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I. Introduction 

While observing the behavior of fish one can easily notice that in its onward 
movement a fish moves not only its tail and fins but also the whole of its body. 
Snakes move in water and on land only by oscillatory bendings of the entire body. 
The bending of the whole body appears to be an essential factor of the tractive 
force in the motion of this kind of living being. In their paper "On a Principle for 
Creating a Tractive Force of Motion", M.A. LAVRENTIEV and M.M. LAVRENTIEV 
have suggested a simple method of discribing this kind of motion by taking into con- 
sideration the energetic aspect of the phenomenon. The crux of the method can be 
traced in the following simple example. At a certain moment of time let there be an 
elastic bar with constant longitudinal properties in a hard-walled channel with a 
monotonically changing curvature, and let there be no friction. As the elastic 
energy of the bent bar in each of its cross-sections is proportional to the square 
of the curvature, the position of the bar is obviously unstable, and at the next 
moment of time it has to shift along the channel in the direction of the decrease of 
the curvature. It is equally evident that the force shifting the bar along the channel 
is the resultant of all normal binding forces acting on the bar from the channel walls. 

The motion of fish-like or snake-like living organisms can be described on this 
principle in the following way. The role of the hard walls of the channel is to a 
certain extent played by the medium surrounding the body. For example, in the 
case of these organisms moving in a liquid medium the role of the channel walls 
is played by the fluid, which due to its inertness (when acted upon rapidly enough) 
does not practically shift from the initial position within the time during which 
there occurs a substantial shift of the body proper. In the case of snakes moving on 
land the appropriate analogue of the channel is more complicated. First, the role 
of the channel walls can be played by the grass stems if the motion occurs in thick 
grass. Secondly, it is possible that when a snake is moving along its body axis the 
friction is much smaller than when it is moving perpendicularly to it. There are 
also a number of other hypotheses, but they have little bearing on the main task 
of this paper. 

We shall now consider how the motion proceeds in such hypothetically built 
"channels". With its muscles relaxed, a grass-snake or any other similar organism 
can repose within a curved channel of any shape and experience no action from 
without. However, when contracting its muscles in a certain manner the snake 
becomes an elastic body moving in a channel in just the same way as an elastic 
bar. By regulating its muscular contractions, a living organism of this type can 
thus adjust itself to the shape of the channel so as to move uninterruptedly along it. 
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From this point on, we shall call all living organisms moving like snakes, 
grass-snakes, serpents or fish, i.e., by cross-bendings of the whole body, simply 
snakes for short. Leaving aside for the present the physiological peculiarities of 
these organisms, we shall formulate our principal assumptions about their me- 
chanical properties. 

1. The snake is not extensible. This assumption does not impose any essential 
restrictions on the motion under consideration and at the same time helps to 
simplify calculations. 

2. In the state of muscle relaxation the snake is ideally pliable, i. e., it can deform 
in every way with no strain or stress. 

3. In the state of muscle contraction the snake is an elastic body, whose prop- 
erties, generally speaking, change lengthwise in an arbitrary way. 

The elastic properties of the snake have to be restricted from the physiological 
point of view. Along with the highest admissible pressure, it seems natural to 
restrict the value of the maximum bending moment acting in the snake's cross- 
section. Thus it is required that the pressure p and the bending moments M should 
satisfy the inequalities 

Ipl=<po, (1.1) 
I MI < M0. (1.2) 

Of these conditions the first, as we shall see later, is not essential, for the action 
of the concentrated force can be replaced by that of a distributed load satisfying 
condition (1.1). The second restriction is essential, for it implies the existence of 
optimal regimes of motion. Generally speaking, condition (1.2) expresses a 
physiological property of the organism. In paper [1] this property is expressed 
more generally as the requirement that a definite integral determining the total 
effort of the organism be constant: 

1 

S f (M) ds = Const.  (1.3) 
0 

When the snake is moving in a hard-walled channel, all useful work of its mus- 
cles is spent in imparting onward motion to the body and in overcoming the forces 
of friction. When the snake is moving in a fluid, a certain part of its muscular work 
is performed in communicating kinetic energy to the fluid. In this sense the effi- 
ciency of the motion in water is less than in a channel with hard walls (the friction 
being taken the same in each case). The two cases are discussed individually below. 

H. Motion of a Snake in a Hard-Walled Channel (Planar Case) 

1. Deduction of Principal Equations 
Let the shape of the channel be given by the equation y =y(x) ,  and let the snake 

occupy in this channel the segment from sl = ~(t) to s2 = ~(t)+l, where s is arc 
length. We adopt the following notations: 

~-= cross force, m = mass of the snake per unit length, 

~r = bending moment, x = friction coefficient, 

K =  curvature of a curve, fi and 7= normal and tangent vectors to a curve. 
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Let us agree to choose the direction of a normal so that its projection on the 
y-axis is positive, i.e., ny>O, and consider the pressure p to be positive if it acts 
in the direction opposite to that of the normal. 

In these notations the equation of motion of the elastic bar takes the form [2]: 

d--~-~ =p~+m~Z K~+m~" ;+x IPl/" (2.1) 
ds 

(the dot above ~ designates differentiation with respect to time), while the bending 
moment M is connected with the cross force by the equation 

d/~ = [ .# ,  t-'] (2.2) 
ds 

We take the scalar product of each side of equation (2.1) by the vector i: 

~- d~" ~'+r IPl (2.3) --~--= m 

and transform the left-hand side of this equation in the following way: 

Since 

we obtain from (2.2) 

- d #  
t 

ds ds 
_ #  

ds ds 
(2.4) 

= ( 2 . 5 )  

(the vector/~ is perpendicular to the plane of the channel). Substituting (2.5) and 
(2.4) into (2.3), we get 

= ds - M ' K - x I p [ .  (2.6) 

We integrate this expression with respect to s from sl = ~(t)to s2 = ~(t)+ l, taking 
into account the fact that at the snake's ends the tangential component of the 
cross force is reduced to zero: 

~(t) + 1 

m l ~ = -  S (M'K+xlPl)dS (2.7) 

(the prime indicates differentiation with respect to S). 
We shall now consider how expression (2.7) for the tractive force is obtained 

by the energetic principle mentioned above. As is known, the bending moment M 
is connected with the curvature K of the bent elastic bar by the relation 

M = B. K, (2.8) 

25 Arch. Rational Mech. Anal., Vol. 25 
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where B is a value characterizing the elastic properties of the bar. The elastic 
energy of the bar per unit length is equal to �89 2, so the potential energy U of 
the entire body is expressed by the formula 

Hence the tractive force is 

~+l 

U=�89 I B(s) K2(s, ~) dS. (2.9/ 

aU 
tg~ '  

which, when (2.8) is taken into account, gives an expression coinciding with the 
first term of the right-hand side of (2.7). The second term in (2.7) is the force of 
friction. 

2. Motion without Friction 

We shall show now that when there is no friction the maximum tractive force 
is obtained if the absolute value of the bending moment is constant. Indeed, in this 
case formula (2.7) has the form 

~+t 
T = -  ~ M ' K d s .  

r 

We integrate this expression by parts, assuming the moment at the snake's ends 
to equal zero: 

~+l 

T= ~ M K ' d s .  (2.10) 
r 

According to (1.1) the moment is restricted in its absolute value by Mo. It is 
evident that the maximum value of the tractive force is obtained if the absolute 
value of the moment all over the snake's length is equal to M o and is the moment 
changes sign where the derivative of the curvature does. 

Specifically, if the channel has the shape of a sinusoid, then the optimal bending 
moment must have the shape represented in Fig. 1. Thus the maximum amount 
of the tractive force is given by 

Tmax=Mo ~ Ig ' l  ds. (2.11) 

Let the shape of the channel be determined by the quation 

y = A  sin k x .  (2.12) 

We will assume that a whole number n of wave lengths of a given sinusoid make 
up the snake's length l. A simple calculation shows that in this case the maximum 
tractive force has the form 

Tmax=4Mo A ]s n ,  (2.13) 
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while the snake's length l is related to the parameters of the sinusoid by the equation 

where 

(2.14) l = n �9 k cos c~ ' 

is the Euler function of the second kind, and tg a =A k. Eliminating n between 
(2.13) and (2.14), we get 

Mo I k 2 sin 
Tmax - (2.15) 

The tractive force is directed along the tangent to the channel, and the efficiency 
of the snake's advance is determined by the X-component of this force: 

Tma x �9 c o s  o ~ -  
Mo I k 2 sin 2~ 

It is easy to see that with a fixed length l and wave number k this expression has its 
maximum at 

A k,~ l. (2.16) 

The result obtained can be formulated as follows: when friction is excluded, 
the optimal regime of motion is obtained when the bends of the snake's body are 
such that the amplitude and the wave number are related by (2.16). From the 
optimal form of the moment, which is represented in Fig. 1, it follows that at the 

- 

b4 

F i g .  1 

vertices of the sinusoid there are concentrated moments and hence infinitely large 
pressures. This contradicts condition (1.1). We shall show that introducing a di- 
stributed load does not make any essential changes in the results obtained. For  
simplicity, let the snake be bent so as to occupy only one wave lentgh. The pres- 
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sure and the moments are distributed as shown in Fig. 2. Consider a case of small 
sags, so the linear theory applies, i.e., when the relations 

p=M", M=By", K=y" (2.17) 

hold. In the linear case expression (2.10) is reduced, after a double integration 
by parts, to the form 

T= S p y' dx" (2.18) 

In the segments where pressure is applied, its absolute value is equal to Po, and 
the length of the segment is chosen so that the maximum value of the moment 
can be equal to M 0. The calculations yield 

T=4_.M~ (l_coskdV~.~ sin2kd-2sinkd.)2 

where d2po=Mo . As is seen, for kd~l this expression coincides with (2.13) 
to within terms of the first order of smallness. 

bf 

m 

J 
/ 

Fig. 2 

The dependence of the tractive force on time is determined, naturally, by chang- 
ing the organism's muscular efforts in time. If, for example, a snake is to gain the 
maximum speed possible it must evidently move with a constant value of the bend- 
ing moment. In this case the motion will be uniformly accelerated. The rate of the 
snake's progress is proportional to the value T.  x where x is the time during 
which the organism can maintain a constant bending moment Mo. Evidently, 
this time ~ depends on the value of the bending moment. 

For a man's biceps this dependence is fairly well described by the formula 

Mo 
m _ _  x=T,e M,. 
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If we assume that this formula is equally applicable to other arganisms, including 
the ones under consideration, then the velocity gained by the snake is determined 
by the expression 

T Mo 
v=___m.._f ~ , e  M, .  

Hence it can easily be shown, by taking into account (2.13), that the velocity has 
its maximum when M o = M , .  

3. Motion with Friction 

Let the snake's length consist in a whole number of half-waves of the sinusoid. 
Projecting both sides of equation (2.1) on the x-axis and carying out an integra- 
tion, we obtain 

,Ix + I~ 

~ = m l x ~ ' =  S ( p y ' - x l P l ) d x ,  (2.19) 
Cx 

where the index "x" stands for the projection of the corresponding values on the 
x-axis. As is plain, this expression nearly coincides with the linear expression (2.18). 
The only difference is that in the linear case this formula determines the amount 
of the entire force of traction, while in the nonlinear case it determines the projec- 
tion of this force on the x-axis. Its physical sense is obvious: the first term can be 
called the force of repulsion; the second, that of friction. From (2.19) an important 
conclusion follows immediately: the segments where y ' <  x are unfavorable for 
motion in the sense that in these parts friction exceeds propulsion. Therefore, in 
those segments of the channel where y ' <  x, the snake must represent a perfectly 
pliable body. 

Thus, in the presence of friction the snake's muscular system has to operate so 
that pressures can act only in those segments of the channel where 

y'__> x. (2.20) 

Motion with a constant moment contradicts condition (2.20), so this regime is 
impossible in the presence of friction. 

Let us consider two types of motion with friction. 

It is apparant that the most economical regime of motion is realized when the 
ratio of the force of propulsion to that of friction is a maximum one. This ratio 
is reflected in the inequality 

~x+l 

S p y ' d x  , 
Cx < Ymax (2.21) 

~x+l = K 
~clPl dx 

~x 

where y ~  is the maximum value of the derivative. 

If the channel has the shape of sinusoid (2.12), then it can easily be shown that 
the sign of equality in (2.21) corresponds to a state where concentrated forces 
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are acting at the points with maximum y', see Fig. 3. Indeed, in this case 

Cx+l 

p y 'dx  
r _ A k E f  . _ A k  

I ~:lpldx 
~x 

(2.22) 

X 

Fig. 3 

The second regime of motion corresponds to the maximum value of the resul- 
tant force of traction (2.19). Consider the pressure distribution near the points 
with the maximum values of the derivative. We shall assume the channel to be 
sinusoidal as before. The form of the pressures, concentrated forces, and moments 
are approximately represented in Fig. 4. Consider a linear case when p = M " ,  

/,4 

/Z",, 
\ J  

Fig. 4 

and require the maximum value of the bending moment  to be restricted: Mma x = M o. 
Look for a solution in the form of concentrated forces: 

p=~,fnf(X--Xn). (2.23) 
n 

Substituting (2.23) into (2.19), we get 

O~" r ~'x = ~ f~ Y (x,) - ~r f .  (2.24) 
n 

(the sign of modulus in the second term can be omitted if we consider a segment 
where f~ > 0). 
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Further, we have (see Fig. 4) 

M' (0)=0 ,  

Since p = M "  
x 

M(x)=  dx S p(t) dt,  M(O)=M o . 
2 0 

Hence, after substituting p into (2.23) and integrating by parts, we obtain 

The maximum of the function (2.24) under condition (2.25) is determined in the 
usual manner by the relations: 

0 0 
( ~ -  p M o )  = 0 ,  _ _  ( ~ r  _ # M o )  = 0 ,  Of,, Ox. 

which leads to the equation 

( 2 )  + y ' ( x , ) = 0  (2.26) y"(x.) x. + 2- 

Thus, in a segment of the curve of length 2/4, a concentrated force is acting at the 
point determined by the equation (2.26). If there is no friction, rc =0, then the solu- 
tion of (2.26) is 

2 
x =  4 ' y = 0 ,  (2.27) 

i.e., concentrated moments are applied to the vertices of the sinusoid, and we 
obtain a motion with a constant value of the moment. If the friction coefficient 
has the value y ' =  •, then from (2.26) it follows that 

x = 0 ,  y " = 0 ,  

i.e., we have the case represented in Fig. 3. 

Consider the following simple example. Let the snake's body fit exactly into one 
length of the wave and suppose, the forces act at the points with the maximum 

Fig. 5 

values of the derivative. Assume that the entire mass of the snake is concentrated 
in its "head".  This enables us to introduce into consideration a force of ine r t i a~  
applied to the beginning of the curve and directed along the tangent to the channel 
(Fig. 5). From the condition of the body's equilibrium under the action of the 
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system of forces represented in Fig. 5 we obtain the following relations 

f2 =2 f l ,  f3 = 0 ,  ,~ = 2fl sin 2a (2.28) 
where 

tg e = y ' ~  = A k. 

Now use the restriction (1.2) imposed on the value of the bending moment. To do 
so one has to calculate the maximum value of the moment with respect to the curve 
and to equate it to Mo. Simple calculations yield the following result: 

4 M ~  s ine ,  A k < l  

(2.29) 
4 =  4 k sine , A k > l .  

l / ~ +  2 + arc sin ctg 2 e 

The value k for a snake of length l is determined by the expression 

(2.3o) k =  Icose  

It can be shown that for a fixed length l, the tractive force ~ determined by formula 
(2.29) and the value of its projection on the x-axis have a maximum value for 
curves whose amplitude and wave number are bound by the correlation 

A k , ~ l .  (2.31) 

Thus in Section 2 we have shown that in the presence of dry friction the maxi- 
mum force of traction is attained when the forces are applied to those segments 
of the curve where the derivative is larger than the coefficient of friction. The 
body's bending under the optimal regime of motion, as well as in the case when 
there is no friction, must satisfy the conditions (2.16) and (2.31). 

HI. Motion of a Snake in Water 

We shall now consider how a body which is able to change its shape under the 
action of its internal forces can move in a fluid. It is well known that in a real 
fluid, at the expense of viscosity forces, vortices can stream off the body, resulting 
in a force of traction that sets the body in motion. Such a mechanism of creating 
a tractive force is considered in the flapping wing theory [3, 4] in the scheme of an 
ideal incompressible fluid which is known to admit the existence of tangential 
velocity breaks. The force of traction in the thin wing theory is thus created at the 
expense of a trailing vortex sheet whose length increases with time. The possibility 
that a deformable body can create a tractive force without forming whirls has been 
noted by some authors [3], but as far as we know it has not been investigated in 
detail. According to the above principle, the motion of a snake in water can 
certainly be accompanied by the appearance and shedding of vortices. Nevertheless, 
it is of interest to consider precisely those regimes of movement where the force 
of traction arises without vortex formation. 
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1. Some General Observations on Vortex-free Motion of a Deformable Body 
in an Ideal Fluid 

Let a body which can arbitrarily change its shape be placed in an unbounded, 
weightless, ideal fluid. If a potential function tp which is regular everywhere outside 
the body corresponds to the flow of the liquid, then the hydrodynamic reactions 
acting on the body, as is known [3], are expressed by the resultant force vector/~ 
and the resultant momment vector/,: 

dt p S ~P f fds ,  (3.1) 
5 

p S 

where p=fluid density, 

= external normal to the body's surface S, 

F= position vector of fluid particles. 
These expressions hold for a fixed co-ordinate system, the vector L being calculated 
with respect to the origin. Hence for a body with a mass m, moving at a velocity F, 
we obtain the equations of motion 

dm ~ _ ~ ,  (3.3) 
dt  

dQ - L  (3.4) 
dt 

where Q is a moment of momentum relative to the fixed origin. Integrating these 
equations with respect to time yields 

m ~=p S tp f fds+c , ,  (3.5) 
S 

(~=p S ep(Fx n) ds+~2, (3.6) 
where s 

~,=(m~-p ~ tp~ds),=,o, -~2=(Q-p ~ tp(-ix~)ds),=,o. 

For the further description it is convenient to introduce into equation (3.6) the 
moment of momentum Qo and an impulse of the moment of forces relative to 
the body's center of inertia. We shall denote the position vector of the body's 
center inertia by F o and the position vector of the particles relative to the centre of 
inertia by F 1. Then 

(~=(2o + r'o x m v, (3.7) 
and 

p J" tp(Fx ~t)as=p ~ tp(; o x ~t) d s + p  ~ tp(; 1 x it) ds .  (3.8) 
S S S 

Combining (3.5)-(3.8) we obtain 

Qo =p  S tp(71 x ~)ds+const .  (3.9) 
S 
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It is convenient to express the potential ~0 in a co-ordinate system whose origin 
at a certain moment of time t is the center of inertia and whose axes are parallel 
to those of the fixed co-ordinate system. The boundary condition for q~ has the 
form 

3~o 
O n = vi hi, (3.10) 

where vi =velocity components of the points of the surface in the fixed co-ordinate 
system, and 

n~ = components of a unit normal vector. 

At infinity the velocity of the fluid O~p/Ox~ tends to zero. One can expand the motion 
~f the surface into: a) translation at the velocity of the centre of inertia, b) rotation 
at an angular velocity & and c) surface deformation proper: 

vi = Vi+(~, x da)i+ u ~ (3.11) 

where u~ are surface motion velocity components in a co-ordinate system moving 
with the center of inertia and rotating at the angular velocity to. 

We look for a potential in the form 

~0 = l / i  ~O i "]- (.o i q)  3 + i "~ ~O , (3.12) 

where ~oi, 93+i are harmonic functions which on the 
satisfy the conditions 

O~oi 
On - n i  

d~03+i =(71 • h)i. 
On 

boundary of the body 

(3.13) 

Due to (3.10)-(3.13) the boundary condition for ~ has the form 

while at infinity 

o~ 
On =uini ,  (3.14) 

O~ --,0. 
Oxi 

The equations of motion (3.5), (3.6), after the substitution of (3.12), (3.13) into 
them, have the form 

3tpi 3r d s + p  ~ ~on~ds+ m v,--p ~ v,~, ~ ds+p ~ to, ~ + ,  ~ c . ,  
s s 

(3.15) 

Q o i = p I V k q ~ k ~ d S + O l t o k t p 3 + k ~ d S + p I ~ o  ds-J-r (3.16/ 
s s 

For further discussion it is necessary to define more exactly the moment of 
momentum O0- We shall condier motions in which at the initial instant t o and 
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the final instant t I the body changes its shape as a solid. For a solid body, 

Qo,=~ko'~, 
where ~k  is a tensor of inertia relative to the centre of inertia. We shall introduce 
the notations: 

V 4 :  (D1, V 5 :(-D2, I/6 : tO3 ,  

t~pk 
- P  [. ~Pi ~ ds=2ik,  

and s (3.17) 

' ~ i k  i < 3 ,  k < 3  
I lk= k i>3 ,  k>3  

for other values of i and k. 

Then, taking into account that u i=0 for t= t  o and t= t l ,  we can write (3.15) 
and (3.16) in the form 

[-(Iik + 2i k) Vk]t =tl = [(I~ k + 2~ k) Vk]t =to. (3.18) 
Hence 

l/k I, =t, = [(Ii k "~ 2i k)t = to] --11-(i ,  k + 2~ k) Vk]t = t o "  (3.19) 

Note that in this case the matrix I~k + 2~k is positive-definite since �89 (I~k + 2~k) Vi Vk 
is the sum of the kinetic energies of the fluid and the body, and a solution of 
(3.18) always exists. 

Hence, in particular, the following important conclusion holds: /f at the 
initial moment of time a body is at rest and after a certain period of time turns into 
a solid body, then at the moment of solidification the motion ceases. 

This conclusion is readily generalized to the case of the motion of a body 
having a hard core and an inertialess deformable envelope. 

Indeed, in this case, from (3.15), (3.16) and (3.19), we obtain 

(3.20) 
- 3q9i ds 

If at the initial moment t o and at the final moment tl, the form and the motion 
of the envelope in a co-ordinate system moving progressively together with the 
centre of inertia coincide, then 

~ ds],=. 
and hence 

Vkl,=,, =[(lik+Z,k) Vk]t=to [(l ik+aik),=,,]- '= Vk I,=,o, (3.21) 

Thus, for a body with a hard core and an inertialess deformable envelope, the 
following assertion holds: if, in a co-ordinate system connected with the center of 
inertia, the body performs periodic changes of shape, then the velocity of its motion 
also changes periodically. 
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2. A Partial Case of  Vortex-free Motion 

We shall consider a case of motion in a fluid without vortex formation, when 
the deformation of the body in its own co-ordinate system is represented by a 
travelling wave. 

Let the body be a cylindrical surface parallel to the z-axis. In its own co- 
ordinate system the projection of this surface has the form 

y=y(~ ) ,  ~ = x + f ( t ) .  (3.22) 

If the motion is plane, the resultant vector/~ has the form 

where 

R = i - ~ z  ! pq~dz (3.23) 

z = x + i y .  

Hence the force acting along the x-axis is expressed by the formula 

R d x= ---d-{ ! p ~p d y . 

Denoting by m the body's mass falling on a band with a width h, we shall write the 
equation of motion 

d V  d 
m --~-~ = - h --d{ ! p tp d y 

which, after integration, gives 

m V= - h  S pq~dy (3.24) 
$ 

if the body was initially at rest. 
In this case on the body's surface y depends on x and t in conformity with 

(3.22). Lettring a prime denote differentiation with respect to x, we obtain from 
(3.24) 

! 

m V= - h  ~ p t p y ' d x .  (3.25) 
0 

On the surface of the body the potential tp satisfies the boundary condition 

d n - ~V - Vy'  (3.26) 

(the dot stands for differentiation with respect to time). Since, due to (3.22), 

Y'=-~T Y = i  d Y 
' d z  ' 

we obtain from (3.25) and (3.26): 

- - -  q~ d x .  (3.27) 
m V =  f - V o  
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The kinetic energy E1 of the body's progressive motion is equal to (m V2)/2, and 
that of the fluid is expressed by the equation 

p h i c~r E2= - -y-  

Consequently, from (3.27) we have 

El =�89 m V.f-  E2 . (3.28) 

When, as we assume throughout this chapter, there is no friction, the total 
work performed by the body turns into the kinetic energy of the fluid and the body. 
Since in addition to its progressive motion, the body is also moving in its own 
co-ordinate system, its kinetic energy is the sum of the energy of the progressive 
motion and that of the proper motion. 

The latter is evidently calculated from the formula 

m 

E3 = j �89 am. 
0 

If the mass is distributed uniformly along the body, then this becomes 

1 
/ 7 /  " 2  

E a = ~ -  ! y dx .  (3.29) 

The efficiency ~/is defined as the ratio of the kinetic energy of progressive motion 
to the total work performed by the body, 

Ei 
(3.30) rl= EI+E2+E3-. 

Substituting (3.28) and (3.29) into this expression, we get 

�9 / - 1  f 1 
r/= [-~ +-T-VT o~ yZ dx] . (3.31) 

We try to obtain the potential tp in the form 

q~ = [s/(t)-  V] qh. (3.32) 

The boundary condition (3.26) can be satisfied if we assume that 

0~ 1 = dy (3.33) 
On dr " 

Substituting (3.32) into (3.25), we obtain 

l 0~1 dx ,  m V= - p  h b[ (j:-  V) tp 1 ~ (3.34) 

whence, denoting the virtual mass of fluid by 

atpl 
#= - p h i  6 cp~ ~ dx ,  (3.35) 
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we have 

V=j: /.t (3.36) 
p + m  

Taking into account (3.36) and (3.22), we can write expression (3.31) for the effi- 
ciency in the form 

1 i { d y ] E d x } - i  (3.37) q = { 1 + - ~ - +  (1 +-~-)2" 7 o  ~ ~,--~--t ] 

We shall carry through the calculation of the efficiency in one concrete case. 
Let 

y (t) = A sin k [x + f ( t ) ] .  (3.38) 

The given form of the travelling wave corresponds to the motion in a hard-walled 
channel of a sinusoidal form. To simplify the problem we assume the body to be 
infinitely long and the amplitude of the bends to be much smaller than the length 
of the wave. Thus the boundary condition can be regarded as satisfied on the real 
axis. 

Let us fix a point on the body and consider the motion of the fluid in a fixed 
co-ordinate system whose origin at a given moment of time coincides with this 
point. In this case, condition (3.33) has the form 

( 0qh]  = A k c o s k t .  (3.39) 
Oy /y=o 

It can easily be shown that the complex potential 

W1 =tpl + ilpl = - A e  kz, z = t + i y  (3.40) 

satisfies this boundary condition. Hence we obtain 

(Pl = A e-ky cos k t .  (3.41) 

Substituting (3.39) and (3.40 for y = 0 into (3.35), we calculate the amount of the 
virtual mass falling on one wave length: 

2~t 

i 0(01 A 2 #i = - p h  qh --~7-.. d t = ~ P  h. (3.42) 
0 t J y  

The calculation of the integral in (3.37) over one wave length leads to the expression 

2~t 

o \ ~ - ]  d t = ~ k A  2. (3.43) 

Substituting (3.42) and (3.43) into (3.37), we obtain 

r/= 1 + J-n-n + 1 + (3.44) 
Pl p h l J  

where 
p l = n p A 2 h .  
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From (3.44) it follows that with a fixed wave number k the efficiency reaches its 
maximum value when 

~1 + p lh ~ (3.45) p 2 = m 2  \ mk ]" 

Since the legnth of the sinusoid is bound with A and k by relation (2.30), we obtain 

4E (sin ~ , 2 )  
tg ~ = A k (3.46) 

l = k cos c~ ' 

1.002 

o 

0.75- 

0.50- 

0.25- 

i i i 

025 0.50 b O.75 
Fig. 6 

whence expression (3.45) is an equation relative to A and k. With a fixed length 
of the body / the second equation gives correlation (3.46). After introducing di- 
mensionless values we get 

m k 2 rn 
a -  P h ' b = A  2 k 2, f l= p---h-~-" (3.47) 

These equations take the forms 

a = 2 E . ( l + b )  1+ 4E(l+b2) - 1  

a = 16~ E 2 (1 + b), (3.48) 

respectively. 

The corresponding graphs are shown in Fig. 6 for the values of ~ equal to 
1 ! 1 ~ ,  ~ o  and ~-rs. For  a real snake the value of B is close to ,~ ( l= 75 sin, m l=  75 gm, 

h ~ l  sm). In this case, as is shown in Fig. 6, b=0.77, i.e., 

A k=0.88 .  (3.49) 

This value of Ak is close to that found for the hard-walled channel (see (2.16), 
(2.31)). 
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The value a, defined from the same graph, is equal to 0.73. The added mass, 
calculated from these data equals 3.3 m, while the efficiency 

~/=0.54. (3.50) 

It is of interest to compare this value of efficiency with the corresponding value 
for the hard-walled channel. The case of the hard-walled channel is obtained from 
formula (3.44) within the limit when p --* o0, i.e. 

1 
~ '=  . ( 3 . 5 1 )  n A  2 k. 

l + - -  
1 

The correctness of this expression can also be proved by direct calculation for 
the hard-walled channel. Putting here the values of ,4 and x obtained above, we get 

7 '=0.75.  (3.52) 

Thus the kinetic energy of the fluid surrounding the snake makes up 21 ~o of the 
snake's entire energy output. 

3. Impulse Formulation of the Problem 

Let us suppose that the snake's motion in water proceeds rather slowly, quasi- 
statically, the snake's body assumes in a fluid a certain bent form. In this state an 
impulsive straining of the organism's muscles results in an onward movement. 

The further motion of the body can proceed, generally speaking, in two dif- 
ferent ways. If no tangential discontinuity of velocities (vortex sheet) occurs behind 
the back edge of the body, then, in conformity with the conclusions of w 1 of this 
chapter, the body has to perform bending oscillations. If the body stiffens and thus 
turns into a straight bar, it stops. In the second case, when a vortex sheet is left 
after the body, the snake can straighten and move some distance by its own 
momentum. If this distance is equal to a few of its lengths, the snake enters a 
region where the velocities of fluid particles are small. In this region the snake can 
assume its initial bent state, after which the whole cycle is repeated. 

We consider only the initial stage of the motion, and in this stage we shall 
estimate that part of energy which is imparted to the fluid. The snake's motion 
will be considered in a linear approximation. We can accordingly assume the 
boundary conditions in the problem for a fluid to be given on a certain straight 
segment. 

We designate by P the impulse pressure created by the snake 

P= S p(t) dt .  (3.53) 
0 

Let the snake occupy a segment of a real axis 0 < x <  l. On this segment the 
following boundary conditions are given: 

P q~§ -q~_ = - - ,  
P 

~, + - ~ _ = O, (3.54) 
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where p = fluid density, cp = potential, and ~ = flow function. The indices " + "  and 
" - "  stand for the function values on the upper and lower sides of the segment, 
respectively. The first of conditions (3.54) is a representation of the Bernoulli 
integral [3], which is usual for impulse problems, the second expresses the con- 
tinuity of the velocity on either side of the segment. Let 

e = Po co(x). (3.55) 

Here and below x, y and z = X + i y stand for the dimensionless values x]e, y/e, z/e. 
The solution of the boundary value problem (3.54) is given by the Sohotsky 

formula [5]: 

w(z)=cp+id/= Po " i co(t)dt (3.56) 
27rip o t - z  

Hence, on the segment (0.1), we have 

1 Po co(x), (3.57) ~0(x,0)= +~- 7 

Otp Po d I co(t) dt (3.58) 
O y - 2 n p l  Re-dZo~ t - z  

The kinetic energy of the fluid E2 is determined by the formula 

hp 1 Ocp hP2 1_ d 1 co(t) dt ds (3.59) 

where h is the snake's width. 

In the linear approximation the tractive force is given by 

1 

T=h S p y' dx,  (3.60) 
0 

and the impulse dro received by the body has the form 

1 

dr= S T dt=hPo S co(x) y' dx.  (3.61) 
0 0 

The kinetic energy Ea of the progressive motion of a snake with a mass m is 
determined by the formula 

E l  = 2 m  = 2 m  co(x) y'  d x  . (3.62) 

The function co (x) must be chosen so that the energy of the fluid is finite. This 
condition is satisfied, for example, by the function 

co(X)= dd~x x 4 ( x -  1) 4. 

For this function the value of the integral in the formula for the fluid's kinetic 
energy is equal to 0.531. The integral in the expression for the body's kinetic 
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energy, after integration by parts, has the form 

1 1 

S co(x)y'dx= ~ x4(x-1)4y'"dx. 
o o 

Specifically, if the body is bent along the curve y ' " =  e where e is a small constant 
characterizing the ratio of the maximum bend to the body's length, then the value 
of this integral is equal to 0.955 e. 

Thus the ratio of the amount of the fluid's kinetic energy to that of the body's 
progressive kinetic energy is determined by the formula 

E 2 _ 0,093 m 
E 1 e p h if-" (3.63) 

If the value of the parameter 
i n  

is taken to be the same as in the preceding section, i.e., to be equal to 1/75, and t 
is assumed to equal 0.1, then we have 

E2 =0.012. (3.64) 
E1 

In the preceding section this same value was equal to the ratio of the body's 
mass to the added mass of the fluid, i.e., to 0.30. Thus, impulsive motion under 
proves to be more efficient than motion as a travelling wave. It should be noted, 
however, that the relative value of the energy imparted to the fluid in the case of 
the impulse formulation depends on the relative value of the body's maximum 
bend. Moreover, at the succeeding moments of time the portion of energy commu- 
nicated to the fluid may even increase. 

IV. Conclusions 

1. Living organisms capable of developing elastic effort by means of muscular 
contractions can move in any hard-walled channel with a varying curvature and a 
width equal to the thickness of the body. 

2. In the absence of friction a maximum force of traction is created by the 
body in the case when the bending moment is constant in value, but changes its 
sign at points where the channel curvature also changes sign. 

3. In the presence of (dry) friction, a body placed in a hard-walled channel 
should co-operate with the channel walls only in the places where the value of the 
first derivative exceeds the friction coefficient. For  a sinusoid-shaped channel the 
maximum value of the resultant tractive force is gained in the case when in each 
quarter of a wave one concentrated force acts on the body. The maximum ratio 
of the force of propulsion to that of friction is obtained if the concentrated forces 
are applied at the points with the greatest value of the modulus of the first deriva- 
tive. 

4. The motion of a deformable body in a fluid can proceed under two different 
regimes - with vortices forming and streaming off the back edge of the body, 
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and without any vortex formation. In the latter case the study of motion analogous 
to that in a hard-walled sinusoid-shaped channel leads to the conclusion that 21 7o 
of an oscillating body's total energy is imparted to the water. This portion of 
energy is less in an impulsive of motion. 

5. When a body moves in either a hard-walled channel or in a fluid, the 
maximum efficiency is obtained in those sinusoidal oscillations wherein the pro- 
duct of the amplitude by the wave number approaches unity. 
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