 d~ = c , .  (3.39) 

Observe that the integral on the right-hand side of  (3.38) converges (uniformly 
in x) when y goes to infinity following assumption (2.13). Then we can write 

lira f ~L-'($1~,~,) v(y, 0 d~ = C~, 2 ~< 0~ ~< 4 (3.40) y-~oo 

and since we know from (3.37) that wv(y,, 0 --+ 0 in L20, dO for some sequence 
y,  going to infinity, (3.40) reads 

lim f #~L-'(#t~v~) qo(Y,, #) d# = C~, 2 ~< 0~ _< 4. (3.41) 
y/l-->. 

From (3.34), (3.39), (3.41) 

qv(Y~, ~) --~ q~ in L2(v dO 

when y,  goes to infinity, where q~ has the form (3.21). Defining vl : v --  q~, 
we obtain a solution of 

~1 ~xVi + Lvl = vS', 0 < x,  

vt(0, RO ---- v~(0, O,  (3.42) 

q~(y,, ~) ~ 0 in L20, dO when Yn ---> O<) 

that satisfies (3.33)-(3.42) with C~ ---- 0 for o~ : 1 . . . . .  4. In what follows we 
shall use the notation v for vt and S for S'. 

Proposition 3.3. The solution v of  (3.42) satisfies 

[l[e~X ~(~),/2 v ][1 < C~ I]l e=~x ~,(0 '/2 all [ (3.43) 

Jbr any 0 < y < inf0'o, ~'o). 

Proof. We go back to (3.38) and rewrite it: 

--e vx f ~,L-'($W~,) v(x, ~) d~ = --e -vx ~ f L '($W~,) vSe2~'e e2"/(x-Y) a~ ay; 
P ~  x 



90 F. GOLSE, B. PERTHAME, ~; C. SULEM 

thus 

If ~,L-'(~,W~)dxv(x,~)d~l <= Ce -~x [tle2ey~l/2 s i l l .  (3.44) 

Now (3.44) becomes 

I f  ~,L-'(~,W~) e r~ qo(x, ~) d~[ <: Ce -vx II[e='~ �9 ~/2 Sill 

§ If ~,Z-'(~W~) d x wo(x, ~) d~] (3.45) 

for oc = 2, 3, 4. In view of (3.45), (3.39) (which holds with Ct = 0), (3.37) and 
Lemma 3.2, one obtains (3.43). 

(iii) L~-estimates for  the solution v 

Proposition 3.4. The solution v o f  (4.42) satisfies the a priori estimate 

[l v [12,~ ----< C~ (]l ld ~ vl/2 sil l  + IIsII2D 

for  any 0 < 7 < inf 0'o, 7o). 

(3.46) 

Proof. To obtain estimates of  L~-type, one uses, following [6], the integral form 
of (3.42) and, with the notation 2 = v(~)/~l, 

Y 
vO', ~) e ~y --  v(x, ~) e xx = f (1/~1) (vS + Kv) (s, ~) e z~ ds. (3.47) 

x 

First suppose that ~ ~ 0 and let x go to infinity. By use of the fact that v vanishes 
at infinity, we can rewrite (3.47) as follows: 

+00 

e ve v(y, ~) = f (1/t~t i)vS(s, ~) e vy e a(s-y) ds 
Y 

+oo 

+ f (1/ l~ I) Kv(s, ~) e ey e a<'-y) ds. (3.48) 
Y 

On the right-hand side of (3.48) the first integral is bounded by 

oo e ~'(s Y) ds / (v/]~'])S(s '~)evy - <=(c]2]/(12]+~'))suplS(x'~)eVXlx 

__< c~ sup IS(x, ~) e'x]. 
x 

For the second integral on the right-hand side of (3.48), one separates the cases 
J~ , l> l  a.d le~l<l-  For I~11>1, 

) ~ (1/l~, l) Kv(s, ~) e~'y e ~ ( S - y )  ds 

<= (C/v(8)) I;' I/I 4 - ~' l '/2 ( f  (Kv) (s, 8) 2 e 2vs ds) '/2 (3.49) 

Cr( f (Kv) (s, 8)2 e2r~ ds)l/2. 
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For [~1] < 1, one splits the integral into two parts: 

+oo 7 y+e f (I/]~t])Kv(s,~)eVYeatS-Y)ds= + f . (3.50) 
Y Y+~ Y 

Then 

ly+( (1/l" [) Kv(s' ') eVY e~(~-Y) dsl 

=< C 121 e(~-v)~/12 -- 7 [,/2 ( f  (Kv) (s, ~)2 e2VS ds),/2 (3.51) 

(C/e 1/2) (f (Ko) (s, ~)2 e2VS ds)l/2 

and 

8 

<= C f (Kv(y + s, ~) eV('+Y))/(]~l I ~ ~(~)'-~) (I/s ' -~) ds (3.52) 
0 

<= Ce~'(1/ [ ~ 1~ ~(~:)~-~) sup ] Kv(y, ~) eve]. 
Y 

Thus 

f suple~Yv(y,#)iZd# <=(C/e) f f Kv(s,~): e2VSds 

+ c~ ~' f (1/ie~ ?~',,~ ~')supe ~'y Irv(y, ~)l~de (3.53) 
I ~ d < l  Y 

+ C f sup IS(x, ~)2 eZr~ ] d~. 
x 

An upper bound for the second term appearing on the right-hand side of (3.53) 
is given by 

f (1/It, I z~) (f [k(~, r sup Iv(y, () e vy I dr 2 d~ 
[~11<1 Y 

<= c f  (suplv(y,C)e~yl)2d(f (1/[~12~)(1/(1 + I~1)) d~: (3.54) 

=< C II v llZ,,v when o~ <: 1/2. 

Putting together estimates (3.53) and (3.54), one has 

1[I~,<o olh,v =< cl[Ivll[/~ "= + c e  Ilvlkv + c Ilsl[=,v. (3.55) 

When ~t ~ 0, one takes x = 0 in (3.47) and proceeds as above: 

I/ I e vy [v(Y,~)l ~ e ('-~)y Iv(o,~)l -~ O/~,) ( , s+ Kv)(s,S)eVYe~<'-Y)ds. (3.56) 
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In (3.56), 

I/(1/2,)vSeVYea(~-Y)ds 

Y 

<: sup ([ S(x, 2) [ er9 ([ 2t I/I A - r [) e(V- a)y f e(X- r)s ds 
x 0 

C sup (I S(x, 2) 1 e vx) 
x 

and for 12,1> 1 

I f  (1/20 Kv(s, 2)e ~O-y' e ve as[ 
I 

I 

For 1 2 , 1 ~  1, 

(3.57) 

with 

[Yf" (1/20 Kv(s, 2)e ~~ e vy asl 
l a  I 

c ( l ~  ]/14 - r I */2) e <~-"  (f Kv(s, 2) 2 e 2v" ds) '/2 (3.60) 

< (c/e '/~) ( f  Kv(s, 2) 2 e 2rs ds) '/2 

and 

y_f~ (1/21)Kv(s, 2)e ~~ e ~y ds[ 

~ f (1/21) (Kv(y -- s, 2) d (y-~)) e (~-0' ds 

(3.60 
e 

< sup IKv(y, 2) eVYl f ((Iv - ~.1 s) ' -~/ (2 ,  ty - ~.1'-~)) e(V-~)~ (ds/s'-~) 
y 0 

~: Cd' sup ]Kv(y, 2) e vy [ 1/(21 ~(2) O-~))- 
Y 

Thus (using the reflection condition) we obtain 

I1~ 1~,_~o II,,v < c f v(O, 2) 2 b, zo d2 + (c/o lllvlll~ 

§ c ~  ~ I Io l IL  § c lisli~,v. (3.61) 

Putting together (3.55)-(3.61), we find that 

llvll2,v <_- (c/~'zb I l lvll lv + c~ ~ llvll:,~ + c llsii~,v. (3.62) 

(l~ 1/(~(2) I~ - r I'2)) ( f  Kv(s, 2) 2 e 2v" Ws) "~ (3.58) 

~: c(  f Kv(s, 2) 2 e 2vs ds). 

we write again: 
y y - - e  y 

f = f + f ,  (3.59) 
0 0 y - - e  
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Choosing e such that Ce ~ < 1 and using estimates (3.43) and (3,62), one has 
for the solution v of  (3.42) 

Ilvll~,~ + Ill e~ ~'/2 o[ll--< c(lll e:~x ~"2 sill + I/all=,0 (3.63) 

for small enough 7 ~ 0. Thus the solution u of  (3.1)-(3.3) satisfies: 

l[ul[:.~ + l![e~X~"~.lll<=c(llle~X~'/=slll+ Ilsll=,~ + tlvl/2 hi[). (3.64) 

(iv) The uniqueness theorem 

To prove the uniqueness theorem, let us consider a solution v of  (3.1)-(3.3) 
with S = 0 and h = 0 and prove that it is identically 0. It satisfies 

(1/2) f ~, w(x, 8y d8 + f f ~(8) w~(s, 8y d8 ds < O. 
]~3 0 ~3 

Since w vanishes at infinity, 

f ~(0 wo(s, 0 2 d~ ds = O. 
0 ~3 

Thus wo = 0 a.e., q~ is independent of x and therefore is also 0. This concludes 
the proof  of the uniqueness and of Prop. 3.1. 

4. The nonlinear problem 

We now have the main tools to study the nonlinear problem. We shall use the 
Banach fixed-point theorem to prove existence and uniqueness of  a solution of 
(2.15). We work in the Banach space E of measurable functions equipped with the 
norm 

IlulIE = []l~'Z2 ue~Xlll + Ilu!12,~, (4.1) 

and consider the mapping T defined on E into E b y  Tv = u where u is the unique 
solution of  

81 ~xu + Lu  = O~S + ~P(v,  v), x ~: 0, 

u(O, ~) = u(O, RS) + Oh(RO, 8t ~ 0, (4.2)0 

Ill~ '~"l l[  < ~ 

Lemma 4.1. For v E E, one has the estimates 

/lle2eX ~, 1/2 F(v,  v) l[I <: c I[le~Xv '/2 viii ~, (4.3) 

llv t/2 r(v,  o !]:,e _-< c rivllL. (4.4) 
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The proofs of  the estimates are given in the Appendix in a more general form. 
The orthogonality condition (2.12) on P is exactly (2.8), and using the lemma 

shows that problem (4.2)0 is well posed for v E E. Moreover, u = Tv E E and 
satisfies 

II u lie ~ C(OH + II v I1~) (4.5) 

(see Proposition 3.1) with 

n = [[Sl[~ + I[~ '~/2 hll, (4.6) 

Hence, if v E Be(O) = {v, II vile < 0}, and 0 small enough, then Tv E Be(O). 
The mapping T is thus defined from Be(O) into itself, is continuous, and for small 
enough 0 is a contraction. We may apply the Banach fixed-point theorem to 
prove Theorem 2.1. 

Appendix 

In this Appendix we prove some basic estimates on vl"( f , f ) .  For the sake of 
generality, we shall not restrict our analysis to a gas of hard spheres but consider 
hard potentials in general. The operator v F  is defined by 

v[ ' ( f , f )  = M -112 Q(M1/2 f ,  Mll2 f ) ,  (A.1) 

where Q is given by (1.4)-(1.5). We assume that ~($) satisfies, for 0 _< fl --< 1 

Vo(1 -q- I~[) ~ ~ v(~) ~ v~(1 -4- [~l) a 

and that the cross-section q is given by 

0 < q(V, to) < VaA(co) 

with A(co) E L1($2). 

(A.2) 

(A.3) 

Lemma A.1. Under assumptions (A.1) and (A.2), we have, for any ~ E [0, 1], 

[[r ~ F(f,f)H < C IIv~flt I!f[[, (A.4) 

where 

c = co f [A(~o) ldo and Co is a universal constant. 
$2 

Proof. v/" is rewritten in the form 

v l" ( f , f )  = A -- B (n.5) 
with 

A = f q(~ -- r ~o) M(r162 d~ dco (A.6) 
and 

B = f q(~ -- ~, 09) M(r ') d~ do~. (A.7) 

To have an upper bound for the contribution of A in v~/", we use the inequality 

1~- r <(1 + [~[)(1 + 1r (a.8) 



Nonlinear Boltzmann Equation 95 

and thus we have: 

f (A(0'/(1 + le I) 2~('-~)) dS 
= f (1/(1 + ]S]) 2m-~)) ( f  q([e -- ([, o ) f (S ) f ( ( )  m(~') t/2 d(dta) 2 de 

( )2 (A.9) 
:<= f(1/(1 + [e[)2'~)f(02 :.fA(~ If(0] (1 + I(l)~e(r '/2 d:do as 

=< Col[v~fll 2 IN(o))] do Ilfl[ 2. 

To have the contribution of  B in ,,~F, we use that: 

1 r  S] = I(' - -  S'],  (A.10)  
and thus 

f (B(02/(1 + lel) de 

g f(de/(1 + lSl 

• ( r  ~'1~ IS -- ~['I-~)P lf(~')[ [f(S')] M(~-) ./2 dE de) 2 (A.11) 

(s <= C fdS  A(~o) le' -- ~"l~ (1 + I(I) (l-~)a [f(e')[ [f(r M(()i/2dCdo 

• fA(oJ) (I 1 + IEI) 2('-~)a M(() dE do). 
(,to 

Since the mapping (S, () --~ (S', ~') is an isometry, we have 

f(B2(S)l(1 + tel) 2m-~)) de < C [A 2 IIv~fll 2 Ilfll 2. ( i .12)  

Lemma A.2. Under assumptions (A.l) and (A.2), v / '  satisfies 

II v~F(f,f)1[2,~, ~ C II v~ Ilfl2,~,. 
The proof  is similar to that of Lemma A.I. 
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