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In this paper we obtain a priori estimates and a global existence theorem for 
solutions of the non-linear equations governing deflections in a thin, elastic plate 
which is clamped at the edges and subjected to combined normal and edge loading. 
For small data there is a unique solution. 

Let the region G, constituting the middle plane of the undeflected plate, lie 
in the xy-plane and let F be its boundary. The equilibrium stress function f *  + F *  
and deflection w* of the plate out of its plane satisfy the following version of the 
VON KARMAN equations [14]: 

a2f  * = - (E/2) I-w*, w*], 

A 2 w* = (h/D) {If*, w*] + IF*, w*] + (p*/h)} 

where A 2 is the biharmonic operator and 

If ,  g] =f:,x g, ,  + f y ,  g,,:,--2fxy g,:y. 

Here p* =p* (x, y) denotes the lateral load on the plate and D is the flexural rigi- 
dity constant depending upon the modulus of elasticity E, the plate thickness h, 
and Poisson's ratio. F*(x,  y) is the (known) stress function which would arise 
from a given combination of any or all of a variety of sources (e. g. compression 
or tension on the edges, thermal stresses) if the plate were not allowed to bend. 

Now let 
2 2 I W l = { ~ . + = y }  , 

I V W l - -  z 2 = {=xx+2~xy+=yy} , 

I~ = (h/D) max {sup IF* I, sup I rE* I, sup I WE* I}, 
G G G 

v=D-l(�89 hED-1)~ sup IP*I, 
G 

and set 
f * = D h - l f ,  

w*--(2Dh -1 E - l )  * w, 

F*=I~D h-X F, 

p*=v D(2D h- l  E-1)~r p. 
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Then the von K~irm~in equations become 

(la) A2f= - [w, w], 

(lb) AZw=[f,w]+p[F,w]+v p. 

The system (1 a, 1 b) together with the boundary conditions 

(lc) f =lVfl=w=lVwl=O o n r  

for the clamped plate shall constitute problem (1). 

Much of the existing work on the von K~irm~in equations has been concerned 
with problems involving radial or rectangular symmetry, e.g. [1, 5, 7, 8]. In this 
paper we consider regions of a general class defined in w 1. References [2, 4, 11] 
also treat problems in general regions. In [11] MOROSOV has solved problem (1) 
for # = 0  and arbitrary v>0. BERGER & FIFE [2] consider the case v =0 and prove 
the existence of non-trivial solutions (bifurcations of the solution w = f = 0  which 
are shown to occur at certain eigenvalues, p, of the linearized problem). In [4], 
FIFE deals with a different problem involving the von K~rm~in equations. 

For arbitrary # > 0, v > 0 we shall prove the existence of a classical solution of 
problem (1) satisfying (for a wide class of regions G) 

(2) sup I wl+sup Ifl~C{#2+v2+exp(Cp)}L 

(Here, and throughout the paper, the letter C denotes constants which depend 
only upon G.) These results rely strongly upon the non-linear character of the 
problem. In fact, at an eigenvalue, #, the linearized problem has solutions of 
arbitrary norm. Hence no bound of the type (2) is possible in the linear case. 

In w 1, after the introduction of some notation and basic inequalities, a precise 
definition of a classical solution of problem (1) is given. Then the problem is 
restated in generalized and abstract forms which are convenient for proving (2) 
and the existence theorem. The equivalence of these formulations of problem (1) 
follows from two theorems of BERGER & FIFE quoted from [2]. 

The existence theorem is proved in w 2. For the proof the Leray-Schauder 
fixed-point theorem [10] is employed in a somewhat simpler form due to SCt4AEFER 
[12]. Application of the Schaefer theorem requires a priori estimates for which 
the inequality (2) suffices. 

Derivation (w 2) of the estimate (2) constitutes the chief technical difficulty 
of the paper. The result is established by exploiting the divergence structure of the 
nonlinearity in dealing with the terms involving F. In this maneuver a modification 
due to EDWARDS [3] of an auxiliary function of HOPF [6] plays an important role. 

In w 3 we examine the case of small data (i. e. #, v small). If only # < 1, the 
estimate 

sup I wl +sup Ifl < C v(1-P)  -1 
G G 
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is proved without difficulty. For v sufficiently small, uniqueness of the solution 
of problem (1) then follows in a standard way. The uniqueness question for large 
data remains unsettled. However, the above mentioned study of bifurcations by 
BERGER & FIFE [2] as well as earlier work by FRIEDRICHS& STOKER [5] and 
KELLER, KELLER•REISS [7] show that uniqueness is not, in general, to be 
expected. 

Finally, the author wishes to thank Professor PAUL FIFE for helpful suggestions 
offered in several discussions of this material. 

1. Preliminaries 

The following notation, in addition to that set forth in the introduction, will 
be used in this paper: 

Ck(G): functions whose derivatives up to order k are continuous in G. 

Cok(G): functions in Ck(G) having compact support in G. 

CI G: closure of G. 

II p II = ( ~ (pc +1 vp  12 +1 v v p  12) dA} ~, 
G 

IV: the Hilbert space obtained by completion of C~~ in the norm Ilpll. 

H: Wx W, the Hilbert space of vector functions ~ = ( P l ,  P2) with 
components P l  and P2 in W and norm Ill'Ill---{11p1112+ [Ip2l[2} ~, 

Note, for functions p in IV, that 

(3) I [ FVp I 2 dA-- I lap 12 dA; 
O G 

for example, if f and g lie in W then 

(4) I E f, g]l dA < ~ (I VVfl I VVg I) dA 6 (  ~ IAfl 2 dA) ~ ( ~ lag 12 dA) ~. 
G G G G 

It follows fore the SOaOLEV embedding theorem (see, e.g., [13, p. 56]) that 
the elements, ~o, of W are continuous functions and satisfy 

(5) sup I P l 6 C II P II. 
G 

Lemma 1 below is established for Co ~ (G) functions by repeated application 
of the Poincar6 inequality and a use of (3). The result then follows for W by a 
standard limiting argument. 

Lemma 1. There exists a constant C, depending only on G, such that, for all 
p inW,  

l[ P II < C( $11zVp 12 dA) ~ = C( $ lap 12 dA) ~. 
G G 

Next we state a result of LERAY [9] (see also [6]). 
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Lemma 2. Let the function h belong to C1([0, a]) and let h(O) =0. Then 

a a 

S s-2 h2(s) as __<4 S I h'(s)12 as. 
0 0 

Assumptions on the region G. G shall be a bounded region. The boundary F 
shall consist of a finite number of disjoint simple, closed curves. There shall exist 
a subregion, Go, of G and a non-singular coordinate system (s, t), defined on 
CIGo, with the properties: 

i) The function s=s(x,  y) is in C2(G0)~ C~ 

if) Go is the annular region 0 < s < 2 6 ,  having F as the boundary curve given 
by s = 0 ;  the remaining boundary given by s=26. 

iii) There are positive constants m and K such that 

(6a) 2 2 xs + Ys < K on G0, 

and the Jacobian 
j =  ~(s, t) 

(x, y) 
satisfies the bounds 

(6b) O<m<_J<_mK on G0. 

iv) For  any annular region 0 < s l  <s<_26 there is a constant M(sO, possibly 
depending on sx, such that 

IVsI<=M(sl), [AsI<M(sl). 

If F is a C 3 curve we may choose s as distance from F measured along normals. 
We choose t as arc length on F and constant on normals. In this case I Vsl and IA s[ 
are bounded independently of s~. The stated class of regions is, however, wide 
enough to allow "corners" on F. 

The functions F and p appearing in (1 b) are admissible if F is in CZ(G), p is in 
C o (G), and if 

(7) Ipl__<l, ]f[__<l, [VFI<__I, IVgfl<=l. 

These bounds impose no real restriction upon the problem in view of the definitions 
of p and v. We assume throughout the paper that F and p are admissible functions. 

Definition. A classical solution of problem (1) is a pair of functions f ,  w which 
lie in the class C4(G) c~ CI(CIG) and satisfy the equations (1 a, b, c) at each point. 

Proceeding now to reformulate problem (1), we let ~o and ~ be smooth func- 
tions in W. Then upon multiplying equation (1 a) by q~, equation (1 b) by r and 
integrating by parts over G, we find 

(8a) 

(8b) 

a (tp, f )  = - b (~o, w;  w ) ,  

a(O, w)=b(O, f ; w) + p b(O,F ; w) + v ba(O,P) 
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where 
a(~, fl)= ~ A~Afl dA 

G 

(9) b(ct, fl; y)=  I {ctx(fl, Yx:,-f lx]' , ,)+~ Yxx)} dA 
G 

bl (~ , /~)=  I ~ / ~ d A .  
G 

Definition. A generalized solution of problem (1) is a pair of functions f ,  w in 
W satisfying (8 a, b) for all q~, r in W. 

The problem may also be expressed in terms of an operator equation defined 
on the Hilbert space H. This is the point of Theorem 2 below. We outline the 
ideas briefly. Considering u = ( f ,  w) and v =((p, ~,) in H we may add (8a) and (8b) 
to obtain an expression of the form 92(u, v)=~B(u, v). For  fixed u in H, ~l(u, v) 
and ~B (u, v) are bounded, linear functionals of v in H, hence are associated respec- 
tively with dements A u and Bu in H. Since A is invertible the problem is to find 
u in H such that I u - T u = O ,  where I is the identity operator and T = A - I B  is a 
compact operator from H into H. 

For  the case v=0,  BERCER& FIFE [2] have established the following two 
theorems. The proofs may be amended in a straightforward way to obtain the 
results in case v > 0. 

Theorem 1. Every classical solution of problem (1) is a generalized solution. 
Conversely, every generalized solution is a classical solution in G and at all suffi- 
ciently smooth portions of F. 

Theorem 2. The generalized solutions f ,  w of problem (1) are identical with the 
solutions u = ( f  , w) of an operator equation Iu = Tu defined on the separable Hilbert 
space H. The operator T is compact. 

2. Existence; A Priori Estimates 

The question of existence of classical solutions of problem (1) is, in view of 
Theorems 1 and 2, reduced to the existence question for the operator equation 

(10) I u = ~. Tu 

with 2 set equal to unity, u in H and T compact. We shall use the Schaefer 
version [12] of the Leray-Schauder fixed-point theorem [10] to establish the 
existence of at least one solution of (10). The Schaefer theorem requires, beyond 
the compactness of T, only that there exist a sphere in H containing all possible 
solutions of (10) for 0 < 2 <  1. To this end we shall prove 

Theorem 3. Let f ,  w be a solution of problem (1). Then there are constants C, 
depending only on the region G, such that 

(11) 

sup Ifl  + sup I w l ~ C Ill(f, w)lll = C [ l l f  II 2 + I1 w II 2]~ 
G G 

< C {/~2 + v 2 + exp (C p) M 2 [exp ( -  C #)] }i. 
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Note that if M(s 0 < Cs{ v for some y >0  then the estimates (11) reduce to the 
form (2). 

For general 2, 0 < 2 < 1, the proof (given below) of Theorem 3 remains valid. 
Thus for fixed la and v all solutions of (10) in H lie within a sphere of radius 

const {la2 + v 2 + exp (C la) M 2 [ exp ( -  C la)]}~r. 

The Schaefer theorem now assures the existence of a solution of (10) for each 
2, 0 < 2 < 1. In particular, when 2 = 1 we conclude 

Theorem 4. For any non-negative numbers la and v, problem (1) possesses at 
least one classical solution. 

We now turn to a proof of Theorem 3. We shall proceed from the generalized 
form of the equations and follow the "energy" method. The terms involving F 
cause the principle difficulty as the non-linear terms drop out of the energy ex- 
pression because of the property 

(12) b(0q fl; ~)= b(fl, ce; 7). 

It is this structure that enables us to control the F terms by absorbing part of them 
into the corresponding f terms. 

Let 4 be in C2(G) and satisfy 4=1,  174=0 on F. Given that f ,  w is a solution 
of problem (1), introduce the modified pair g, w where g = f + l a ( 1 - O F .  Then 
g, w satisfy the boundary conditions (1 c) and the modified equations (in generalized 
form) 

a(q~, g) = a(tp, la(l - ~ ) f ) - b ( ~ o ,  w; w), 

a(r w)= b(~k, g; w)+la b(0, 4 F; w)+ v bl(~k, p) 

for all tp, ~k in W. Since g and w are in W, set q~ =g, ~k =w and use (12) to obtain 

(13) a(g,g)+a(w,w)=laa(g,(1-4)F)+lab(w, 4F;w)+vba(w,p). 

With reference to the integral forms (9) of the quantities we may estimate the first 
and third terms on the right in (13) using the Schwarz inequality and, in the bl 
estimate, Lemma 1. We find 

[# a(g, (1 - 4 )F ) [  < p (  S[Ag[ 2 dA)•( ~ IA {(1-4)F} 12 dA) ~, 
G G 

[v b~(w, p)[< v C( I p2 dAft ( I lAw 12 dA) ~. 
G G 

To bound the remaining term, lab(w, 4F; w), we shall require additional 
properties of the function 4. It is convenient to introduce the subregion G~ and 
associated coordinate system (s, t) as described in w 1. It is clear that we may as- 
sume 0 < 6  <x2. Then the following version of a lemma of HOPF [6] (see also 
EDWARDS [3]) provides the function 4 with the needed properties: 
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Lemma 3. Given e > 0  there exists a function ~ (x, y) in C2(G)n  C I ( C I G) with 
the properties: 

i) ~=1,  IVY] = 0  in the strip O<s<sl = 6 4  -7 e x p ( - 2 e - 1 ) ,  
ii) ~ =0 outside G~, 

iii) I~[<es -~, I V ~ l < ~ s  -x  throughout G~, 
iv) Ill--< I, I V~l _-<Ce exp(e -1) M(Sl), IA ~1 < C s  exp(2s -1) M(sx), 

throughout G with constants C depending only on G and 6 (but not on e). 

One such ~, a function of s alone, is suggested by HoPF and EDWARDS: 

1 

~(s)=�89 ~ ~ a -1 lp [(s--s1) a -1 ]  da 
~t 

where a = e x p ( - 2 s  -1) and 

i if fl~O 
~b(fl) = - f la  6-3)a if O<f l<6  

if f l=6 .  

Statements i), ii) and iv) of the lemma follow easily. The first of the estimates 
iii) may be proved by considering the cases s <  a, s=> a; here 6 < �89 is useful. To 
establish the remaining inequality one first shows that the point So, where ]~'(s) l 
is a maximum, satisfies So - s~ > 4-  ~ a 6, then considers the cases s < s~, s 1 =< s =< So, 
SO ~_~ S. 

We return to the bound for 

Q=b(w,~F,w) 

where ~ is given by Lemma 3. Then from the integral representation for b(a, t ;  ?) 
and standard inequalities there follows 

Q< S lVwllVVwllV(r dA. 
G6 

From this inequality and the estimates (7) and iii) of Lemma 3 we find 

Q < 2 s (  I I VVwl2dA)m( [. (s-l lVwl)2 dA) m" 
G~ G6 

As an application of Lemma 2, with h (s)= I Vw [, we have (the properties (6 a, b) 
are also used here) 

6 6 

(s- l  l Vwl)2 j d s<am K 2 ~ l VVwl2 j m -x ds,  
0 0 

and we conclude 
S (s-lIVw))2dA<~ 4K2 [. I VVwl 2 dA. 

G8 G6 

Together with this inequality and (3), the last estimate for Q implies 

16 Arch. Rational Mech.  Anal. .  Vol. 27 

Q < 4 K e  ~ IAwlE dA. 
G 
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If we collect estimates for the terms on the right in (13), set e =(8#K)  -1 and 
use the integral form (9) of each expression, then we find 

(2 IA gl 2 + IA wlE) dA<=2#[$ [A gl 2 dA] ~* [$ Id {(1-r  12 dA] ~ 
G G G 

(14 )  + v C [ S [A w l 2 d a ]  ~ [ ~ p2 dAiS. 
G G 

The bounds (7) for F and p may be used together with iv) of Lemma 3 to show 
there are constants C, depending only on G, such that 

where 

I p 2 d A < C  and IIA{(1--~)F}I2dA<D(e) 
G G 

D (e) = C [1 + e 2 exp (C e- 1) M 2 (sl)] �9 

If we insert these bounds in (14), it then follows that 

S (2 lA glE +ldwl2)dA~#2 D(e)+ vE C 
G 

and, since g = f +  # (1 - 4) F, s x = C exp ( -  Ce- 1), e = C#-  1, that 

([A f I z + [A w 12) dA <= C {#2 + v 2 + exp (C #) M 2 [C exp ( - C #)] }. 
G 

Theorem 3 follows from this last inequality, (5), and Lemma 1. 

3. Small Data;  Uniqueness 

In this section we examine the case in which # and v are small, i.e. the applied 
forces F* and p* are sufficiently small. First, if only # <  1, we derive an a priori 
estimate in the method of the preceeding section, but without the use of the Hopf 
function. 

Let f ,  w be a solution of problem (1) and set q~=f in (8a), r  in (8b). 
Then add the integral forms of the equations to find, after integration by parts 
over G, 

S(IAfl 2+[Awl2) d A = # S  [w, w] F dA + v ~ w p dA . 
G G G 

From (4), (7), and Lemma 1 it follows that 

S ([h fl2 +lAwl2)dh<# $ IAwl2 dZ + vC($ Ihwl2 da) ~ 
G G G 

and, consequently, 
(IAf 12+ [A w2l) d h ~  v2(1 - # )  --2 C. 

G 

Now (5) and Lemma 1 imply 

(15) sup ] f [ +sup I wl < v ( 1 - # )  -1 C. 
G G 
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In considering the question of uniqueness, first observe that if f ,  w and 
f +  u, w + v  are two classical solution pairs corresponding to the same data, then 
the difference pair u, v satisfies the boundary conditions (1 c) and the equations 

A2 u = - [ v ,  2 w], 

A 2 v = [u, v] -I- [u, w] -I- [ f ,  v] + p [F,  v] .  

If the first of these equations is multiplied by u, the second by v, and if the resulting 
equations are added, we obtain after integration by parts over G, 

S (IAul2 +IAvl2) d A =  S { ( f + i t g ) [ v ,  vl +w[u ,  vl} dA.  
G G 

From this equation and the relations (4) and (7) we get 

~ (IA u l2 + ldvl2) dA < ( #  + sup l f l) ~ [A vl2 dA + sup l w l ( ~ lA u l2 dA)*( S lA vl2 dA) ~ 
G G G G G G 

_-<(it+ sup I f I + sup I wl) I (IA u 12+ IA vl2) dA. 
G G O 

Clearly u =v  = 0  if 
p+sup Ifl  +sup Iwl< l .  

G G 

Thus, in view of (15), the uniqueness follows if # + C v (1 - # ) - 1  < 1, i.e. if It < 1 and 
if v is sufficiently small depending only on It and G. 

We collect the results of this section. 

Theorem 5. Let f ,  w be a solution of problem (1) with I t< l .  Then (15) holds 
with constant C depending only on G. If, in addition, v is sufficiently small depending 
only on It and G, then f ,  w is the only solution of problem (1). 

N o t e .  This research was sponsored by the Air Force Office of Scientific Research, under 
Grant No. Af-AFOSR-883-65 to the University of Minnesota. 
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