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Abstract. A tournament is any complete asymmetric relation over a finite set A 
of outcomes describing pairwise comparisons. A choice correspondence assigns 
to every tournament on A a subset of winners. Miller's uncovered set is an 
example for which we propose an axiomatic characterization. The set of 
Copeland winners (outcomes with maximal scores) is another example; it is a 
subset of the uncovered set: we note that it can be a dominated subset. A third 
example is derived from the sophisticated agenda algorithm; we argue that it is a 
better choice correspondence than the Copeland set. 

1. Introduction 

Given a finite set A of outcomes (candidates, decisions) a tournament T on A 
expresses decisive preference judgments for all pairs of outcomes: aTb reads a beats 
b (no indifferences are allowed). When a tournament T has no Condorcet winner 
(i. e., no outcome beats every other outcome) there is no straightforward notion of 
winner(s) for T. This paper explores some such notions and compares them 
normatively. 

The above question has applications to many decision problems far more 
general than sport competitions; see, for example, the monograph by Moon (1968) 
and references therein to the psychometric and biometric literature. Here we 
concentrate on solution concepts that were originally inspired by the theory of 
collective choice, in particular the strategic analysis of  voting rules based upon 
majority comparisons: hence our terminology of Condorcet consistency, sophisti- 
cated agenda and so on. Of course we deal with abstract tournaments so that the 
potential applications are wider. 

Summary of the Results 

A choice correspondence associates to any tournament T a subset S(T) of  
outcomes. The simplest example is the top cycle of T, made up of  those outcomes 
that beat directly or indirectly every other outcome (a beats b indirectly if a beats c 
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and c beats b, or a beats c, c beats d, d beats b, and so on). A minimal rationality 
requirement of any choice correspondence is that it produces a subset of the top 
cycle (Moon 1968; Schwartz 1972). 

Miller's uncovered set is made up of those outcomes a which, when opposed to 
any other b, either beat b or beat some e that beat b (thus a beats every other 
outcome in at most two steps). It was introduced independently by Miller (1977) 
and Fishburn (1977), and further explored by Miller (1980) and Shepsle and 
Weingast (1982) - see also McKelvey (1983) in the context of spatial voting. We 
propose our axiomatic characterization of the uncovered set (Theorem 1) based 
upon two familiar axioms from the theory of rationalizable choice functions (see 
Bordes (1983) and Moulin (1984)). 

Next we turn (Sect. 5) to another choice correspondence, namely the Copeland 
set made up of those outcomes that beat the greatest number of opponents 
(Copeland 1951). Miller observed that the Copeland set is contained in the 
uncovered set; however, it might be a dominated subset of the uncovered set, at least 
when there are 13 outcomes or more (Theorem 2). 

In Sect. 6 we explore a family of deterministic choice correspondences using a 
fixed binary tree (as in a single elimination tournament). These solutions generalize 
to the context of tournaments the voting by binary choice methods introduced by 
Farqharson (1969) and further studied by Miller (1977, 1980), McKelvey and Niemi 
(1978), and Moulin (1979). We prove that they always choose one outcome from the 
top cycle, but may display perverse nonmonotonicity features. We also prove that 
no selection of the Copeland set can be obtained by such a binary tree (at least when 
there are 8 outcomes or more, Corollary to Lemma 10). 

The last section (Sect. 7) is devoted to one choice correspondence derived from a 
specific binary tree, the multistage elimination tree (Miller 1977; Moulin 1979). Its 
outcome is given by a remarkable algorithm called the sophisticated agenda 
algorithm (Shepsle and Weingast 1982). This algorithm produces an undominated 
outcome of the uncovered set (Banks 1985), thus is arguably superior to any 
selection of the Copeland set. When there are no more than four undominated 
outcomes in the uncovered set, all of them can be reached by an appropriate agenda 
(Banks 1985). If there are at least five such outcomes, some might be out of reach 
(Lemma 14). 

Open Problems 

Ranking the participants of a given tournament is another, related, problem. The 
Copeland scores (assigning to each outcome the number of outcomes it beats) 
induce such a preordering: Rubinstein (1980) and Henriet (1985) provide two 
distinct characterizations of it (the former based on a weak version of Arrow's 
Independence of Irrelevant Alternatives, the latter based on its invariance when the 
orientation of a cycle is reversed). Yet the arguments developed above raise doubts 
about its reasonableness. Much more appealing is the idea (proposed independently 
by Kemeny (1959) and Slater (1961) to approximate a given tournament by its 
closest orderings (the distance being measured by the number of binary com- 
parisons that must be reversed). Yet little is known about the top elements of the 
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closest orderings: they are in the uncovered set and can be all Copeland nonwinners 
(Bermond 1972); but are they undominated in the uncovered set ? is there an easy 
algorithm to compute one of them? 

Another widely open question is the generalization of choice correspondences to 
any complete relation on A (not necessarily asymmetric: indifferences are allowed). 
Already the definition of the top cycle and/or the uncovered set is far from simple if 
one wants to preserve some version of Condorcet consistency : on this see Miller 
(1984). Also the Copeland score can be defined in several nonequivalent ways (by 
counting one half point or zero point in case of a tie) among which the choice is not 
straightforward; see Henriet (1985). 

2. Choice Correspondence and Condorcet Consistency 

The finite set A contains all feasible outcomes. A tournament on A is a complete and 
asymmetric binary relation T: for each pair a, b of distinct outcomes, exactly one of 
aTb, bTa holds (and aTa for all a). We read aTb as: a beats b in the pairwise 
comparison a, b. Notice that tournaments allow cycles of arbitrary length (e. g., a Tb, 
bTc, cTa is a cycle of length 3). A tournament with no cycles is an ordering of A 
(complete, transitive, asymmetric). We denote by ~ the set of tournaments on A. 

A choice correspondence (c.c.) is any multivalued mapping S from z into A. To 
any tournament T, a choice correspondence associates a nonempty subset S(T)  of 
"best" outcomes, called the choice set at T. 

If an outcome beats every other outcome in pairwise comparisons we call it a 
Condorcet winner. Our first axiom states that a Condorcet winner should be 
uniquely chosen: 

CondorcetConsistency. F o r a l l T ~ z ,  aEA{aTb  all b ~ A } ~ { S ( T ) = { a } }  

For instance, when tournament Tis an ordering (i. e., has no cycles) its top outcome 
should be uniquely chosen. A much stronger statement than Condorcet 's con- 
sistency is: 

Condorcet Transitivity. For all T e z  , a ,b~A{[a~S(T) ,bTa]=~bES(T)}  . (1) 

In words, any outcome that defeats some chosen outcome must be chosen as well. 
Observe that Condorcet transitivity is equivalently formulated as: 

for all T ~ z  , a , b ~ A { [ a ~ S ( T )  b ¢ S ( T ) ] ~ a T b }  . 

In words, any chosen outcome beats any nonchosen outcome. 

Lemma 1 (Schwartz 1972). There is a unique smallest (w.r.t inclusion) choice 
correspondence satisfyin9 Condorcet's transitivity. It is called the top cycle and 
defined as 

tc (T)= {a~Alfor all b6A ,  there is an integer n and a sequence 

a=ao,al  . . . . .  a ,=b  s.t. aiTai+l, all i=O . . . . .  ( n - l )  . (2) 
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Proof. Pick any c.c. S satisfying (1) and let tc be the c.c. defined by (2). Choose 
a e tc(T) and b • S(T).  Since there is a sequence a = a0, al . . . .  , an = b such as in (2) 
we have 

{an-l Tb, be  S (T ) }~an-1  e S (T)  

{an-2Tan-1, an-1 • S (T ) }~an -2  ~ S (T)  

{aTal, al • S(T)}  ~ a  • S (T)  . 

This proves tc ~_ S. It remains to check that tc satisfies Condorcet transitivity. This is 
obvious from (2). Q.E.D. 

An equivalent definition of  tc goes by setting T* to be the transitive closure of T: 

aT*b iff there is an integer n and a sequence 

a=ao,al  . . . . .  an=b s.t. aiTai+l ,  all i = 0  . . . .  , ( n - l ) .  

Then tc(T) is the set of  maximal elements of T*. 
The top cycle is too big a choice correspondence, as the following example 

shows: T coincides with the ordering 1 > 2 > 3 . . .  > n except for nT1. Then tc(T) 
= {1 . . . . .  n} : the top cycle does not discriminate at all among outcomes, despite 
their asymmetry. All subsequent choice correspondences will actually choose 
{1,2, n} thus eliminating 3 . . . . .  n - 1. 

Another drawback of the top cycle arises when the tournament Tis derived from 
binary majority comparisons (among finitely many agents, each endowed with a 
preference preordering over A). Then the top cycle may contain Pareto dominated 
outcomes. The standard example (Fishburn 1977, p. 89) has three agents and four 
outcomes 

agent 1: a > b > c > d  

agent 2: d > a > b > c  

agent 3: c > d > a > b  . 

Here the Pareto inferior outcome b is in the top cycle. 
The following weakening of Condorcet 's transitivity was introduced by Smith 

(1973). It is satisfied by all choice correspondences below: 

Smith's Consistency. For all T e x  , all B c A { b T a  for all b e B  

and all a e A \ B } ~ { S ( T ) c B }  . (3) 

If a subset B is ahead of A \ B, in the sense that any outcome in B beats any one in 
A \ B, then the choice set does not contain any outcome of A \ B. This property is 
stronger than Condorcet 's consistency, but weaker than Condorcet 's transitivity. 

Just like the c.c. satisfying Condorcet 's transitivity are stable by intersection, 
those satisfying Smith's consistency are stable by union and thus have a largest 
element. 
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Lemma 2. There is a unique largest (w.r.t inclusion) choice correspondence satisfyin9 
Smith's consistency. It is the top cycle. 

The proof  is straightforward. 

The following graph theoretical result is proven, for instance, by Miller (1977). 

Lemma 3. The top cycle of  a tournament T is a singleton only i f  it is the Condorcet 
winner of  T. Otherwise it is a cycle (with size at least 3);  one can order it as 
tc(T) = { a , , . . . ,  ap} where 

a i T a i +  l , i=1  . . . . .  p - 1  and a p T a  1 . 

Proof If Thas no Condorcet winner, every outcome in tc(T) is beaten by at least one 
other outcome in tc(T). Hence one can find a T-cycle within tc(T). Pick one which is 
inclusion maximal, say C =  {al . . . .  , aq}, and assume, per absurdum, that C is 
strictly smaller than tc(T). Pick a in t c ( T ) \  C. If for some j, 1 __<j__<q - 1 ,  we have 
a j TaTaj + 1, then {al . . . . .  a j, a, a i+ 1,. • . ,  aq} makes a bigger cycle, a contradiction. 
The same argument shows that aqTaTal is impossible. Thus only two cases are 
possible: i) for all j =  1 , . . . ,  q, ajTa or ii) for all j =  1 , . . . ,  q, aTaj. Then partition 
tc (T) \ C as Ci (where i holds) and Cii (where ii holds). If any one of Ci or Cii is empty 
we have an easy contradiction by Smith's consistency (if t c (T)= C u  Ci then C is 
ahead of A \ C; if tc (T) = C ~ Cii, then Cii is ahead of  A \ Cii). Now we can assume 
Ci contains some a and Cii contains some b. Consider a T-path from a to b; such a 
path remains within tc(T). Let b' be the first outcome on this path outside Ci. Then 
b' must be in C~ so that b'Tal Ta2. • • TaqTa. We have just constructed a bigger T- 
cycle than C which is the desired contradiction. Q.E.D. 

3. The Uncovered Set 

For any tournament T on A define its covering relation as: b covers a iff 

a + b ,  bTa and for all c~A:  aTc=~bTc. (4) 

The covering relation is transitive, yet not complete. Its maximal elements define the 
uncovered set. 

The next Definition and Lemma are from Miller (1977). Lemma 4 is called the 
"two step principle" by Shepsle and Weingast (1982). 

Definition 1. Given a tournament T, its uncovered set uc(T) is defined by 

a~uc(T)  i f f f o r n o  b~A , b covers a . 

Lemma 4. The uncovered set ue(T) contains outcome a if  and only if: 

for all b ~ A  , b=~a , aTb and/or for some e t A  , aTeTb . (5) 

Proof Suppose a satisfies (5) and that b covers a. Then bTa so there must exist c such 
that aTc and cTb. By (4) bTc so b=c  thus aTb, a contradiction (since b~:a). 
Conversely, suppose a does not satisfy (5). Then for some b 4:a, we have bTa and, 
for all c, aTe and eTb cannot both be true. This is just statement (4). Q.E.D. 
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From Lemma 4 and Definition 1 it follows that the uncovered set of  a 
tournament is a subset of  its top cycle: 

uc(T)~_tc(T) all tournament  T . 

Furthermore, if subset B is ahead of A N B (bTa for all b e B and all a ~ A \ B )  
then any b ~ B cover~ any a ~ A XB. Therefore uc satisfies Smith's consistency (3). 

As a first example, the tournament  

has top cycle {a, b, c, d} but uncovered set {a, c, d} since a covers b (or equivalently, 
to go from b to a along a T-path, one needs 3 steps). 

Consider next the example given above: T is the ordering 1 > 2 > . . .  > n ex- 
cept for nT1. Here 2 covers 3, 3 covers 4 . . . . .  ( n - 2 )  covers ( n - l ) ,  therefore 
uc(T) = {1, 2, n}. 

The uncovered set eliminates from the top cycle some bad outcomes: in 
particular if our tournament  is deduced from a majority relation, its uncovered set 
contains only Pareto optimal outcomes (ifb Pareto dominates a, then b covers a). To 
compute it is not too difficult either: say that 0 is the ]A I x ]Al-matrix representing 
tournament  T. 

Oab = 1 if aTb (in particular 0aa-- 1) 

0 otherwise . 

Then the rows of 02 which contain no zero determine the outcomes in the uncovered 
set (this is an easy consequence of Lemma 4). 

The uncovered set is not necessarily a T-cycle (contrary to the top cycle). 
However, if it is not a singleton, it cannot contain a winner, i. e., an outcome beating 
every other uncovered outcome. 

Lemma 5 (Miller 1977). The uncovered set of  a tournament T is a singleton i f  and only 
i f  T has a Condorcet winner a (in this case uc(T)= {a}). I f  uc(T) is not a sing&ton, 
then it contains at least three outcomes and the restriction o f  T to uc(T) has no 
Condorcet winner: there is no outcome a in uc(T) that beats every other b in uc(T). 

Proof Since the covering relation is transitive and A is finite, any outcome out- 
side uc(T) must be covered by an outcome inside uc(T). Thus if uc(T)= {a}, out- 
come a covers any other outcome, so it is a Condorcet winner. Suppose now that 
T has no Condorcet winner, yet a~uc(T)  beats every other b~uc(T) .  Set 
B = {b ~ A N a [bTa} = A \ uc(T). We pick a* in the uncovered set of  the restriction of 
T to B and prove a*e uc(T) (hence a contradiction) by means of  (5). For  all b ~ B 
there is a T-path within B from a* to b of  length at most 2. For all b e A N B, either 
b--a  or aTb. Since a*Ta there is a T-path of  length at most 2 from a* to b. 
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This establishes that the restriction of  T to ue(T) has no Condorcet winner, 
which implies that its size is at least 3. Q.E.D. 

The structure of  uc(T) as described in L emma5  cannot be specified more 
generally; this is the meaning of  our next result. 

Lemma 6. Let Ao contain at least three outcomes and let To be any tournament on Ao 
without a Condorcet winner. Then there exists a superset A o f  Ao and a tournament T 
on A such that 

i) uc (T)=Ao  

ii) the restriction o f  T to Ao is To • 

Proof. Given Ao, To as above, choose a set A1 disjoint from Ao and with the same 
size; also pick a bijection denoted a ~ a '  from Ao into A1. Define T o n  A = Ao u A~ as 
follows 

on AI '  Tcopies  To: a'Tb' iff aTob 

onAo:  T i s  To 

{ i fa ,  b~Ao and a:~b: aTb' 

if a ~ Ao " a' Ta 

We claim that uc(T) = Ao. We use Lemma 4. Pick a e Ao and prove it satisfies (5): for 
all b ~ A o \ a  we have aTb', b'Tb hence (5); for all b'~Ax,  b '+a' ,  we have aTb'; 
finally if b is any outcome in A o \  a s.t. bToa (by assumption a is no Condorcet 
winner) then aTb', b'Ta'. 

Next pick a 'EAI  and prove it violates (5): by assumption there is 
b ~ Ao \  a s.t. bToa. Careful inspection reveals that a T-path from a '  to b has length 
at least 3. Q.E.D. 

4. The Uncovered Set for Variable Issues 

This section is conceptually more elaborate than the rest of  the paper. It can be 
skipped without affecting the understanding of any subsequent section. 

We think of the subset B of feasible outcomes (the issue) as varying within a 
given set A and we seek to compare the uncovered set for the restrictions of  our 
tournament  to each particular issue. Thus we consider the mapping 

(T, B)--,uc(T, B)=  uncovered set of  the restriction of T to B 

defined for all tournament T e z  and all issue Bc_A. 
Two essential invariance properties of  uc are easy to check: 

Neutrality (Nondiscrimination Among Outcomes). I f a  is a permutation of A and T ~ 
is defined by aT~b ~.. a -  1 (a) Ta -  1 (b), then: 

for all T , all B , S ( T  ~, B) = a [S(T, B)] . 
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Arrow's Independence of Irrelevant Alternatives (ALIA). If T and T' have the same 
restriction on B, then 

S(T,B)=S(T' ,B),  (all T,T' ,B) .  

Now come the conditions relating the choice sets over some issue B and over 
some other issue B'. The following axiom is Sen's condition ~ (Sen 1977). 

Expansion. For all T,B,B': S(T,B)c~S(T,B')cS(T, BuB') . 

Theorem 1. The uncovered set (viewed as the mapping (T, B)--*uc(T, B)) satisfies 
Neutrality, Arrow's 11.4 and Expansion. Conversely any mapping (T, B)--*S( T, B) 
satisfying Neutrality, Arrow's 11,4, Expansion and Condorcet consistency (if T has a 
Condorcet winner a on A, then S(T,A)=a) must contain the uncovered set 
(uc(T,B)cS(T,B) all T,B). 

Proof. The first statement is proved straightforwardly. For  instance, Expansion 
follows from Lemma 4. Let us prove the converse property. First we observe that 
the Expansion axiom is equivalently written as 

for all sequence B1,. • .,Bx of subsets of  A , and all tournament T: 

1 <_k<K 1 <k<_K 

Next observe that Arrow's IIA and Condorcet consistency together imply 
Condorcet consistency on every restricted issue, namely: 

for all T,B:{aTb for all b~B}=~{S(T,B)=a} . (7) 

Next we deduce from Neutrality and Arrow's IIA that if B is a triple and the 
restriction of  T to  B is a cycle (say B = {abc}, aTbTcTa) then S(T, B) = B. To see this, 
consider any permutation a of  A that permutes a, b, c. Then S(T ~, B) = S(T, B) by 
Arrow's IIA whence by Neutrality S(T, B)= a(S(T, B)). 

Finally we prove the inclusion uccS. Pick T, B and a~uc(T,B). Partition 
B\{a}  as B+={blaTb } and B_={blbTa }. For any b~B+ we have by (7) 
S(T, {ab}) = {a}. For  any b ~ B_ there exists (by Lemma 4) some c ~ B÷ such that 
aTcTb. Thus the restriction of T t o  abc is a cycle so S(T, {abc})= {abc}. We invoke 
n o w  (6): 

a [b~B÷S(T,{ab})lc~ 

~a~S(T,(b~+{ab}) t3(b~_{abc}))=S(T,B)  " 

This concludes the proof  of Theorem 1. [] 

In the study of a single agent's choice function, two more axioms, called 
Chernoff and Aizerman play, together with Expansion, a prominent role: 
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Chernoff: for all B , B ' ,  all T: { B c B ' } ~ { S ( B ' ) n B c S ( B ) }  

Aizerman." for all B , B ' ,  all T: { S ( B ' ) c B c B ' } ~ { S ( B ) c S ( B ' ) }  . 

We let the reader check that the uncovered set satisfies Aizerman but violates 
Chernoff. In fact we have the following negative result. 

Lemma 7. I f  A contains at least 3 outcomes, no mapping (T, B)~S(T,  B) satisfies 
together Condorcet consistency, Arrow's 114 and Chernoff 

Proof Take B' = {a, b, c} and T such that its restriction on B is a cycle: aTbTcTa. 
From Chernoff and aTb follows S(B') n {ab} c S(ab) = {a} =:,b ¢ S(B'). Similar 
arguments from bTc and cTa show successively cq~S(B') and a¢S(B'), a 
contradiction. Q.E.D. 

The above result is a mini-impossibility theorem: indeed, Chernoff's axiom is 
necessary to represent the choice function B ~  S(B) as the maximal element of some 
fixed acyclic relation on A (in fact Chernoff and Expansion together are necessary 
and sufficient to such rationalization; see, e.g., Moulin 1984, Theorem 2). Thus 
Lemma 7 states that any choice correspondence for tournaments which selects a 
Condorcet winner when there is one, either violates Arrow's IIA axiom or is not 
rationalizable. In fact, the same proof  yields a slightly more general statement, 
namely: if S is Condorcet consistent then it violates Arrow's IIA or it contains no 
rationalizable choice correspondence (the latter property is called subrationaliza- 
bility; see Moulin (1984, Sect. 4)). 

Remark: The top cycle choice correspondence over variable issues (namely the 
mapping (T, B)--*tc(T, B)) is amenable to similar characterizations. Just add one 
more axiom, namely 

Sen. For all T ,B ,B ' : {BcB '  and S(B)AS(B')•O}=;,{S(B)cS(B')} . 

Then the top cycle is the smallest mapping (T, B)~S(T,  B) satisfying Neutrality, 
Arrow's IIA, Expansion, Sen and Condorcet consistency. The proof  is similar 
to that of Theorem 1. Check first that the combination of Expansion axiom 
and Sen's axiom is equivalent to the following strong Expansion property: 
{S(B) n S(B') 4: 0} ~ {S(B) w S(B') c S(B w B')}. Then deduce from strong Expan- 
sion that if the restriction of T to  B is a cycle, namely tc(T, B) = B, then S(T, B) = B. 

5. Copeland Winners 

We are back to a fixed issue A and look for the choice correspondences T ~ S ( T )  
that behave "better"' than the uncovered set. If by better we mean more 
deterministic and easier to compute, then a very simple choice correspondence 
emerges. 

Given a tournament T on .4, the Copeland score (c-score) of outcome a is the 
number of outcomes it beats: 

c(a)  = I{b ,4 \ a la  }1 • 
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A Copelandwinner is an outcome with maximal Copeland score. Their set is denoted 
C ( T ) ,  

C(T)={aeA[c(a)>__c(b) all b e A }  . 

If a covers b then the c-score of a is strictly greater than the c-score of b. Thus 

Lemma 8. A Copeland winner belongs to the uncovered set 

C ( T ) c u c ( T )  all tournaments T . 

To compute the set C(T) of a given tournament from its matrix 0, one needs only 
to compute 0e (where e is the vector with all components 1) which is just c + e (c is the 
vector of Copeland scores). This compares favorably to the computation of uc 
(which requires us to compute 0 2, see Sect. 2). 

However, the Copeland winners may be very poor outcomes in the restriction of  
the tournament to the uncovered set itself. Consider the following example with 
13 outcomes. Here we have four strong outcomes abcd and nine weak outcomes 
fl~, Yi, 6~, i=  1,2, 3. Tournament T is depicted in Fig. 1. 

It is understood that any arrow which is not explicitly depicted goes down. Thus 
a is beaten by b, c, d and beats fli, ~, ~ ,  i = 1,2, 3. Also, the arrow from the circle 
around ill, f12, f13 upward to b means that each fli beats b. Similarly each fl~ beats 
each yi and so on. 

The Copeland scores are: 

f 
c(a)=  9 (unique Copeland winner) 

c (b)  = c (c) = c (d )  = 8 

c ( /~ i )  = c ( ~ i )  = c ( ~ )  = 5 

c 

~2 

°a 

Fig. 1 
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The uncovered set is {abcd} : namely,/~i is covered by d, 6/is covered by c and Vi is 
covered by b. Thus in the uncovered set, a is a Condorcet loser. In particular, a is not 
in the top cycle of the restriction of our tournament to {abcd}. 

Let us define tc [uc(T)] to be the top cycle of  the restriction of tournament  Tto  its 
own uncovered set uc(T). Then we have just given an example where 

C(T) c~ tc [uc(T)] = 0 . 

Theorem 2. I f  A contains no more than 9 outcomes, then 

C(T)c tc[uc(T)]  all tournament T . 

I f  A contains no more than 12 outcomes, then 

C(T) c~ tc [uc(T)] + 0 . 

Proof We prove the first claim. Suppose A is such that [A [ =< 9 and some Copeland 
winner a does not belong to B = tc [uc(T)]. Since the restriction of T t o  uc(T) has no 
Condorcet winner (Lemma 5), then B has size at least 3. Also it contains a cycle of  
size 3, say bl, b2, b3 (bl Tb2 Tb3 Tbx). Let C be the complement of  {a} • B in A, with 
size p, p < 5 .  Each bi, i=  1, 2, 3 can beat at m o s t p  - 2  outcomes in C, otherwise its 
c-score would be at least ( p -  1)+ 2 (since bl beats a and another b j) whereas the 
score of  a is at m o s t p  (every b in B beats a). Thus for all i =  1,2, 3 there are at least 
two outcomes in C that beat bi. Sincep < 5, this implies the existence of some x in C 
that beat two among bx, b2, b3. 

We distinguish now three cases. 

Case 1. [B[ = 3 so B = {bl, b2, b3}. Since x ¢ B it must be covered by some y ~ uc(T). 
This y beats two among b~, bz, b3, therefore it is in the top cycle of  uc (T), namely in 
B, a contradiction. 

Case2. [B[=4, so B={b l ,b2 ,ba ,d}  and x beats bl, b2. Now p = [ C [ = 4  so set 
C =  {x, el, e2, ea}. By the same argument as in Case 1 we know that x must be 
covered by d: thus d beats x, bl,  b2 and a; since the c-score of  a is at most 4 we 
deduce that each e~, i = 1,2, 3 beats d. Next invoke Lemma 5. d is not a Condorcet 
winner in B so b3 beats d. In fact, b3 beats x as well (otherwise dwould not cover x); it 
also beats a and one of b~, b2. Its c-score cannot be greater than 4 so each e~, 
i=  1,2, 3 beats b3. So the situation is as follows: 

b l ~ l  b~ 

g 

Nondepicfed arrows 
go downward 

Take in el, e2, e3 an uncovered outcome (w.r.t. {ex, e2, ea}). That  outcome beats 
d, ba so it cannot be covered by bl or b2 (dTbi, i = 1,2) nor x (b3 Tx) nor a (B beats a). 
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c 

b d a 

Fig. 2 

So it is uncovered, but then it must be in B (since it beats some outcome in tc, see 
Lemma 1), a contradiction. 

Case3, [B]>5. Then the e-score of a is at most 3, so every outcome in B beats at 
most two other outcomes in B. When [B] >6  this is impossible, when [B[---5 this 
implies that they all beat exactly two other outcomes in B. So every outcome in C 
beats every one in B, having then a e-score of at least 5, a contradiction. 

The proof  of the second claim in Lemma 9 exactly parallels the above argument 
and is therefore omitted. Q.E.D. 

The example in Fig. 1 shows that the second statement in Theorem 2 cannot be 
improved. That in Fig. 2 shows that neither can the first statement. We have 
10 outcomes, the four strong outcomes abed together with six weak, fli, Yi, 6~, 
i=  1,2. The Copeland scores are 6 for each of a, b, c, d; 4 for each fix, Yl, 61 ; and 
3 for each f12, ~2, 62. The uncovered set is {abed} with top cycle {bed}. 

6. Solving Tournaments by Binary Trees 

The familiar method for choosing a unique outcome from a tournament is by means 
of a (finite) binary tree where to each terminal node is attached one outcome: 

N/the origin of [" Fig. 3. A binary tree on A=a,b,c,d 

Given A, a binary tree on A is a finite tree, where each node has zero or two 
successors, and to each terminal node is attached one outcome of A, each outcome of 
A appearing at least once. To any binary tree F on A we associate the following 
single-valued choice correspondence that solves every tournament T, i.e., selects a 
unique outcome F ( T ) c A  by the following algorithm: 
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i) Pick a nonterminal node n whose two successors m, m' are terminal nodes (such 
a node exists: consider a path with maximal length going upward from the 
origin and take the node next to the last) 

ii) if x, x'  are the outcomes attached to m, m' use T to determine the winner 
outcome y (y=x if xTx' or x=x', otherwise y=x'). 

iii) Chop the two branches nm and nm', thus making n a terminal node with 
attached outcome y. 

iv) Repeat this operation until a tree with one single node (the origin ofF)  is left: its 
attached outcome is F(T). 

a b 
/'B D ~ M '  / / /  

a / 

\x \\ 
aTb 

Fig. 4. The reduction algorithm 

For instance, if F is the tree of Fig. 3 and T is the tournament (aTb, aTc, bTc, 
bTd, cTd, dTa) we get F(T)=d. 

d 
Fig. 5 

The class of choice functions T~F(T) derived from arbitrary binary trees 
deserves attention. Where tournaments are derived from a majority relation, these 
choice functions, and only these, can be achieved by sophisticated voting using 
binary majority votes (Farqharson 1969). 

Ideally one would like to find a few axiomatic properties characterizing this 
class. This goal, however, seems presently out of reach. More modestly we will 
exhibit two properties common to all choice functions in this class, allowing us in 
particular to prove that no one of  them can select a Copeland winner for all 
tournaments (Corollary to Lemma 10). We shall emphasize also their potentially 
bad features, notably the lack of monotonicity. 

L e m m a  9. ( McKelvey and Niemi 1978). For any binary tree F and any tournament T, 
the outcome F(T) is in the top cycle tc(T). 

Proof Paint all outcomes oftc(T) in red and those in A\tc(T) in blue. By definition 
of the top cycle any red outcome beats any blue one. Since there is at least one red 
terminal node (each outcome appears at least once), the final winner must be red. 

Q.E.D. 
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Another way of stating Lemma 9 is this: all choice functions T ~ F ( T )  satisfy 
Smith's consistency axiom. 

For a fixed tournament  Tthe  set of  outcomes F(T)  that are selected along some 
binary tree F is actually the whole top cycle tc(T). To see this consider the successive 
elimination trees F~: let a = { a l , . . . ,  aq} be an ordering of A, and define F~ as: 

a3~ 

Fig. 6 

Fix an outcome ae t c (T ) ;  there exists an ordering a of  A such that 
a=F~(T)  (Miller 1977). Indeed, te(T) is a cycle (Lemma3)  so we can order it as 
to(T) = {al , a2 . . . . .  ap=a} where apTap_ l T. . . Ta2 Tal Tap. Pick some a starting 
with at . . . . .  ap: then a l ,  a2 . . . .  , ap_ 1 will be successively eliminated whereafter ap 
eliminates ap + ~ . . . .  , aq. 

We noticed earlier that the top cycle is too big (see Sect. 2); this is clear as well on 
the tree of  Fig. 6 : outcome a can win by beating only one (well chosen) outcome. 
This poor  feature is common to all binary trees where each outcome appears in 
exactly one terminal node (or single elimination tournaments). In those there is 
always at least one outcome that can win by beating no more than log2n other 
outcomes (since any binary tree with n terminal nodes has at least one node from 
which the path to the origin has length no more than logzn). Thus we want to 
consider binary trees where each outcome is attached to many terminal nodes, so 
that it needs to beat on average "m any"  outcomes to be elected. 

However, by multiplying the terminal nodes where the same outcome appears, 
another perverse feature might emerge. Consider the following game tree and 
tournaments:  

c 

Binary tree F o 

tournaments 7"1, Tz 

In T1, we have bTla, so c is the winner in the left branch o f f  0 and the overall winner 
is a. In T2, we have aT2b. Now dis the winner in the left branch ofFo,  and the overall 
winner as well. So switching the comparison of  b, a in favor of  a is actually fatal to a! 

Say that a choice correspondence T ~  S(T)  (single-valued or not) is monotonic if 
for all a ~ A, and T, T' ~ z 
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{ a ~ S ( T )  and [aTb~aT 'b ,  all b ~ A \ a ]  

and [ b T c ~ b T ' c ,  all b , c ~ A \ a ] } = > { a e S ( T ' ) }  . 

In words, if the only change from Tto  T' is to switch some arrows in favor of a, then 
a cannot be harmed. Notice that if each outcome of A is attached to exactly one 
terminal node of F, the associated choice function is monotonic. 

In Sect. 7 we study a specific binary tree (the multi stage elimination process) 
which overcomes both difficulties mentioned above: its choice function T--, F (T) is 
monotonic, and a selection of the uncovered set uc(T). One way to do so is to look 
for a tree that would always elect a Copeland winner. However, such a tree does not 
exist if we have eight outcomes or more. To prove this somewhat surprising fact, we 
introduce the concept of adjacent set. 

Given a tournament Ton  A and a proper subset B ~ A, IBI _-_ 2, we say that B is an 
adjacent set of T if we have 

for all b , b ' ~ B  , for all a ~ A \ B :  aTbe=>aTb' . 

We denote by ~B the subset of tournaments which have B as an adjacent set. If Ta  zB 
(and only in that ease), we can merge all outcomes of B into a single outcome and 
define unambiguously a restricted tournament, denoted T~, on (A \ B ) u  {B} (the 
set with cardinality IAI-IBI+ 1 where all of  B is a single outcome). 

Lemma 10. Let T ~ F ( T) the choice function derived from a binary tree F. Then for  all 
proper subsets B ~ A we have." 

for all T, T'  ~ {r.= (8) 

and also 

for all T, T'  e z ,  {TB= r;~ and r(T)eA\B}~{r(T')=r(T)} . (9) 

Proof. Fix a binary tree F on A. Consider the binary tree on ( A \ B )  u {B} obtained 
by identifying all outcomes in B to a single one, denoted {B}. Denote YB this binary 
tree (the tree is the same but there are fewer distinct nodes). Property (8) is implied 
by the following: 

for all T e ~ , :  . (10) 

Now consider the reduction algorithm used to compute F(T)  and let A(F, T) be 
the mapping associating to each node of the tree F the corresponding provisional 
winner (Fig. 5 describes such a mapping). A straightforward induction argument 
(omitted for the sake of  brevity) reveals that A(F, T) and A(FB, TB) are consistent in 
the following sense: to any given node of the tree, A(F, T) associates an outcome in 
B if and only if A(FB, T~) associates (to that node) the outcome {B}. Applying this to 
the origin node of F yields (10). Similarly, the same downward induction argument 
shows: to any given node of the tree, A(F, T) associates a e A \ B  if and only if 
A(FR, TB) associates to that node outcome a as well. Applying this to the origin 
yields 

for all T e ~ ,  , all a e A \ B { r ( r ) = a } ~ , { r , ( r , ) = a }  

This in turn establishes (9). Q.E.D. 
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Corollary to Lemma 10. Suppose the size of A is at least 8. Then there & no b&ary tree 
F of which the choice function always selects a Copeland winner: 

for all T6v: F (T )~C(T)  . 

Proof First we observe that when A contains four outcomes or less, there is a binary 
tree of which the choice function always picks a Copeland winner, for instance 

a b c d 

Thus in the statement of the Corollary, some lower bound on the size of A is needed. 
We do not know, however, the minimal lower bound. 

For IA] >8  we prove that no selection of the Copeland winners correspon- 
dence satisfies (8). It is enough to prove the claim for ]A]=8 (for ]A I >8  con- 
sider tournaments with a top cycle of size 8). Set A = {a, b, c, d, e, x,y, z} and 
B =  {a, b, e, d, e}. We construct two tournaments T, T'  both in zB such that 
Tn = T~ and yet C(T)= {a}, C(T')= {z}. The tournament TB = T~ is like the order- 
ing { B } > x > y > z  except for zT{B}. On B, the restriction of T and T' are 
respectively 

T: ordering a > b > c > d > e  

T':  tournament where each outcome has Copeland score 2, e.g., 

a 

d c 

The Copeland scores in T and T' are then 

a b c d e x y z 

T 6 5 4 3 2 2 1 5 winner: a 
T' 4 4 4 4 4 2 1 5 winner: z Q.E.D. 

7. The Algorithm: Sophisticated Agenda 

We describe first the multi-stage elimination tree. There is (up to permuting the 
outcomes) exactly one such tree for each size of A. 
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1 2 

A:I1,21 ~ "  
r2(1,2) 

A=11,2,3I 

1 2 1 3 
x ~ ~ . / /  I-2(1' 2) 

i.e., 

F3(1,2,3) 

r-2(1,3) 

r3(1,2,3} 

1 2 1 3 1 2 1 4 

,4=11,2,3,q ~ i.., 
I-~ (1,2,3,4) 

and so on:  

F1(1,2,3) F3(1,2,4} 

F~.(1,2,3,4) 

Fnq(1,2 ...... n-l) F.q(1,2 ...... (n-2},n) 

A=11,2 ...... nl ~ /  (11) 
N /  

F,,(1.2 ...... n) 

This tree was in t roduced by Miller (1977) and Moul in  (1979). Consider  the 
induct ion formula  (11) and suppose we start  f rom the origin and move  upward  on 
the tree: the first decision is a choice between F,_  1 (1, 2 . . . . .  n - 1 ) -  thus el iminating 
n for good  - and F,_ 1 (1,2 . . . .  , (n - 2 ) ,  n) - thus el iminating (n - 1) for good.  Hence 
reading the tree upward  (i.e., viewing it as an extensive game form, see Moul in  
(1979)) amoun t s  to a successive el iminat ion procedure:  first n - 1  or n, then (n - 1 )  
or  whichever survived f rom ( n -  1), n, and so on. Of  course, solving the tree 
downward  (to compu te  its associated choice funct ion T~F(T))  is quite another  
s tory:  

Theorem 3 ( Shepsle and Weingast 1982). The choice function T ~ F, ( T) achieved by 
the multi-stage elimination tree on A = { 1,2 . . . . .  n} is given by the following algorithm 
called sophisticated agenda. 

I I e l = l ;  for i = 2 , . . . , n : e i =  
(Xi- 1 [~. = r .  ( r )  . 

Proof. By induction on n. For  n = 1, 2 the claim is obvious.  Suppose  it is true up 
to n - 1  and consider a t ou rnamen t  T on {1,2 . . . . .  n}. Deno te  T - "  (resp. 
T -("-a)) the restriction o f  T to {1,2 . . . .  , ( n - l ) }  (resp. to {1,2 . . . .  , ( n - 2 ) , n } ) .  
Set f l ._I=F._I(T-"):  by the induct ion assumption,  it is compu ted  by (12), 

if  iT~i-1 and iT~i- 2 and . . . iTs1 
if for some j, 1 <_~<i-1" ~jTi 

(12) 
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which raises a sequence fll . . . .  , ft.-1. Similarly 7,-1 = F,_ 1 (T- t . -1))  is computed 
by (12) along a sequence 71 . . . . .  7.-1. Next by the inductive definition of Fu, (11), 
outcome a = F, (T )  is worth: 

a=f l , - 1  if f l . -1TT.- i  ; a = 7 . - 1  if 7 , - 1 T f l , - 1 .  (13) 

Now consider the sequence ~1 . . . .  ,~t. defined by (12) from {1,2 . . . .  ,n}. By 
construction we have 

{for i = 1 , . . . , n - 2 : ~ i = / ~ = 7 , }  and {~._1=/~._1}.  

In order to prove c t .=a we distinguish three cases. 

Case 1 . 7 . -  1 = 7n-2" 
Then for some i, 1 < i < n  - 2 ,  7~Tn. Since ~i = 7~ this implies ~. = c(._ 1 . On the other 
hand, f l . -1Tfl ,-2 (by (12) again; remember the convention xTx) ,  so from 
7,-1 =/~.-2 we get /~.-1T7,-1.  Therefore by (13) a = f l . - 1  so a =  c(.-1 =c(, and we 
are home. 

Case2. 7.-1 =n  and fin-1 =fin-2" 
In this case n beats any ~ ,  1 < i <  n - 2  (definition of 7,-1) and ft._ 1 is one of them. 
So n beats c q , . . . ,  ~,_ 1 and c(. = n. On the other hand, 7,-1 = n beats ft,_ 1 = ~,-2 so 
by (13) we get a = n .  

Case 3. 7. - 1 = n and ft._ 1 = n - 1. 
Here both n and ( n - l )  beat {cq . . . .  ,~.-2}. Thus ~ , = n  if n T ( n - 1 )  and ( n - l )  
if ( n - 1 ) T n .  By (13), on the other hand, a is just the same. Q.E.D. 

Algorithm (12) was first introduced in the context of  strategic voting, whence 
its name (Shepsle and Weingast 1982). It describes the sophisticated equilibrium 
of  the voting by successive elimination game form (described above) with agenda 
n , n - 1  . . . . .  1. 

Whenever A is ordered by an arbitrary permutation a = {al . . . . .  a,} we also 
denote by ~1 , - . . ,  ~, the corresponding sequence in (12) (where ~1 = a l ,  ~i=ai  or 
~i-1 etc.) and we set ~ , = F , ( T ) .  

We study now the choice functions T ~ F , ( T )  in the perspective suggested by 
Sect. 6. First a straightforward argument shows that F, is monotonic. Next we 
observe that the sophisticated agenda algorithm ends up within the uncovered set. 

Lemma 11. Fix an outcome set A and a tournament T. Let  a be any ordering o f  A and 
consider the set P W ,  o f  provisional winners {cq . . . . .  ~,} in algorithm (12).  Then ~, 
beats every other element in PW~. Moreover, no outcome (outside PW~) can beat all 
elements o f  P W , .  In particular, F , ( T )  • uc(T)  all T •  ~. 

Proof. By the very definition of the algorithm, if ~i + 1 4= ~i then ~i + i must beat every 
outcome in the set {~1 , . . . ,  ~i}, hence our first statement. To prove the second 
statement suppose b outside P W ,  beats every element in PW~. Say b =ak for some i, 
1 < k < n .  Then b beats ~1 . . . . .  ~k-1 and so equals ~k, a contradiction. The last 
statement holds true by definition of the covering relation. Q.E.D. 

Strikingly enough, we can say more. 
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Theorem 4 (Banks 1985). The sophisticated agenda algorithm ends up in the top cycle 
of  the uncovered set: 

F~(T)~tc[uc(T)] all orderin9 a of A, all tournament T . 

Proof We state first an auxiliary result. Let Tbe  any tournament and a an outcome 
outside B = tc [uc(T)]. Then 

{a is covered by some b~B} and/or {for all beB,  bTa} . (14) 

To prove the claim, suppose a is not covered by any b ~ B. I f  a itself is uncovered, 
then bTa holds by definition of the top cycle. I f  a is covered, it is by some 
de uc (T) \B .  Now take any b ~ B, then bTd(definition oftc)  so bTa (by definition of 
the covering relation (4)). 

Now to the proof  of  Theorem2. Fix an ordering a and a tournament T. 
Supposing c~, is not in B, we derive a contradiction. Suppose first that some ~ ,  
~ + c~, belongs to B. Since ~, T~i, (12), we derive from (14) that ~, is covered by some 
b e B, which contradicts Lemma 11. Thus all ~i, i =  1 . . . . .  n, are outside B. Suppose 
next no one of ~1 . . . . .  ~, is covered by an outcome in B. Then by (14) any b ~ B beats 
all ~ , . . , ,  ~,, a contradiction of Lemma 11. So there is a largest integer i, i < n - 1, 
such that ~i is covered by some outcome b in B. Then b beats ~ . . . . .  ~ (since ~ beats 
all its previous winners) as well as c~i+~ . . . . .  ~, (by (14)), a contradiction of 
Lemma 11 again. Q.E.D. 

The algorithm of sophisticated voting requires at most to use the n(n-1) /2  
pairwise comparisons of  tournament  T: this happens if, and only if, tournament  Tis 
an ordering and tr = {al, az,. • . ,  a,} is exactly the reverse ordering. Thus, in general, 
it is cheaper to compute the outcome of this algorithm than the Copeland winners. 

Viewed as a (single-valued) choice correspondence, the mapping T~F~(T)  
lacks Neutrality: the particular choice of  t~ breaks the symmetry across outcomes. 
We can restore this by considering all orderings of  T and their corresponding 
winners. Formally, 

S * ( T ) =  {a F for some ordering cr of  A: a=F~(T)} . 

Lemma 12 (Banks 1985). An outcome belongs to S*(T)  i f  and only if  there exists a 
subset B~_A such that 

i) the restriction of T to B is an ordering, with a as its top outcome; 
ii) no outcome outside B beats every outcome in B. 

Proof If." Given B that satisfies i) and ii) order it according to T, say 
B= {al, az,. . ., ap = a} (where i<j=~ajTa O. Then for any ordering a of  A starting 
with {al . . . .  , ap} the sophisticated agenda algorithm has ap for final winner. 

Only if." I fa=F~(T)  then B=PW~ satisfies i) and ii) (Lemma 11). Q.E.D. 

The uncovered set uc(T) can be defined in a similar way as S*(T) :  outcome a 
belongs to uc(T) if and only if there exists a subset B~_A such that i) a ~ B  and a 
beats every outcome in B \ a ,  ii) no outcome outside B beats every outcome in B. 
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Reinforcing Lemma 5 we have now 

Lemma 13 (Banks 1985). The set S* ( T) is a singleton if and only if  T has a Condorcet 
winner. I f  S*(T) is not a sinoleton then its size is at least three. 

Proof Suppose T has no Condorcet winner. For all a e B there is b that beats a: for 
any ordering a starting with al =a, a2=b . . . .  the output PW~(T) cannot be a. 
Hence S* (T) contains at least two elements, say x, y. We prove now that it contains 
also a third one. Say that x Ty. Since y e S * (T) is not covered by x, there is z such that 
yTz, zTx (Lemma4).  Consider an ordering a starting with al = x ,  a2 = z  . . . . .  The 
algorithm of provisional winner, then, cannot produce x (by zTx we have ~2 = z) nor 
y (since x = ~1 beats y). Q.E.D. 

To emphasize the power of  Theorem 4, one needs to be convinced that the 
inclusion S * ( T ) c  tc(uc(T)) need not be an equality. Actually, we have 

Lemmal4. I f  Itc(uc(T))l~4 then S*(T)=tc(uc(T)). I f  Itc(uc(T))l>_5 then 
S* ( T) ~ tc(uc( T) ) is possible. 

Proof I f  T has no Condorcet winner, the size of  tc (uc (T)) is at least 3 (Lemma 5) and 
so is the size of  S*(T) (Lemma 13). Suppose now tc(uc(T))= {a, b, c, d}. Up to 
relabeling the outcomes, the restriction of T to tc(uc(T)) must be: 

b 

d c 

Suppose a is not in S*(T). Since the restriction of  T t o  {a, b, c} is transitive with top 
outcome a, there exists (Lemma 12) an outcome x beating a, b, and e. We can even 
choose x uncovered (if it is not, take some uncovered outcome x '  that covers x). 
Since x beats some outcome in the top cycle ofuc(T), it is itself in te(uc(T)) so x = d, 
a contradiction. 

Suppose next b is not in S*(T) :  since b is not covered by a in T, there is a z 
(outside te(uc(T))) such that bTz, zTa. Now {b,c,z} is transitive for T, so 
(Lemma 12) there exists x beating b, c, and z. Again x can be chosen uncovered, 
hence in te(uc(T)). But none of a, d can do the job. Similar arguments show that e 
and d both belong to S*(T). 

To prove the second statement of  Lemma 14, we exhibit an example: 

Every nonmarked 
arrow goes down 
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H e r e  uc(A)={abcde} (x is c o v e r e d  by c, y by  b) 

tc(uc(A))= {abcde} (a cycle is aTb TcTdTeTa) 

yet S*(T)={abcd}. I n d e e d  e¢S*(T) since the  subsets  B o v e r  wh ich  T is 

t r ans i t ive  a n d  wi th  e on  t o p  are :  

e, x,  a :  b e a t e n  by c 

e, a, y :  b e a t e n  by d 

e, y, x :  b e a t e n  by b . 

Remark. The  first  s t a t e m e n t  in L e m m a  14 and  its p r o o f  are  t a k e n  f r o m  Banks  

(1985). 

References 

Banks JS (1985) Sophisticated voting outcomes and agenda control. Soe Choice Welfare 4:295-306 
Bermond JC (1972) Ordres a distance minimum d'un tournoi et graphes partiels sans circuits maximaux. 

Math Sci Hum 37:5-25 
Bordes G (1983) On the possibility of reasonable consistent majoritarian choice: some postive results. 

J Econ Theory 31:122-132 
Copeland AH (1951) A reasonable social welfare function (mimeo). University of Michigan, Ann Arbor 

(Seminar on Application of Mathematics to the Social Sciences) 
Farqharson R (1969) Theory of voting. Yale University Press, London 
Fishburn P (1977) Condorcet social choice functions. SIAM J Appl Math 33:469--489 
Henriet D (1985) The Copeland choice function: an axiomatic characterization. Soc Choice Welfare 

2: 49~53 
Kemeny J (1959) Mathematics without numbers. Daedalus 88:571-591 
McKelvey RD (1983) Covering, dominance, and institution-free properties of social choice (mimeo). 

California Institute of Technology, Pasadena 
McKelvey RD, Niemi RG (1978) A multistage game representation of sophisticated voting for binary 

procedures. J Econ Theory 18:1-22 
Miller N (1977) Graph theoretical approaches to the theory of voting. Am J Pol Sci 21:769-803 
Miller N (1980) A new solution set for tournaments and majority voting: further graph theoretical 

approaches to the theory of voting. Am J Pol Sci 24:68-96 
Miller N (1984) Solution sets for complete digraphs and weak social preferences (mimeo). University of 

Maryland, Baltimore 
Moon J (1968) Topics on tournaments. Holt, Rinehart and Winston, New York 
Moulin H (1979) Dominance solvable voting schemes. Econometrica 47:1337-1351 
Moulin H (1984) Choice functions over a finite set: a summary. Soc Choice Welfare 2:147-160 
Rubinstein A (1980) Ranking the participants in a tournament. SIAM J Appl Math 98:108-111 
Schwartz T (1972) Rationality and the myth of the maximum. Nous 6:97-117 
Sen g (1977) Social choice theory: A reexamination. Econometrica 45:53-89 
Shepsle K, Weingast B (1982) Uncovered sets and sophisticated voting outcomes with implications for 

agenda institutions. Am J Pol Sci 28:49-74 
Slater P (1961) Inconsistencies in a schedule of paired comparisons. Biometrica 48 : 303-312 
Smith JH (1973) Aggregation of preferences with variable electorate. Econometrica 41:1027-1041 


