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Abstract. Enzyme measurements were carried out with 
crude cell-free extracts of the propionate oxidizing 
coculture of Syntrophobacter wolinii and Desulfovibrio 
G11. Using cell-free extracts of a pure culture of De- 
sulfovibrio G11 as a blank, most of the enzymes involved 
in the methylmalonyl-CoA pathway for propionate oxi- 
dation, including a propionyl-CoA: oxaloacetate trans- 
carboxylase, were demonstrated in S. wolinii. 
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Propionate is an important intermediate in conversion of 
complex organic material to methane and carbon dioxide 
(Kaspar and Wuhrmann 1978; Gujer and Zehnder 1983). 
Propionate is oxidized to acetate and carbon dioxide, and 
the electrons formed in this oxidation are disposed of by 
reduction of protons to hydrogen (Zehnder 1978; Bryant 
1979) or, as proposed recently, by reduction of bicarbon- 
ate to formate (Boone et al. 1989). Because of un- 
favourable energetics, propionate oxidation is only pos- 
sible if the reduced products hydrogen and formate are 
removed by methanogens. This implies that under 
methanogenic conditions propionate oxidation can only 
be carried out by obligately syntrophic consortia of bac- 
teria. Up to now only a few syntrophic propionate 
oxidizing cocultures have been described (Boone and 
Bryant 1980; Koch et al. 1983; Mah et al. 1990; Houwen 
et al. 1990). 

Studies with 14C- and laC-labelled propionate have 
indicated that syntrophic propionate oxidation to acetate 
proceeds via the methylmalonyl-CoA pathway, a route 
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in which propionyl-CoA, methylmalonyl-CoA, succinyl- 
CoA, succinate, fumarate, malate, oxaloacetate, pyruvate 
and acetyl-CoA are intermediates (Buswell et al. 1951; 
Koch et al. 1983; Schink 1985; Robbins 1988; Houwen 
et al. 1987, 1990). This pathway is common in propionate- 
forming anaerobes and is involved in the anaerobic 
oxidation of propionate by DesulfobuIbus propionicus 
(Stares et al. 1984; Kremer and Hansen 1988). Up to 
now, direct enzymatic evidence for the operation of the 
methylmalonyl-CoA pathway in syntrophic propionate 
oxidizing bacteria is lacking. In this paper we present the 
results of enzyme activity measurements in a coculture of 
Syntrophobacter wolinii and Desulfovibrio GI 1 described 
by Boone and Bryant (1980). A pure culture of the De- 
sulfovibrio species was used as a blank to calculate the 
specific enzyme activities in the propionate oxidizer. 

Materials and methods 

Organisms and cultivation 

The defined sulfidogenic biculture of Syntrophobaeter wolinii and 
Desulfovibrio G l l  (Boone and Bryant 1980) was obtained from 
the German Collection of Microorganisms (Braunschweig, FRG) 
(DSM 2805) and was cultivated in a medium containing (in g/1 
unless otherwise stated): sodium propionate 1.9; NaaSO4, 2.9; 
NaHPO4" 2H20, 0.53; KH2PO4, 0.41; NH4C1, 0.3; NaC1, 0.3; 
CaClz-2H20, 0.11; MgClz'6H20, 0.1; NaHCO3, 4; NazS 
�9 9H20, 0.24; yeast extract, 0.2; 1 ml of a tenfold concentrated trace 
element solution described by Pfennig and Lippert (1966); 1 ml of 
the vitamin solution described by Stams et al. (1983); 1 ml of a 
mixture of NazMoO4, NazWoO4 and Na2SeO3 (each 0.1 mM) in 
10 mM NaOH. Sodium lactate (1 raM) was added to stimulate the 
sulfate reducing bacterium 

Preparation of  cell-free extracts 

Cells were harvested by centrifugation, washed once with 50 mM 
phosphate buffer with 2 mM MgC12, pH 7.1, and stored as wet cell 
paste anaerobically at - 20  ~ C. Cells were thawed and brought into 
a French Press compartment in an anaerobic glove box with a gas 
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Table 1. Specific activities (gmol x min-  l x mg-  1 protein) of enzymes detected in the Syntrophobacter-Desulfovtbrio coculture (column 1) 
and in a pure culture of the Desulfovibrio species (column 2). The third column represents the calculated values for S. wolinii (see text) 

Enzymes Coculture Sulfate reducer S. wolinii 

Propionate kinase 
Propionyl-CoA carboxylase 
Propionyl-CoA: oxaloacetate transcarboxylase 
Succinate thiokinase 
Propionyl-CoA: succinate CoA transferase 
Succinate dehydrogenase (Fe(CN)63-) 
Fumarate reductase (BV § e 

Fumarase: 
fumarate disappearance 
fumarate formation 

Malate dehydrogenase: 
NADH-dependent 
NADPH-dependent 

Malic enzyme 
Pyruvate carboxylase 
Pyruvate dehydrogenase (BV 2 +) e 
Phosphotransacetylase 
Acetate kinase 
Hydrogenase (MV / § f 
Formate dehydrogenase (BV 2 +) e 
NADH dehydrogenase (MTT) g 
Formate hydrogen lyase 

0.120 - "  0.123 
< 0.02 - < 0.02 

0.519 - 0.535 
0.315 - 0.325 

< 0.005 - < 0.005 
0.069 - 0.071 
0.013 

1 . 0 4  - 1 . 0 7  

0.144 0.049 0.147 

2.33 0.036 2.40 
0.191 ND b NC c 

0.30 0.13 0.31 
< 0.001 - < 0.001 

0.019 0.260 0.012 
2.03 0.107 2.09 
0.116 0.331 0.109 
1.21 1.83 1.19 
2.11 1.71 2.12 
0.020 0.008 0.02 
0.0043 0.0093 0.0041 

a Not detected; b not determined; c not calculated; d BV +, reduced benzyl viologen; e BV2+, oxidized benzyl viologen; f MV 2+, oxidized 
methyl viologen; g MTT, 3-(4'5'-dimethyl-thiazol-2-yl)-2,4-diphenyltetrazolium bromide 
Enzymes not detected: Isocitrate lyase, pyruvate formate lyase, phosphoenolpyruvate carboxylase, propionate thiokinase, acetate thlokinase, 
succinate kinase 

phase of Nz/H2 (96:4). The cells were broken at 1360 bar and the 
cell debris was removed by centrifugation at 4000 rpm for 20 min. 
The supernatants were stored oxygen-free at 0~ in glass tubes 
sealed with butyl rubber stoppers. 

Enzyme assays 

Enzyme assays were carried out anaerobically at 37~ in a LKB 
4053 kinetics spectrophotometer ultrospec K (Pharmacia Nederland 
b.v., Woerden), Cuvettes (1 ml) were closed with rubber stoppers 
and made anaerobic by flushing with Nz. Anaerobic buffer (unless 
otherwise state, Tris-HC1 at the same molarity and pH as the buffer 
mentioned in the cited references) and all other solutions were 
brought into the cuvette by syringe. 

Thiokinase activity with propionate (E.C. 6.2.1.17), acetate 
(E.C. 6.2.1.1) and succinate (E.C. 6.2.1.5) were measured (at pH 8.5) 
as described by Oberlies et al. (1980). Kinase activities with these 
substrates (E.C. 2.7.2.1 for acetate kinase) were measured in the 
same way but with the omission of HSCoA. Propionyl-CoA: 
oxaloacetate transcarboxylase (E.C. 2.1.3.1), fumarase (E.C. 
4.2.1.2), malate dehydrogenase (NADH-dependent, E.C. 1.1.1.37 
and NADPH-dependent, E. C. 1.1.1.82) in the direction of malate 
formation, mahc enzyme (E.C. 1.1.1.39) and succinate dehydroge- 
nase (E.C. 1.3.99.1) with ferricyanide in a 100 mM Tris-HC1 buffer, 
pH 7.4) were measured according to Stares et al. (1984). Fumarate 
reductase (E.C. 1.3.1.6) was assayed with reduced benzylviologen 
or NADH following the procedure of Boonstra et al. (1975). Hydro- 
genase (E.C. 1.12.1.2) was assayed as described for CO dehydroge- 
nase by Daniels et al. (1977). Pyruvate dehydrogenase (E.C. 1.2.4.1) 
and formate dehydrogenase (E.C. 1.2.1.2) were measured according 
to Odom and Peck (1981). Pyruvate carboxylase (E.C. 6.4.4.1) was 
assayed according to Scrutton et al. (1969), phosphoenolpyruvate 
carboxylase (E.C. 4.1.1.31) after Maeba and Sanwal (1969); 
isocitrate lyase (E.C. 4.1.3.1) after Dixon and Kornberg (1959); 

phosphotransacetylase (E.C. 2.3.1.8) after Oberlies et al. (1980) and 
NADH dehydrogenase (E.C. 1.6.99.3) was measured in a HEPES/ 
KOH buffer, pH 7.5, with 0.05% Triton X-100 after Bergsma et al. 
(1982). Propionyl-CoA:succinate CoA transferase was measured 
after Hilpert et al. (1984) in a 10 mM Na-arsenate buffer, pH 7.0. 
Propionyl-CoA carboxylase (2.1.3.1) was assayed, following 
NADH-oxidation at 340 nm, in a 100 mM Tris-HC1 buffer, pH 8.0, 
containing: KHCO3, 50raM, KC1 100raM, MgC12 4raM, 
glutathione 2 raM, ATP 2mM,  phosphoenolpyruvate 1 mM, 
NADH 0.6 mM, lactate dehydrogenase 40 U, pyruvate kinase 10 U 
and propionyl-CoA 0.5 mM. The overall reaction from succinate to 
propionate was followed in a coupled assay as described by Stares 
et al. (1984). Both a 60 mM Tris-HC1 buffer, pH 7.4, and a 87.5 mM 
phosphate buffer, pH 7.5, were used. Formate hydrogen lyase ac- 
tivity (E.C. 1.2.1.2) was measured in vials (25 ml) closed with butyl 
rubber stoppers. For this purpose I ml of cell-free extract was added 
to 2 ml 100 mM phosphate buffer, pH 7.0, and hydrogen formation 
was measured after addition of formate to give a concentration of 
40 raM. Pyruvate formate lyase (E.C. 2.3.1.54) was measured in a 
buffer as described by Jungermann and Sch6n (1974), with 2 mM 
HSCoA and 30 mM pyruvate. 0.5 ml cell-free extract was added 
to 1 ml assay buffer in vials (10 ml) closed with butyl rubber stop- 
pers. 

Analytical methods 

Protein in cell-free extracts was determined according to Bradford 
(1976). Hydrogen was measured gaschromatographically as de- 
scribed before (Houwen et al. 1988). 

Materials, 

All chemicals used were of analytical grade. Biochemacals and en- 
zymes were purchased from Boehringer, Mannheim, FRG and 
Sigma Chemical, St. Louis, USA. Gases were obtained from Hock 
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Loos, Schiedam, The Netherlands. Palladium catalyst was a gift of 
BASF, Arnhem, The Netherlands. 

Results and discussion 

The results of  enzyme measurements in cell-free extracts 
of the Syntrophobaeter-Desulfovibrio coculture are sum- 
marized in the first column of Table 1. The second column 
represents enzyme activities as measured in cell-free ex- 
tracts of a pure culture of  Desulfovibrio G l l .  In the 
coculture the relative number ofpropionate  oxidizers was 
very constant (Houwen et al. 1990). This made it possible 
to determine the contribution of S. wolinii to the total 
protein in the coculture. Based on mean protein content 
per cell in the pure culture of  the sulfate reducer 
(8.2 x 10-11 rag), the total protein content of the concen- 
trated coculture (62.4 mg/ml from 4.8 x 10 t 0 cells/ml) and 
the relative number of  the sulfate reducer in the coculture 
(55%), it was calculated that about 97% of the protein 
in the coculture was from the propionate oxidizing 
bacterium. Column 3 (Table 1) gives the calculated 
specific enzyme activities of  the syntrophic propionate 
degrader. 

The results as shown in Table 1 are in agreement with 
the involvement of  the methylmalonyl-CoA pathway for 
propionate oxidation by S. wolinii. The high activity of  
propionyl-CoA:oxaloacetate transcarboxylase and the 
absence of isocitrate lyase activity excludes a possible 
route via c~-OH-glutarate (Wegener et al. 1968); in such a 
pathway the isocitrate lyase but not the transcarboxylase 
plays a key role (Rabin et al. 1965). The occurrence of  the 
methylmalonyl-CoA pathway with a transcarboxylase 
is supported by label patterns found during propionate 
conversion in the presence of  both [3-~3C]-propionate 
and H~3CO3 (Houwen et al. 1990). 

The transcarboxylase activity measured in S. wolinii 
is comparable to the activity in extracts of D. propionicus 
(Stams et al. 1984). However, attempts to measure the 
overall conversion from succinate to propionate in a simi- 
lar way (with 5 times more protein) as reported for 
D. propionicus, were not successful. The reason for this is 
not known the more so as whole cells did interconvert 
succinate and propionate (Houwen et al. 1990). 

In this study enzyme activities present in S. wolinii 
were calculated by subtracting specific activities of 
enzymes of different extracts. It remains unknown 
whether artifacts are introduced in this manner. Because 
Desulfovibrio G11 was grown on hydrogen and sulfate in 
the presence of  propionate, the method is reliable if an 
enzyme is absent in the pure culture as is the case with 
e.g. the crucial enzymes transcarboxylase and succinate 
thiokinase. However, if an enzyme is present in the pure 
culture, results should be interpreted with caution. The 
low activities of  a pyruvate dehydrogenase calculated for 
S. wolinii may be an example of this. The high protein 
content of S. wolinii (97%) in the total protein of  the cell- 
free extract was certainly favourable for the demon- 
stration of  most of the enzymes of  the methylmalonyl- 
CoA pathway in S. wolinii. 
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