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Abstract. A mathematical neuron model in the form of a F 
nonlinear difference equation is proposed and  i ts  response 1.0 
characteristic is investigated. 0.9 

If  a sequence of pulses with a fixed frequency is applied to 0.8 
the neuron model as an input, and the amplitude of the input 
pulses is progressively decreased, the firing frequency of the 03 
neuron model, regarded as the output, also decreases. The 0.6 
relationship between them is quite complicated, but a mathe- 
matical investigation reveals that it takes the form of an 0.5 
extended Cantor's function. This result explains the "unusual 
and unsuspected" phenomenon which was found by L.D. 
Harmon in experimental studies with his transistor neuron 0.4 
models. 

Besides this, as an analogue of our mathematical neuron 
model, a very simple circuit composed of a delay line and a 0.3 
negative resistance element is presented and discussed. 

I n t r o d u e t i o n  

I n  the course of experimental  studies with his 
artificial neurons (hardware neuron model  using 
transistors), H a r m o n  (1961) found an "unusua l  and  
unuspec ted"  phenomenon which is described below. 

I f  an  artificial neuron uni t  is used to drive another  
directly, and  the pulse ampli tude is sufficiently high, 
the firing of the second follows the first, pulse for pulse. 
However ,  if the ou tpu t  ampli tude of the driving uni t  
be monotonical ly  decreased, firing in the second uni t  
begins to skip. More precisely, as the driven uni t  
receives progressively less excitation, there will be a 
critical point  a t  which a given driving pulse is insuffi- 
cient to fire the driven unit .  However ,  it turns  ou t  t ha t  
when the next  driving pulse comes along, i t  is inte- 
gra ted  with the preceding one to  come firing, and  the 
firing f requency of the driven uni t  is half  t ha t  of the 
driver. One would expect  t h a t  as the driving pulse 
amplitudes are reduced still more, every  th i rd  pulse 
would be effective, then  every  fourth,  and  so on. 

This is wha t  one can reasonably expect  to  happen,  
bu t  in fact  it does not.  W h a t  does occur is much  more 
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Fig. 1. Relationship between the amplitude of driving pulses 
(a) and the pulse frequency ratio of the driven unit to that of 
the driving unit (F). Reproduced from Harmon (1961) with a 

minor modification 

complicated. As the excitat ion of the second uni t  
decreases, the integral  steps expected show up, b u t  
considerably more complex behavior  also appears.  
Thus other  t h a n  the predicted steps such as 1:1, 1:2, 
1:3, . . . ,  1 : 10, a much larger number  of nonintegral  
steps, such as 3:5,  5:16,  3:19,  etc., also appear.  The 
relationship between the ampli tude of driving pulses 
(let i t  be a) and  the rat io of the pulse f requency of the 
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Fig. 2. Graphic display of the mathematical neuron model - -  
nonlinear difference equation (9) 
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driven unit  to that  of the driving unit (let i t  be F) is 
shown in Fig. 1, which was reproduced from Harmon  
(1961) with a minor modification. 

The purpose of this paper  is to present a mathe- 
matical  neuron model which can elucidate the above 
experimental results. 

Mathematical Neuron Model 
and Average Firing Rate 

From the functional point of view, a neuron can 
be regarded as a threshold element with a refractory 
period. In  the present model, the refractoriness is so 
assumed tha t  the inhibitory influence of a past  firing 
upon the excitability of the neuron a t  the present 
instant  decreases exponentially with time, and time is 
assumed to be discrete. Under these assumptions, the 
behavior of the neuron is expressed by  a nonlinear 
difference equation (Caianiello, 1961): 

xn+l = l [An--ccr~fob-" xn_,--O ] , (1) 

where l [x]  = l ( x > 0 ) ,  = 0 ( x < 0 ) ,  

x n the state of the neuron a t  the instant  n. The 
resting state is represented by  0, and the excited 
state by  1, 

A n magnitude of the input stimulus applied a t  the 
instant  n, 

0 threshold value, 

~r b > l .  

Although our neuron model may  be regarded as a 
discrete-time version of Caianiello and DeLuca 's  
continuous-time neuron model (1966): 

x(t+T)----1 A ( t ) - - ~ f b - ' x ( t - - r ) d r - - O ,  (2) 
0 

the former seems to have a much richer variety of 
forms of solution than  the latter. 

Now, introduction of a new variable Yn: 

yn----a-~(An--O) - 7. b-" xn-, (3) 
r = 0  

reduces (1) to 

(4) Yn't'l =b-lyn +an - 1  [Yn], 

where 

and 
x,+l = 1  [aYn] ~- l  [y~]. (6) 

case the magnitude of the input stimulus is 

(7) 

I n  

constant, tha t  is, 
A n ----A 

for all n, it follows tha t  

% - -  - 1 - -  = a  (constant), (8) 

and (4) becomes 

y n > 0 :  y,~+t =b-lyn-4-a--1, 

Yn< 0: Yn+l :b-lyn-4 -a" (9) 

The former equation corresponds to the (~-) branch, 
and the latter to the (--)  branch in Fig. 2. Hereafter,  
the case of the constant input is considered, and a is 
regarded as representing the magnitude of the input 
stimulus. 

Given the initial value Y0, a sequence of y: 

Y0, Yl, Y2, Y3 . . . .  (1O) 

is determined from (9), and correspondingly a sequence 
of x: 

Xl, Z2, X 3 . . . .  (11) 
follows from (6). 

In  the sequel, our consideration is restricted to 
cases where (10) is a periodic sequence or a sequence 
which asymptotical ly approaches a periodic sequence. 
In  such cases, (11), after a finite number  of steps of n, 
becomes a periodic sequence iterating x*, x*, x* . . . . .  x~ 
infinitely, and denoted by 

{x~ x~ x~ ...x?}. (12) 

For such periodic sequences, definition of the 
average firing rate F (a) is given by  

F(a) = number of 1 m ~*, ~ . . . . .  ~* (13) 
1 

Simple considerations show tha t  if a > 1, y,,-->y* >0 
as n-->~. Hence xn=l for n > no, and F(a)----1. On 
the other hand, if a<O, yn-->y*<O. Hence xn=-O for 
n > no, and F (a) ---- 0. Thus our problem is to investigate 
the relationship between a and F for 0 < a < 1. 

I t  is worth mentioning tha t  the replacements of 
a by  l - - a ,  Yn by --Yn in (9) cause an interchange of 
the (Jr) branch and the (--)  branch, so tha t  F is 
replaced by  1 - -F.  In  other words, the function F(a) is 

( a = ~ , F = ~ ) .  symmetrical  with respect to the point 1 1 

Set of Periodic Sequences S 
Having Some Special Forms 

In  what  follows, our consideration will be further 
limited to such periodic sequences as have some special 
forms, and denote the whole of such periodic sequences 
by  S. The set S is the total i ty  of an infinite number  
of subsets S 1, S~, S 3 . . . . .  each S i (i = 1, 2, 3, ...) being 
a set of periodic sequences having the special form 
described below. 

Denote a periodic sequence in which 0 appears 
consecutively n (a positive integer) times after 1 has 
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appeared consecutively m (a positive integer) times by  
{lm0"}. Then the set S 1 is the whole of periodic se- 
quences in the form {lm0 ~} with m = 1 or ~ = 1. 

The set Sz is constructed from two neighboring 
elements of the set S~ by  the same method as above. 
To cite an example, all periodic sequences of the form 
{(01)ra(001) n} (where m = l  or n = l ) ,  which are 
derived from two elements {01} and {001} neighboring 
in S~, belong to the set S~. 

In  the same way, the set Sa is set up from two 
neighboring elements of the set S v For example, all 
periodic sequences of the form {(01001)m (01001001)~} 
(where m = 1 or n = 1), which are derived from two 
elements {01001 } and {01001001 } neighboring in S~, 
belong to the set S a. 

Then the set S is defined as a union of all such 
subsets Si (i = 1, 2, 3 . . . .  ) by 

S = S l  k.) S2  k) S3 k..) . . . .  
Obviously 

S~c~S~=~ for i~=~. 

Our next  task then is to show tha t  each element of 
the set S is a periodic solution of (9) having a particular 
value of a. Henceforth the correspondence between the 
periodic sequence of S and the value of a in (9) will be 
investigated. 

A. Elements o/Set  S t 
As an example of the element of Sl,{0ml}(m > 1) 

is taken into consideration. In  Fig. 3 

y~<0 ,  

y2=b- ly l  + a  <O, 

Ya =b-2yl  + a (  1 + b-l) <0, 

Ym+l = b - m y l  + a (  1 + b - l + b - ~  + "'" + b-re+l) >_--0. 

Define 

ym+~=b-m- l  yl +a(1  +b- l  +b-~ + ... + b  -m) -- 1, 
(14) 

and put  Ym+2 = Yv Then 

Yx =b{a(  bm+ bm-1 + " "  + 1) --bm}(b m+l - -  1) -~, (15) 

and 

ym----b{a(bm-~-bm-i + ... + l )--b}(bm+l--1)  -1. (16) 

These y~ and ym must  satisfy the inequalities 

y . ,<  0, y ~ > a - - 1 ,  (17) 

which are rewritten as 

b 1 > a >  (18) b i n + b i n - t +  " "  + 1  b r a + b m - t +  " "  + 1  
Q 

Conversely, if condition (18) is satisfied, i t  follows 
from (14) tha t  yn~+z>=a--1 for y l = a - - 1 .  Moreover, 
when y m = 0 ,  or when Yl=!) ,  Ym+z<Y, where 
~ / = - - a ( b " - l + b m - 2 +  ... +b).  Hence it is obvious 
from Fig. 4 tha t  y~+i(m+xv-~y* as i--~o% where 
~ >  y* ~ a -  1, independent of the initial value Y0. 
Consequently the corresponding sequence of x becomes 
the periodic sequence {0m l} after a finite number of 
steps. 

I/ 
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Fig. 3. Graphic display of periodic sequence 
which is an element of the set S 
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Fig. 4. If condition (18) is satisfied, the corresponding sequence 
of y approaches r a periodic sequence independent of the initial 

value 

To summarize, it has been shown tha t  (18) is a 
necessary and sufficient condition for the sequence 
of y to become a periodic sequence which corresponds 
to the periodic sequence {0ml} of x. The value of a 
which satisfies (18) is called the value (or interval) of a 
which corresponds to the periodic sequence {0 m 1}. For 
this sequence it is apparent  tha t  F = ( m +  1) -1. 

I t  should be noted tha t  the sequence of x becomes 
the periodic sequence {0 m 1} even if 

a = b ( b m + b m - l  + ... +1)-1.  

Therefore, instead of (18), 

b t 
bmWbm-l+ "" +1 > a >  bin+bin_iT ... + 1  (19) 

is adopted as the interval of a which corresponds to the 
periodic sequence {0 m 1}. 

Representation of (19) in the scale of b yields 

00 ... 010 O0 ... 001 
11. . .111 "-->a(b)~>-- 11. . .111 ' (20) 
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Table 1. The values of a and F which correspond t~ periodic 
sequences {lm0} and {10 m} of the set $1 for cases m =  1, 2 and 3 

b'q+b'-sb ba+b ' -5  1 3 
bS+b~-sb-5 1 > a >  b S + M - s b +  1 F = -  4- 

1101 ~1111 (1110 > a ( b ) > ~ )  

b2+b > a >  bZ+l 2 
b2+b-51 b*'-5 b-51 F= 

11o >~(b)> 1~ 
1 1 1  - - Y i Y /  

b 1 1 
- - ~ a > - -  F= - 
b + l  b + l  2 

10 01 

b 1 1 

bZ-sb-51 > a ~  b~-sb-51 3 

(o lo  >~(b) > ool I 
-i-i- f  - - T ~ Y /  

Yn+l 

Y/II / '  

. . . . . . . . . . .  2 I |  I , / 
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Fig. 6. Graphic display of periodic sequence {01001}, which 
is an element of the set 8, 
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Fig. 5. The relation between a and E for periodic sequences of 
the set S z. F~ (a) and Fz~ (a) are functions which give an upper 

bound and a lower bound, respectively 

values of a and F,  which correspond to  the periodic 
sequences {Ira0} and {10m}, are shown in Table 1 and  
in Fig. 5 for cases m = 1, 2 and 3. 

I n  Fig. 5, F~(a)  and F{(a) are functions which 
give an  upper  bound  and a lower bound respectively, 
and 

F2(a) - 1 
log(l+ ~ )  (b~-~Y >a>0), 

1 (21) 
= 1 - l o g ( , + ~ )  ( l>a> b-~Y)' 

51(a) _ 1 
log(1 + ~ )  (~+1 >=a>0), 

1 (22) 

- - - - 1 -  (1-5 b--1 l+ 

B .  E lements  el  Set  S 2 

The values of a and F will be computed  for {01001} 
which was previously cited as an example of the ele- 
men t  of the set S~ (Fig. 6). B y  a calculation like tha t  
before, the values Yl, Y~ . . . .  , Y5 are obtained as func- 
tions of a and b. The condition corresponding to (17) 
turns  ou t  

Y4 < 0, Ys > a - -  J, (23) 
from which 

where a(b) means the value of a represented in the 
scale of b. Numera tors  on the left and  r ight -hand 
sides of (20) indicate the  periodic sequence under  
consideration, and  the numera tor  on the left is derived 
f rom tha t  on the r ight  by  consecutive rotat ions of the 
numerals of the latter.  Incidental ly,  the value of F is 
given by  the ratio of the sum of the numerals  in the 
numera tor  to  t h a t  in the denominator .  

Replacements  of a by  1 - - a ,  P by  1 - - F  in (19) 
yield results for the periodic sequence {lm0}. The 

ba -5 b bS-51 
M-5ba+ "" + l  ~ a ~ _  M-5b*-5 ...  -51 

(24) 

is derived corresponding to  (19). Conversely, if condi- 
t ion (24) is satisfied, the corresponding sequence of x 
becomes the periodic sequence {01001}  after  a finite 
number  of steps. Clearly F ----~. 

Table 2 and Fig. 7 show the values of a andS '  which 
correspond to {(01) m (001)) and {(0 I ) (001)  m} for cases 
m ---- 1, 2 and 3. I n  Fig. 7, functions giving an  upper  
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bound and a lower bound are 

'I ( 1 )] 
Fu~(a) ---- ~ - l-J- b--1  " 

log 1-1- a(btWb_.l_l)_b 

b ' + l  b ) 
MWbaW'"W1 __~a> baWb~l  , 

_ 1 [ 1  1 
2 log (1.+. bU(b~l) / 

1 - - ~ i ) /  
1 baW 1 

> a >  b, W b a W . . . W 1  I, 

'[ , 
F/U(a)=~  - 1-4- log(1-[ ba(b--1) 

a ( b ' W b W  i))--b ) J 

baWb > a >  b 
b 4 W b T ~  77". W1 --  b2WbW1 

*[ ' ] 2 1 
log (1W b -- 1 

1--a(bW1)) 

( ~ 1 _  > a >  baWb ) 
-~ baWbaW ... W1 ' 

(25) 

(26) 

and the following inequalities hold for 

1 b 
bW1 > a >  b~WbW1 . 

�89 > ~ (a) > F 2 (a) > F (a) > F# (a) > F: (a) > ~. 

Table 2. The values of a and F which correspond to periodic 
sequences {(O1)m(O01)} and {(01)(001) u} of the set ~2 for 

eases m = 1, 2 and 3 

bTWbbWbaWb > a >  b T W b t W b a W 1  
b S W b * W ' " W 1  -- -- b S W b T W " ' W 1  

010101010 :>a(b) > 010101001 
111111111 -- -- 111111111 

b6.WbaWb bSWbaW I 
b~Wb~W W1 > a > - -  �9 "" -- -- b e W P W ' " - 4 - 1  

0101010 > a ( b ) ~  0101001) 
1 1 1 1 1 1 1 -  -- 1111111 

b~Wb baWl 
b~WbaW "'" W1 --~a> b~.WbaW "'" .+.1 
01010 > a ( b ) >  0100l )  
11111 -- -- 1 1 i l l  

b~WbaWb b~WbaW 1 
b~'WbtW "'" W1 > a >  -- --b~.+.b~W "'" "4-1 
01001010 > a ( b ) >  01001001~ 
11111111 -- -- ~ ~ - 1  

P WbS +ba Wb p +bSWba + l 
b I ~  "'" -4-1 > a >  b~oWPW ... W1  

(olooloololo olooloolool ) 
11111111111 11111111111 

9 

F---- 3 
7 

F=s 
5 

F=_ 3 

8 

4 

II 

F(~) 

C. E lemen t s  o / G e t  S 3 

For the example {0100101001001}  of the element 
of S a previously cited, the condition corresponding to 
(17) is found to be 

yx~ < 0 ,  y s > = a - - 1 ,  (27) 
o r  

bnWbaWbeWbaWb > ~ a ~  b n W b t W b 6 W b a W 1  (28) 
bl~ W btt W "'" W 1 b12 W bn W "'" W 1 

(see Fig. 8). Obviously F = 2. 

The values of a and F are shown in Table 3 which 
correspond to periodic sequences 

{(Ol001)m(01O01001)} and {(01001)(01001001)  m} 

for cases m ---- 1 and 2. 

Total Length el  the Intervals of a 
which Correspond to the Elements oI S 

Our next  task then is to calculate the total  length 
of intervals of a which correspond to the elements of S. 

For the element {10}={01} of S t, the corre- 
sponding interval is 

b 1 
bW1 _~>a> b W l '  

so tha t  the length of the interval is ( b -  1)~(b 2 - 1 )  -t. 
Similarly, the length of the intervals for {110} and 
{001} is (b - -  1)~(b a - -  1) -t, one for {1110} and {0001} 
is ( b -  1)2(b 4 - 1 )  -1. Hence the total  length of intervals 
which correspond to the elements of S x is given by  
(b - -  1)2Lx, where 

1 ( t l l ) 
L I = - b T - ~  -~-2 ~ - - ~ - ~ - - I - ~  '-~- ~-i--~-~ -1- "'" �9 

1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  | 

F Z : a ~  "! 
4/9 . . . . . . . . . . . . . . . . . . . . . . . . . . .  . , - ~ t / " ~ l ~  

. . I i ~"~ ' 2 (a~  

�9 i l l  . . . . . . . . . . . . . . . . . . . . . .  ~ ' ; r " - - ' ~ .  I I 
j ~ J  I s [ I 

2/s . . . . . . . . . . .  - / ~ "  ,, 

I I ! i 1 t 
318 r ' - - -  -~6-'~r ~ ~ i 

�9 " 1 I I 
4 / ' 1 1 6 -  - -  - - ,1~,~r  r , 

sill I [ l 
19 ~, ~, , , 

I# 
# " , , 

I I  I I I 
I 1  I I I 

Jg g II I I I 
1131 ,, r , 
- - ~  tl i- J. / ,  ~ a 

/ / \ 
b b 3 + l  b 3 + b  

b2;+b+l ~ bh+.- ,+l  

Fig. 7. The relation between a and F for periodic sequences 
{(01)m(001)} and {(01)(001)m} of the set 8~. Fu2(a) and 
Fat (a) are functions which give an upper bound and a lower 

bound, respectively 

Next,  the total  length of intervals of the elements 
of S 2 will be considered. The intervals for the elements 
of Ss, which lie between {01} and {001}, are as fol- 
lows. From Table 2, it is seen tha t  the interval for 
{(01)(ool)} is 

baWb baWl 
ba'+WbaW "'" W1  ~ a ~  bt.Wba W ...  W1  ' 

so tha t  the length of the interval is given by  
(b --1)~ (P - -1)  q. The lengths of the intervals for 
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Fig. 8. Graphic display of periodic sequence 
(0100101001001}, which is an element of the set Sa 

Table 3. The values of a and F which correspond to periodic se- 
quenoes {(01001)m(01001001)} and {(01001)(01001001) m} 

of the set S s for cases m = 1 and 2 

b16 -4- bla -4- bn + ba -4- ba + ba -f- b 
blT + b16 -f- "'" -4-1 

>_a> ble+b=-4-bn-4-bS-4-b~-Fba+ l F =  7 
b 1~ -~ b ~* + "" + 1 18 

010010100101001010 
111111111111111111 

> a ( b ) >  010010100101001001.) 
111111111111111111 

bn + bS + b~ + b~ + 1 5 bn-4-bS+b~+ba-[-b > a >  F =  
b12-~b11"{ - "'" +1  : = bl2~-bll+ .... -~1 13 

0100101001010 >~a(b)> 0100101001001) 
1111111111111 1111111111111 

b~ + b~ -4- bl~ -+- bn A- bS -l- b~ -4- ba -4- b 
b ~~ -4- b TM -~  " ' "  ~ -  1 

> a >  b~9+b~+b~*+bn+bS-4-b~+ba+l F - -  8 
b ~~ + b 19 -~  " ' "  ~ -  1 2 1  

010010100100101001010 
111111111111111111111 

010010100100101001001 
> a(b) > ~ ~ f i  Vfi  V f  lTVf i  Vfi  H / 

{(01)~(001)} and {(01)3(001)} are (b --1)2 (b' --1) -1 
and  (b - -  1) 2 (b 9 - -  1) -1, respect ive ly .  On the  o the r  hand,  
the lengths of the intervals for {(01)(001) ~} and 
{(01) (001)3} are (b -- 1)~ (b s -- 1 ) -1 and (b -- I)~ (b u -  1)-1, 
respectively. Hence the total length of intervals for 
elements of S~ which lie between {01} and {001} is 
given by ( b -  1)~L2 (5), where 

1 ( 1 1 1 ) 

+ ~ + ~ - ~ 1  + b ~  + "'" �9 

The length of the intervals corresponding to the 
elements of S~ which lie between {110} and {10} is also 
equal to (b--l)  ~ L~ 5). 

Likewise, the length of intervals corresponding to 
the elements of $2, which lie between {001} and {0001} 
and between {1110} and {110}, is given by (b - - l )  2 
L~ 7), where 

Lg) = b T _ ~  + b,0_ 1 + ~ + + "'" 

1 

In the same way, L~ 9), L~ 11), L~18), ... are obtained, 
and the total length of intervals corresponding to the 
elements of S~ is given by ( b -  1)~L~, where 

L 2 ---- 2 (L~ 5) + L~ 7) + L~ ~ + ...). 

Next, the total length of intervals which corre- 
spond to elements of S s is calculated and denoted by 
(b--1)2L3 . To cite an example, the total length of 
intervals corresponding to the element of S a which lie 
between {(01)(001)} and {(01)(001) 2} is, referring to 
Table 3, given by ( b -  1)2L~ 13), where 

1 ( i  1 1 ) 

+ b ~ - ~ f  + by2~_ 1 + ~ + . . . .  

In general, the length of intervals corresponding 
to the elements of S is given by (b--1)~L with 

oo 

L = ~ , L i ,  
i=1 

where (b -- 1)2Li is the total length of intervals corre- 
sponding to the elements of Si (i ---- 1, 2, 3 . . . .  ). 

The above-mentioned results are summarized in 
Table 4, where the integers n ( n ~ 2 )  indicate the 
terms (b n - -  1) -1, C i represents the set of the integers n 
which correspond to the elements of Si,  and only a 
half of the whole is shown in this table because it is 
symmetrical. Table 5 contains numbers of the integer n 
which belongs to each Ci (i = 1 ,  2, 3), the sum of 
them ~, and double the sum ~v (n) (except for the case 
n = 2 ) .  Since ~(n) is the number of terms (b n -  1) -1 
which are involved in L, 

L =  ~ r (29) 
b n -  1 " 

n = 2  

I t  is proved that  ~(n) is nothing but Euler's 
function (see Appendix I), namely, the number of 
positive integers not  greater than and prime to n. 

N O W ,  

n = l  b n - - 1  
- - - =  ~ .  q~(n) ~ .  b -rn  

n = l  r = l  (30) 

where the last sum is taken over every divisor s of m. 
But  since (Hardy and Wright, 1960) 

s ~  q~(s) ~ m ,  (31) 
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Table 4. Positive integer n implies the term (b n -  1) -~, (b -- 1) 2 
times of which is the length of the interval corresponding to 
an element of S. 0 i is the set of integers n which correspond 
to the elements of S i. Only a half is shown in this table because 

it is symmetrical 

01 0~ C. 02 02 03 

4 

5 

12 

6 
. , .  

13 

7 

~ 1 7 6 1 7 6  

13 
11 
9 
7 

8 
l i  

~  

13 
10 
7 

11 
~ 1 7 6  

. , ~  

13 
9 

~ 1 7 6  

. . ~  

11 
~ 1 7 6 1 7 6  

. ~ 1 7 6  

13 
~ 1 7 6 1 7 6  

Table 5. This table contains numbers of the integer n which 
belongs to each C i ( i=1 ,2 ,3 ) ,  the sum of them X, and 

double the sum r (except when n = 2) 

n o2 o~ o3 ,v r 

2 1 0 0 1 1 
3 1 0 0 1 2 
4 1 O O 1 2 
5 1 1 0 2 4 
6 1 O 0 1 2 
7 1 2 0 3 6 
8 1 1 0 2 4 
9 1 2 O 3 6 

10 1 1 0 2 4 
11 1 4 0 5 10 
12 1 0 1 2 4 
13 1 4 1 6 12 
: . �9 : : : 

i t  immedia te ly  follows tha t  

~(n) 
~, m b - m = b ( b - - 1 )  -2, (32) ~, b n _ l  - -  

n = l  m = l  

and  hence 

L =b(b  --  1) -2 - -  (b - -  1)-* ~-- (b - -  1) -3. (33) 

Thus  i t  is shown tha t  the to ta l  length  of the inter-  
vals which correspond to the elements of S is equal  
to un i ty .  

Function F(a)  
As has been seen in  t h e  previous section, the 

func t ion  F(a)  is defined over an  enumerab ly  inf ini te  
n u m b e r  of in tervals  which are everywhere dense in  
the  in te rva l  0--~a--~ 1, and  the to ta l  length  of the 
in tervals  is equal  to un i ty .  I t  is clear t h a t  this  funct ion  
can be un ique ly  extended to a func t ion  which is 
defined th roughout  the i n t e r v a l  0--~a--~ 1 in  a na t u r a l  

way. The extended funct ion  (denoted by  F (a) anew) 
is cont inuous,  nondecreasing,  f lat  ( F ' ( a ) = 0 )  aImost  
everywhere in  0 < a < 1 ; nevertheless F(0)  = 0, 
F (1 )  = 1. Thus  the conclusion t h a t  the funct ion  F(a)  
is an  extended Cantor ' s  func t ion  (Titehmarsh,  1968) 
is achieved. 

Correspondence to Harmon's Experimental Results 
The values of F of the periodic sequences which 

belong to the set S~ and  lie between {lm+10} and  {lm0} 
are given by  

n(mA-1)A-m ( n >  1), 
F1 = n(m+2)+(mA-1)  

or 
(m-]-l)~-nm (n--> 1), 

"F2= ( m + 2 ) ~ - n ( m + l )  

and  those between {0 m 1} a nd  {0 m+l 1} are given by  

n + l  
~ =  n ( m + l ) +  (m+2) (n >= 1), 

or 

l + n  ( n >  1). F4= (m+l)+=(m+2) 

A detailed correspondence of these values of F to 
H a r m o n ' s  exper imenta l  results is shown in  Table 6. 
Since a in  (9) is no t  exact ly  the same as t h a t  in  Fig. 1, 
correspondence of the values of a can no t  be made.  

Table 6. Comparison of the values of F between Harmon's 
experimental results and our theoretical results 

Harmon F m n Harmon F m n 

1:1 F,  ~ -- 
4:5 2"1 4 0 
3:4 F 1 3 O 
5:7 F 1 2 1 
2:3 F, 2 0 
3:5 F 1 1 1 
1:2 F 1 1 0 
6:13 F 3 1 5 
4:9 2"a 1 3 
2:5 F 3 1 1 
1:3 F 4 2 O 
5:16 F a 2 4 
3:10 F s 2 2 
2:7 2,a 2 1 
3:11 F 4 2 2 
1:4 F~ 3 0 
3:13 Fa 3 2 

2:9 F a 3 1 
3:14 2' 4 3 2 
1:5 2"4 4 0 
3:16 F 3 4 2 
2:11 F a 4 1 
3:17 F 4 4 2 
1:6 F 4 5 0 
3:19 2,~ 5 2 
2:13 2,a 5 1 
1:7 F a 6 0 
2:15 2"3 6 1 
1:8 2"4 7 0 
2:17 F s 7 1 
1:9 F 4 8 0 
2:19 F a 8 1 
1:10 F~ 9 0 

An Analogue Circuit 
I t  is shown t h a t  the very simple circuit  in  Fig. 9, 

which is composed of a delay line and  a negat ive  
resistance element,  is an  analogue of our mathemat ica l  
neu ron  model if the characterist ic of the negat ive  
resistance e lement  is chosen as shown in Fig. 10, 
where Z is the characteristic impedance of the delay 
line a nd  Z > R (see Appendix  II) .  

I t  is known  tha t  the voltage v(l, t) main ta ins  a 
cons tan t  value dur ing  the t ime-period T, where T is 
double the delay t ime of the delay line. Then  the 
sequence of x defined by  

xn----l[v(l, n T ) ]  ( n = l ,  2, 3 . . . .  ) (34) 
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z = 0  

Fig. 9. An analogue circuit of the mathematical neuron model 

I=J~V) 

-/ 
~V 

Fig. 10. The characteristic of the negative resistance element in 
the analogue circuit, where Z is the characteristic impedance 

of the delay line and Z > _~ 

is proved to agree with that  discussed in previous 
sections. Furthermore, a simple computation gives 

Z + R  
b = ~ > 1. (36) 

Therefore the condition -- 11o< E < V 0 implies 0 < a < 1. 
Some experimental results of this circuit, when a 

tunnel diode is used as the negative resistance element, 
was given by Nagumo and Shimura (1961). 

Appendix I 
In this appendix, the constitution ot Table 4 will 

be investigated. First of all, 

C1 ={2, 3 . . . .  }. 

The element of C 2 which lies between Pl (positive 
integer not less than 2) and Pl ~- 1 of Cx takes the form 
n=pspl-q-qs(pl--[-1),  where ps and qs are positive 
integers and ps----1 or qs = 1. 

In general, the positive integer of the form 
n = p p z + q  (px~-l), where p , q  and p~ are positive 
integers and p~ => 2, is denoted by [p, q]. If p and q are 
prime each other, it  is called a "prime pair".  

I t  is obvious that  every element of 

Ca={ .... [3, I], [2, I], [I, I], [1, 2], [1, 3] .... } 

is a prime pair. Since C s is symmetric, p > q is assumed 
hereafter. See Table A.1. 

Next, the element of C a which lies between [p~, 1] 
and [p~.A-1, 1] takes either of the following two 
forms: 

(a) [2p~-~ 1, 2] A- Pa [P~, 1] = [(pa A- 2)p~ A- 1, pa A-2], 

(b) [2p2A-1, 2 ]A-pa[ps+l ,  1] 

-~ [ (Pa -i- 2 ) P~ -{ - (Pa+ 1), p, A- 2 ], 

Table A.1. Alternative expression of Table 4 between C 1 = 2 
and C 1 ~ 3 by the use of prime pairs 

~  

[3, 1] 
. ~ 1 7 6  

[11, 4] 
[8, 3] 
[5, 2] 
[7, 3] 
[9, 4] 

o , .  

[2, 1] 

[1, I] 
[i, 2] 
[l, 3] 

3 

. . ~  

[% 4] 
[5, 3] 
[3, 2] 
[4, 3] 
[5, 4] 

where Pa ~ 0, and it is easily seen that  both of them 
are prime pairs. 

Expression (a) above is rewritten as [pap2+l,  Pal 
(Pa ~ 2), if Pa-{- 2 is replaced by Pa. The element of Ca, 
which lies between [PaP~-}- 1, Pal and [(Pa~- 1 )p~-  1, 
Pa-{- 1 ], takes either of the following two forms: 

(a) [(2paA- 1)p,A-2, 2ps-~ 1] -[-P4[PaP2A- 1, Pal 

=[((p4+ 2)pa+ 1)p~+ (p4 + 2), (p. + 2)pa+ 1], 

(b) [(2paA- 1)p2+2,  2 p z +  1] 

A- Pa [(Pa A- 1)ps ~- 1, Paq- 1] 
= [ ( ( p , +  2)p3+p~+ 1)p~+ (p, + 2), 

(p4-1- 2)pa-4-p4 + lJ, 

where Pa ~ 0 ,  and both of them are prime pairs. The 
same result is obtained for the element of C 3 with 
expression (b). 

Similar processes show that  positive integers which 
appear between Pl and Pl ~ 1 are all prime pairs. 

Our next task then is to show the fact that  when a 
prime pair [p, q] is given, the position it occupies 
between Pl and 1~ ~-1 in Table 4 is uniquely deter- 
mined. If  this is shown, it  is known that  every prime 
pair appears once and only once between Pl and Pl ~- 1 
in Table 4. 

Now, as described above, 

o~ = {[p,, 1], p~ > 1}. 

Next, the general form of the element of Ca, which 
lies between ~a, 1] and [p2-~1, 1], is either of the 
following two forms 

(a) [2p~+ 1, 2 ] + p a  

(b) [2p~A-1, 2]A-pa 

[p2+ 1] = [(p3 +2)p~ + 1,pa+ 2], 

[p2+ 1, 1] 
=[(pa A- 2) (p2 + 1) -- 1, Pa A- 2], 

where Pa ~ 0 .  Thus the general form of C a can be 
expressed as [P3P~ ~- ca, Pal (Pa ~ 2) where ea = q - l ,  and 
P~---'P2 if ea =-~1,  p~ =P2A-1 if ea = - -1 .  

Next, the general form of C4, which lies between 
[PAP2 -{- ca, Pal and [(Pa-{- 1)p~' -{- ~a, P3-{- 1], takes either 
of the following two forms: 

(a) [ ( 2 ~ +  1)p~+ 288, 21~+1] +p4[P3p~+ e3, ~] 
= [ ( (p ,+  2)p.+ 1)~i+ (p, +2)~, (p, +2)p .+  13, 
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(b) [(2p3+ 1 ) p ~ + 2 ,  a, 2 p a +  1] 

+ p4 [(pa + 1)p~ + ~3, p~+  1] 

1 ' - - [ ( ( p 4 + 2 ) ( p 3 +  1) -- )p , .+  (p4+2)e3, 

(p4 + 2) (pa + 1) --1],  

where P4 => 2. Thus the general form of G 4 is given by 

[(Pap;+ea)P~+pae3, PaP;+S,] (P4 >2) ,  

where s a = 4 - 1 ,  lo~=pa if e a = + l ,  p ~ = p a + l  if 
84 = - - 1 .  

Summing up, i t  is found that  the element [p, q] 
of C3 is expressed as 

p = p~q + e3, 

q = Pa, 

and the element of C a as 

P = i0:q + *aqa (qs < q/2), 

q =P~qa+  ~4, 

qa = P v  

In  like manner, the element [p, q] of C k can be 
expressed as follows: 

P = P~q + ~3qa (q3 < q/2), 

q = P~q3 + e4 q4 (q~ < q3/2), 

qa = P4q~ + esqs (qa < qJ2), 
. . . . . , . , . . . . , , , , . . , 

qk-a = Pk-2qk-2 + *k-lqk-a (q~-i < q~_J2), 

q~-~ =P;~-I q*-i + ~ ,  

q~-I =Pk, 

where e l = 4 - 1  for i = 3 , 4  . . . .  ,b,  and p~_l=pi_ l  if 
, i = + l ,  p~._l = p ~ _ l +  1 if ~ = - - 1 ;  p~-->l, pr  for 
i = 3 , 4  . . . . .  k. 

The above expression of the prime pair [p, q] 
indicates the position it occupies between 101 and 
101 + 1 in Table 4. An example is shown in Table A.2 
where the prime pair [143, 38] is found to belong 
to ~.  

Thus i t  is ascertained that  the number of integer 
n (n ~ 5) which belongs to Ci's (i > 2) is equal to the 
number of ways of expressing n by the prime pair 
[p, q]; namely, the number of ways of expressing n as 

n = P ~ I + q ( P l +  1) 

=(P+q)P~ + q  

= r l ~ +  q (r = p + q ) ,  

where p~ __> 2; p and q are positive integers prime each 
other; r is prime to q and r > q ~ 1 ; n is prime to r and 
n > r p l  ~_2r. Hence n / 2 >  r >  l.  

Given a positive integer n, let the positive integers 
which are less than and prime to n be 

l =r l  < r~ < ra < . .  . < r ,< r,+l <. .. < r~_l < r~=n--1 ,  

where 9 implies 9 (n). Since r~ + r ,  = n, r~ + r~_ 1 
~ n  . . . . .  r s + r s + l = n  , it  immediately follows that  
s=q~(n)/2. Since r is limited to n / 2 > r > l ,  the 
number of ways of expressing n in the form n = rp~ + q 
is equal to the number of r, such that  

r = r,, ra , . . . ,  r v 
or s - - l .  

Table A.2. This table shows how one discovers the position 
occupied by prime pair [143, 38]. If e i = 4- 1, the position is 
located, as indicated by small arrows, in a half of the set Ci, 

which consists of smaller/larger prime pairs 

143=4.38--9 p~=4 e8=--1 p2=3 qs=9 
3 8 = 4 . 9  + 2  p~=4 e 4 = + 1  108=4(2 ) q4=2 

9 = 4 . 2  +1  i0~=4 e6 =+1  p4=4(2) (k=5) 
P5 = q4 = 2 (0) 

io1=3 I%=2 .p4=2 i05=0 
%=- -1  ~' e , = + l  ~ % = + 1  j' 

[4,1] 
(0) [3,1] 

[19,5] 
(2) [15,4] 
(1) [11,3] 
(0) [7,2] 

(0) [34,9] 
(1) [49,13] 
(2) [64,17] / 

[79,21] ~ (O) [143,38] 

Besides, every positive integer not less than 
2 appears once in C v Hence it  is concluded that  the 
number of n(n  > 3) which appears in Table 4 is given 
by (s --  1) + 1 = 9 (n)/2. 

Appendix II 
Let the series inductance and parallel capacitance 

per unit length of the delay line, assumed to be lossless, 
be L and C respectively. Then the relation between 
the voltage v and the current i of the line is given by 

0v ~ - - - L  0i 0i 0v (A.1) 

As the line is shorted at  x----0 and connected with 
the negative resistance element a t  x = l ,  boundary 
conditions become 

v (0, 0 = o, (A.2) 

i(l, t )=  /(v(1, t ) + E ) ,  (A.3) 

where E is the de bias voltage, and I = / ( V )  is the 
expression representing the characteristic curve of the 
negative resistance element (Fig. 10). 

I t  is assumed that  the voltage along the line at  
t = 0  is a(x) and the current is/5(x). Therefore, the 
initial condition may be written as 

v(x, O) =~(x )  (0 < x <  l), (A.4) 

i(x, 0)=fl(x) (o<x</) ,  (A.5) 

where 0~ (0) -~ 0. 
D'Alembert 's solution of (A.1) is of the form 

1 x 

where w ---- (LC)-�89 is the propagation velocity of waves 
in the line, and Z----(L]C)t is the characteristic 
impedance of the line. 

The combination (A.6) and (A.2) gives 

~1(0 + r =0. (A.8) 

With the substitution of (A.8) into (A.6) and (A.7), 
the results are 

+,,(,+-:)} 



164 J. Nagumo and S. Sate: Response Characteristic of a Mathematical Neuron Model Kybernetik 

Fig. A.I. Graphic display of the relation between ~ and ~/in 
(A.19) 

\ 

7 / 
Fig. A.2. Comparison of this figure with Fig. 2 leads to the 
conclusion that the circuit in Fig. 9 is an analogue of the 

mathematical neuron model 

F r o m  (A.3), (A.9) and  (A.10) 

(A.I1) 

T l 
where -~- ---- w :  the propagat ion t ime of waves in the 
line. 

Equat ion  (A.I1) m a y  be wri t ten as 

This equat ion is a difference equat ion with the dir- 
T T 

ference T if r (t) is given for - -  ~ -  < t < -~ ,  r 
m a y  be successively determined for 

T 3T 3T 5T 
< t < ~ - - ,  ~ -  < t <  2 . . . . .  

Now, f rom (A.4) and (A.9) 

and f rom (A.5) and (A.10) 

r (-- --~ ) -~ ~1 (--~) =Z~ (x) (O<x</), (A.14) 

Accordingly 

r ~- =-~-{~(x)-zC~(x)} (0<x<l). (A.16) 
T 

Equa t ion  (A.15) gives r162 for - -  2 - < r  and  
T T 

(A.16) for 0 =< t < ~ .  The value of ~bl(t ) for - -  ~ < t 
T 

< ~ - ,  therefore, is determined by  combining (A. 15) 

with (A.16). Thus our problem is reduced to 
difference equat ion (A.11) or (A.12). 

By  the introduct ion of a new variable ~0 (t) : 

(A.12) becomes 

(t + T) ---- g [v 2 (t)]. (A. 17) 

Furthermore,  making use of new variables 

1 
= 1/2 {~v(t)--~v(t+ T)}, 

(A.18) 
1 

~-----~- {~p (t)+~v(t + T)), 

(A.17) is rewrit ten as 

Z 
= ~ - / ( 1 / 2  ~ ~-E).  (A.19) 

Obviously 
1 Z 

= ~ v (l ,  t) ,  v = ~ i ( 1 ,  t). ( A . 2 o )  
V 2  VZ 

From Fig. 10, (A.19) becomes as shown in Fig. A.1. 
Hence the relation between ~v(t) and ~v(t~T) is 
obtained by  rota t ing the curve in Fig. A.1 45 ~ to the 
right. This is shown in Fig. A.2. By  comparing this 
figure with Fig. 2, (35) is obtained. Furthermore,  a 
simple calculation yields {36), and (34) immediate ly  
follows f rom (A.20). 
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