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Summary. A set K of integer vectors is called right-closed, if for any 
element __reeK all vectors m ' > m  are also contained in K. In such a case K is 
a semilinear set of vectors having a minimal generating set res(K), called 
the residue of K. A general method is given for computing the residue set 
of a right-closed set, provided it satisfies a certain decidability criterion. 

Various right-closed sets wich are important  for analyzing, constructing, 
or controlling Petri nets are studied. One such set is the set 
C O N T I N U A L ( T )  of all such markings which have an infinite continuation 
using each transition infinitely many times. It is shown that the residue set 
of C O N T I N U A L ( T )  can be constructed effectively, solving an open prob- 
lem of Schroff. The proof  also solves problem 24 (iii) in the EATCS- 
Bulletin. The new methods developed in this paper  can also be used to 
show that it is decidable, whether a signal net is p rompt  [23] and whether 
certain co-languages of a Petri net are empty or not. 

It is shown, how the behaviour of a given Petri net can be controlled in 
a simple way in order to realize its maximal central subbehaviour, thereby 
solving a problem of Nivat  and Arnold, or its maximal live subbehaviour 
as well. This latter approach is used to give a new solution for the bankers 
problem described by Dijkstra. 

Since the restriction imposed on a Petri net by a fact [11] can be 
formulated as a right closed set, our method also gives a new general 
approach for , , implementations" of facts. 

1. Introduction 

The basis of many decision procedures in vector addition systems or Petri nets 
is the so called "proper ty  of monotonicity".  To give an example: if a sequence 
of transitions can fire in a given marking, this must also be possible in any 
marking that is (componentwise) not smaller. In particular, a marking is 
unbounded if for any integer n there is a place p and a firing sequence w, such 
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that firing w in __m brings more than n tokens to p. Consequently, unbounded- 
ness is a monotone property of markings. 

A marking is called dead if any firing inevitably results in a total deadlock. 
Hence the property of a marking to be not dead is also monotone. This 
property can be rephrased as follows: m is not dead, if an infinite sequence of 
transitions can fire in m. Being interested in some particular set ~ c T  of 
transitions to be fired infinitely often we define: a marking m is T-continual, if 
an infinite sequence of transitions can fire in __m containing each t e T  infinitely 
often. T-continuality is again a monotone property of markings. 

To have control on the behaviour of a concurrent system, given by a Petri 
net, one may wish to know all markings having an undesired property, (e.g. to 
be unbounded, to be dead). The main purpose of this paper is to show, how 
finite representations of monotone marking sets can be effectively computed. 

To give finite representations of infinite sets of integer vectors we will use 
the notions of regular and semilinear sets. It was proved in [6] and [-10] that 
these two notions are equivalent. 

According to [12], a subset K~_Nk is called right-closed, if with __m~K each 
m ' > m  is also contained in K. It is wellknown that the set of minimal elements 
of such a set is finite and is here called the residue res(K) of K. If Kc_IN k is 
right-closed and satisfies a particular decidable property, called RES, then 
res(K) can be effectively computed. In section 2 we give the algorithm and 
prove its correctness. The results of this section are very general and not 
specific for Petri nets or vector addition systems. 

In section 3 we define place transition nets (P/T-nets) and the notions of 
bounded, dead, T-blocked, and T-continual markings. 

The sets U N B O U N D E D  (NOTDEAD,  N O T B L O C K E D ( T ) ,  C O N T I N -  
UAL(T),  resp.) of unbounded (not dead, not T-blocked, T-continual, resp.) 
markings are right-closed sets which satisfy property RES. Hence we can 
apply the results of section 2 to effectively compute the residue of these sets for 
a given P/T-net. 

In section 4 we use residue sets res(K) to control the behaviour of a P/T- 
net N in such a way that all reachable markings are in K. The 'control '  is 
completely integrated in the P/T-net and yields a new P/T-net  N r with the 
same number  of places, but possibly additional transitions. 

The construction of N K is also a new method for the " implementat ion" of 
facts in P/T-nets in the sense of [11]. 

In section 5 we then apply the construction to the right-closed sets K of 
not-dead and T-continual markings. Using the notion of transition systems we 
show that NK has the maximal subbehaviour with respect to well defined 
properties. Of particular interest is the net N K where K is the set of T-continual 
markings. N K allows exactly the "live" firings of N and prevents from "non 
live" situations. These results give a solution to a problem of [22] to realize 
the maximal "central"  subbehaviour of processes. We also show how Dijkstra's 
wellknown banker 's  problem obtains a new solution. 

In section 6 we show that the old problem of a transition to be "hot"  is 
decidable and give applications of this result to the problem of promptness in 
P/T-nets. Also the emptyness problem for classes ~ and ~ffo~ of co-behaviour 
of P/T-nets as introduced in [28, 5] is shown to be decidable. 
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We acknowledge the work of Schroff [-25], who first gave an algorithm to 
compute the residue res (NOTDEAD).  His algorithm was not published and is 
- compared with ours - very complicated. A result very similar to Theo- 
rem 2.13 is contained in [12, Lemma 3], however, the algorithm to compute 
res(K) for a right-closed set K given there is not very practical since it works 
by mere enumeration of the two sets K and Nk-K. In [26] our result for 
effectively computing the set r e s (CONTINUAL(T) )  is mentioned as an open 
problem. This result and applications to the set of unbounded markings, 
promptness and the maximal live subbehaviour of a given P/T-net were first 
derived in [-27], but with again unnecessarily complicated proofs. 

2. Finite Representation of Integer Vector Sets 

Definition 2.1. Let Z denote the set of integers and 1N be the set of nonnegative 
integers. If A, BeZ  k then we write A + B:={_x + y_I_xEA, y eB} and 

A e : = U A I ,  where Ao:={O } and Ai+I:=Ai+A, 
i=0  

and 0 := (0  . . . . .  0) is the zero vector of appropriate  dimension. Usually vectors 
are written as small, underlined letters and are understood as column-vectors 
even though we sometimes prefer to write them as row-vectors, especially in 
examples. 

Definition 2.2. The regular subsets of Z k are defined as follows: 

(a) Every finite subset of 7Z k is regular. 
(b) If A and B are regular subsets of Z k so are AuB,  A+B,  and A*. 
(c) A set A _  Z k is regular, iff it is so by finitely many applications of rules (a) 
and (b). 

Definition 2.3. A regular set R___Z k is called linear, if it is of the form R={_x} 
+ B  e for some _x~TZ k and some finite subset B~_Z k. 
A regular set R~_Z k is called semilinear, if it is a finite union of linear sets. 

Theorem 2.4 [6, 10]. The regular subsets of ~.k (or N k) are precisely the 
semilinear subsets of 7. k (or Nk). 

Definition 2.5. Let No,:={co} wN,  where co is a new element satisfying: 

VneN:n<~o ,  Vn~No:n+~o,=~o-n:=co, min(n,o)):=n,  

max(n,~o):=co, (n+l)-co:=~o,  0 . co ,=~o-0 :=0 .  

The relations > ,  < ,  = for vectors are understood componentwise and _x<.y is 
a shorthand for (x<y and x +y). The dyadic operations + ,  - ,  min, and max 
are evaluated componentwise too. 

For  sets M, M ' ~ N ~  define: 

max(M, M'): = {max(_m_, m')l_me M, m'eM'}, 

m ax(M) : =  max(M,M),  
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min(M, M ' ) :=  {min(_o_, m')l m~M, m'~M'}, 

min(M):=  rain(M, M). 

Definition 2.6. For  each mEIN~ let reg(_m_): = {m'~iNkl m' <m} be the region speci- 
fied by m and hyp(__m):= {m'~Nkirn(i)4:~ implies m'(i)=m(i)} denotes the hyper- 
plane specified by m and restricted to N g. 

Lemma  2.7. For each m~iN~ the sets reg(_m_) and hyp(_m_) are semilinear. 

Proof. Trivial and omitted. 

Definition 2.8. A set K ~_ IN k is called right-closed iff K = K + INk 

Definition 2.9. Let K be a subset of INk then the residue set of K, written res(K), 
is the smallest subset of K which satisfies res(K)+iNk= K +IN k. 

By this definition res(K) is a set of incomparable vectors with respect to the 
partial order < and therefore by Dicksons lemma finite. Thus we obviously 
have : 

Lemma 2.10. For each right-closed set K ~_IN k res(K) is finite and K = r e s ( K )  
+INk is a representation of  K as a semilinear set. 

Lemma 2.11. I f  K , K '  are right-closed sets, then K w K '  and K ~ K '  are right 
closed, too. 

Proof. Trivial and omitted. 

If one knows the residue sets of the right-closed sets K and K', then it is 
easy to compute the sets r es (KwK' )  and res(Kc~K'). 

Lemma  2.12. Let K, K'  ~ INk be right-closed sets. 

(a) res (K u K') = (res (K) \K ' )  u (res (K ' ) \K)  u (res (K) c~ res (K')) 
(b) res(K ~ K ' ) =  res(max(res(K), res(K'))). 

Proof Statement (a) is easily proved and thus left for the reader. To verify (b) 
observe that for any set R ~ I N  k res(R) is a set of incomparable vectors, and 
moreover for any mo~Kc~K'  there exist __m~res(K), m__'cres(K') with 
m o > max(m_~ m'). Hence m 0 > m" for some m"~res(max(res(K), res(K'))). 

If a right-closed set K is given in the form K = L + I N k ,  then it is not always 
possible to effectively compute res(K) from a finite representation of L. The 
next result exhibits a necessary and sufficient condition, called property RES, 
to effectively construct the finite set res(K). 

k Definition 2.13. For each set K_~IN k define the predicate PK: IN~--, {true, false} 
by pK(__m):=(reg(m)~K+0). A set K is said to have property RES iff the pre- 

@ k dicate PK(-~-) is decidable for each m No,. 

The following theorem is similar to Lemma 3 in [12], where an algorithm to 
compute res(K) for a right closed set K is given. However the algorithm is not 
very practical, since it works by mere enumeration of the both sets K and INk 
- - K  using the fact that membership is decidable for both sets. Here we want to 
use the property RES and a different algorithm which might have smaller 
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complexity. However, as regards its complexity we can only give a lower 
bound. 

Theorem 2.14. Let K~_N k be a right-closed set. Then res(K) can be effectively 
constructed iff K has property RES. 

Proof. Assume first that res(K) can be computed. Then K=res (K)+lN  k gives a 
semilinear representation of K. Since reg(m) is a semilinear set, a representa- 
tion of which can be found effectively, the question "reg(rn)c~K=0?" is decid- 
able. 

Conversely assume that the question "reg(_~_)c~K=0?" is decidable for each 
meNk~. The following method can be used to effectively construct res(K): 

Let K be a right-closed subset of IN k for which property RES holds, i.e. 
pr(m__):=(reg(m)c~K=t=O) is decidable for each __reGal "k. 

Algorithm to compute res(K) 
(1) begin (* initialization ,) 
(2) i :=0 ;  M0:={(o9 . . . . .  co)); R0:=0;  
(3) repeat 
(4) choose some m~Mi; 
(5) if PK(~---) = false then Mi: = M i -  {m} ; 
(6) until 
(7) PK(~--) = true or M i = 0 
(8) endrepeat; 
(9) if Mi=O then r e s ( K ) : = R  i and stop 

(10) else 
(11) begin (, now reg(_o_)nK+r and hence reg(_m_) contains at least one 

element of res(K); one such element will be found in the next repeat loop ,) 
(12) repeat 
(13) choose some coordinate __re(i) of m which in this loop has not been 

considered yet; 
(14) replace Ln(i) in m by the smallest n~lN such that PK(-~-) for this new vector 

is still true; 
(15) until 
(16) all coordinates have been considered 
(17) endrepeat; (,  the new vector __m~N k found in this way will be an element 

of res(K) as will be shown in Lemma 2.15 below ,) 
(18) Ri+ l . .=Riu  {m}; 

Let m=(x l ,  ...,Xk) be the vector found in the preceding steps (lines (13) to 
(17)). 

(19) M I : = {  (yI ' ' ' ' ' yk)~Nk 31<j<k:y,, = 09 yj:=xj-lfor all m +jand~} 

(* M'~ is describing all the regions that do not contain the element __m, i.e. for 
reg(M'i):= U reg(Ln_') one has N k - r e g ( M ' i ) = { m } + N  k *) 

(20) Mi+ a:=min(Mi,M'i) 
(21) i : = i + 1 ;  
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(22) endif 
(23) goto line (3) 
(24) end (* algorithm .). 

Lemma 2.15. The vector m__ constructed in lines (13) to (17) of the previous 
algorithm is an element of  res(K). 

Proof. First of all, this new vector __m is an element of the set K, since p~:(_m_) 
=true.  Now, for the sake of contradiction assume that __meres(K). Then there 
exists some m'<.m with PK(-O-')= true, and, according to the sequence of choices 
made in the repeat loop to construct __m, there will be some coordinate re(j), 
which for the first time is larger than the corresponding coordinate m'(j). But 
this contradicts the fact that the coordinate m(/') was chosen to be the smallest 
n e N  such that the new vector m obtained in this step still satisfies p~(N). 

Lemma 2.16. At  line (3) of the algorithm one always has: 

(a) reg(Mi)caRi=~ and 
(b) reg(mi) _ res(K) - R i. 

Proof. We shall use induction on i: 

Basis 

Obviously reg(Mo)= N k and R o = 0 so that (a) and (b) are satisfied trivially. 

Induction Step 

Assume reg(Mi) ca R i = 0 and reg(Mi)_~ r e s (K) -  R i at line (3). Then this remains 
true by going from line (3) to line (20) without passing through line (22), since 
in the repeat loop line (3) to line (8) only those m eN ~  are substracted from Mi, 
for which reg(__m) ca res (K) = 0. 

Let m ~ r e s ( K ) - R  i be the new element computed to define Ri+l:=Riw{m__} 
in line (18). Then M'i computed in line (19) has the properties: 

(a') mCreg(m'i) and 
(b') __m'~reg(M'i) implies m <m' which is equivalent to 

N k -  reg(m'i)= {__m} + N k. 

Now reg(Mi+l)=reg(Mi)careg(M'i) by definition of M~+ 1 and the property 
reg(min~,  y)) = r e g , )  careg(_y). 

Hence: reg(Mi+ 1)caRi+ 1 

= reg (Mi) ca reg (m'i) ca R i+ 1 

= reg(Mi) ca reg(m'i) ca(Riu {__m}) 

= (reg( M i)careg( M'i)c~ Ri)w(reg( M i) ca reg(M'i)c~ {m__ } ) 

=r  since by induction reg(M~)caRi=0, and by construction of M'~ one 
has mCreg(m'i). 

Thus, reaching line (3) again after having executed i : = i + 1  in line (21) 
property (a) is again true. 
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For  showing the other property (b) observe that res(K)-Ri+l=res(K ) -  R i 
-{m}=(res(K)-Ri)c~(res(K)-{m}), since Ri+l=Ri~{m}. Now res(K) 
-Ric_reg(Mi) by induction and res(K)-{m}~reg(M'i) by properties (a') and 
(b') and the observation that m' and __m are incomparable. 

Hence res(K)- Ri+ l =(res(K)- Ri)c~(res(K)- {m} )c-reg(Mi)c~reg(M'i)= reg 
(Mi+ 1) as desired. This proves Lemma 2.16. 

It is now easy to verify the total correctness of the algorithm as follows: 
Each time, that the statement in line (18): R i + l : = R ~ { m }  is executed, one has 
meres(K) (see Lemma 2.15) so that R~.R~+icres(K) for each i for which this 
statement is executed. Since by Lemma 2.16 we have reg(Mi+ 1) ~ r e s ( K ) -  R~+ ~, 
the first repeat loop, (lines (3) to (8)), wili always find a new element ir~ 
reg(Mi+Oc~(res(K)-R~+O if it exists. Since res(K) is finite there will be some 
index j such that Rj=res(K) and then M / ~ r e s ( K ) = 0  which implies pK(_mm) 
=false for each m__eMj and hence the algorithm will correctly terminate by 
emptying M~ at the stop statement in line (9) with final output res(K): =Rj .  

3. Computing Certain Right-Closed Sets in Petri Nets 

Let us first fix some notation for Petri nets or more precisely P/T-nets. For 
much more detail see [17]. 

Definition 3.1. A P/T-net N = (P, T, F, B) is defined by 

a finite set P of places, 
a finite set T of transitions, disjoint from P, and two mappings: 

F: P x  T--~N 

B: P x  T--*N 

called forward and backward incidence mapping. They can also be seen as 
(/P/,/T/)-matrices over N, (where /S/ is the cardinality of a set S). Let A : = B  
- F  be the incidence matrix of the P/T-net N. F(t), B(t) and A(t) denote the t- 
column vector in N w/o f  F, B and A, respectively. 

Definition 3.2. A marking m__~N Iv! is a column vector giving a number __re(p) of 
tokens for each place p~P. A transition has concession in __m, written rn(t), iff 

"lVl F(t)<m. For m ~  we also write __re(t> iff 3m'ereg(m):m'(t) .  
For rnMNif I we define re(tyro' iff m(t> and m'=m+B(t)-F(t)=m+A(t) .  We 

extend this notion to strings w~T* by 

(a) __m(2)m for a l l _  ,,,wl met% and 
(b) m(wt)m" iff3rn'~N~/: m__(w)m' and m__'(t)m". 
Again we say that w has concession in ,,,/v/ , /el. me~o~,  written rn(w), iff 3m e N o  �9 
m(w) m'. 

For ~ ~ ~T/PI , , , ~ , ~  we let ~2(_m_):= {p~P[__m(p) = co}. 

Definition 3.3. A P/T-net N=(P, T,F,B) together with an initial marking 
__moelq/ej and/or a labelling homomorphism h: T * ~  X* will be also called a 
P/T-net and is denoted by (N, mo) and (N,h,_mo), respectively. For  such a P/T- 
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net (N,__mo) and a subset K~IN/P/ we define the K-restricted set of firing 
sequences 

FK(N' - - -m~ = { tilti2"'" ti"er+ Iform~ mieK (O<i<__n)jl(ti~)m---n~ 

and the K-restricted reachability set 

RK(N, too): = {m__sN/P/13 we F~(N, m__o): mo(w> m__ }. 

For K=N/P/ these sets are the ordinary set of firing sequences F(N, mo) and 
the reachability set R(N,m__o), respectively. 

For  a net (N,h, m0) the language is defined by L(N,h,__mo): 
= {h(w)[weF(N, mo) }. Until section 5 we assume h(t)+2VteT. 

Definition 3.4. Let A: T*- ,Z/P/be  a homomorphism defined as follows: 

A (2): = 0  (null-vector of suitable dimension) 

A(t)..=B(t)-f(t),  and A(uv):=A(u)+A(v) for u, ver*  

We also use the Parikh image 71: T*~N/r / ,  where 7J(w)(t) gives the number of 
occurences of the transition t in the finite word weT*. We will also write 
5U(w)(t)=o) if w is an infinite sequence and this number is not finite. A and 7 ~ 
are related as follows 

A (w) = A- 7J(w) 

which motivates the choice of the same symbol A for both notions (homomor-  
phism and incidence matrix). 

Modelling concurrent systems by Petri nets also the infinite behaviour is of 
importance. In this paper we also use the notion of infinite firing sequence of a 
P/T-net [28]. 

Definition 3.5. X ~ denotes the set of infinite words w=w(1)w(2).., over the 
alphabet X. For i~lN w(i) denotes the i-th element of w and w[i] 
=w(1)w(2) ... w(i) the prefix of length i of w. 

For w eX  ~ the set In(w):={xeXIx=w(i) for infinitely many i~N} is called 
infinity set of w. 

An ~o-word w~T '~ of transitions in a net N=(P,T,F,B)  is said to have 
concession in a marking meN/P/, again written __re(w), if m(w[i ] )  for all ieN.  
F,~(N,__mo):= {weT~ is the set of all infinite firing sequences of N with 
initial marking __m o. 

For a motivated introduction to place/transition nets we refer to [17] and 
[29], where also the following construction of the coverability graph is used. It 
differs in some way from the original form in [19]. The most important 
difference used here, is the possibility to start with an initial node containing 
o-coordinates.  

Definition 3.6. Let N=(P,T,F,B)  be a P/T-set a n d  "/P/ mona. % . A coverability 
graph G(N, mo) of N will be a finite, directed, edge labelled graph consisting of 
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c ~ T / p /  a set of nodes N O D E S _ ~ , ,  and a set-* ~ NODES x T • NODES of la- 
belled arcs. G(N, mo) is defined by the following construction: 

(1) begin 
(2) N O D E S : =  {mo}; -* :=0 ;  
(3) loop 
(4) choose meNODES,  t e T  such that F(t)<_m and the pair (.m_,t) has not 

been considered before; 
(5) if no such pair (m, t) exists then stop fi; 
(6) m__':=m__-F(t)+B(t); 
(7) if__m'eNODES 
(8) then 

t , (9) -*-" = - *  u {(_m_, t, m )}, 
(10) else begin 
(11) m" :=m '+co .  Z (m ' -  m'") 

( m ' " ~ _ m )  A 

(~'" __<_m') 
(12) N O D E S : =  NODES u {m"} ; -~:  = -~ ~ {(m, t, m")} 
(13) end if; 
(14) goto line (3) 
(15) end (* of construction ,) 

It is well known that the construction of the coverability graph always ter- 
minates, however, the resulting graph is usually not unique, because different 
choices at the beginning of the loop can produce different graphs. 

Definition 3.7. Let G:=G(N, mo) be some coverability graph. For  each node 

m'~NODES of G define L(G,m__'):={veT*lm__'*-~m" is a path in G} 

and L(G): = U L(G,m') 
m" e N O D E S  

Lemma 3.8. Let G(N, mo) be some coverability graph. Then L(G) and L(G,m') 
for each m'eNODES are regular subsets of T* and effectively constructable 
from G. For each m"ereg(m_') the set F(N,m' )  is a subset of L(G,m'). In 
addition, a set of places p ' c  p is simultaneously unbounded in R(N, mo) iff 
3 m e NODES: (2(.m__) = P'. 

Proof. First of all, as is well known, L(G) and L(G, m') are regular sets since the 
coverability graph G(N, mo) is finite. Clearly F(N,m")c_L(G,m') for each 
m'ereg(m'), since then we have m"_< m. 

The last statement about the set p'c_p of simultaneously unbounded 
places is Theorem 3.11 in r l3].  

Lemma 3.9. Let N=(P,  T,F,B) and G(N, mo) be some coverability graph of N 
with initial node ,,.IVl m__oeir%, . Then veL(G) and A(v)>O implies 
3 ueT* 3 m'ereg(m_o): uveF(N, m'). 
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Proof. We first quote  T h e o r e m  1 (b) f rom [29], which should be also clear 
f rom L e m m a  3.8 or [-19]" 

If moeN/P/ is an initial mark ing  of N and __m some node in G(N,m__o), then 
for every k e n  there is some firing sequence UkeF(N,m__o) with mo(Uk)rag, such 
that  m__k(P)>k for all pe(~(_O_) and m__k(p)=m(p ) for all pr 

If we replace moeN/P/by ._,,o~,,~,m =N/P/as required in the Lemma,  then the claim 
remains  true if the initial mark ing  of N is replaced by some suffiently large 
__m'ereg(_.m_o). 

F r o m  this r emark  the L e m m a  is p roved  as follows. If  veL(G) and A(v)>-_O 
then there is a pa th  m l ~ = ~ m  2 in G(N, mo). If Q(m__l)=t=~2(m2) then by A(v)>O 
and __mz>__m 1 we have __m 2 ~ ,__m 3 with ~2(_m2)=f2(_m_3) for a third node m 3. Since 
the set of places is finite, after a finite number  of repeti t ions of this step, we 

reach nodes __m i and __m~ such that  __m i v ,__mj in G(N, mo) and ~2(__ml)= Q(mj). N o w  
v can be fired in the net f rom every mark ing  mqEN/P/ with m__q(p)=m__i(D) for all 
Pr and a sufficiently large number  k of tokens in all places pef2(mi). By 
the claim ment ioned  in the beginning of the p roof  there is __m'ereg(_.m_0) and 
UkeT*, such that  _mq with m'(uk)m_ q is such a marking.  By UkVeF(N,m__' ) we 
have shown the Lemma.  

Definition 3.10. Let N=(P,T,F,B) be a fixed P /T-ne t  and _meN/e/ be an 
arb i t ra ry  mark ing  of N. 

(a) __m is T-blocked for a set T _ ~ T  of transi t ions iff no transi t ion t e T  has 
concession in a reachable  mark ing  m'eR(N,m__). When T =  T then m is a total 
deadlock. (For  T =  {t} __m is often called t-dead which we want  to avoid because 
of possible confusion with the next definition.) 

(b) __m is called dead, iff F(N, m__) is finite. 
Remark: If __m is dead, then total  deadlocks cannot  be avoided. Such si tuations 
are somet imes  called unsafe. 

(c) m is called bounded, iff R(N, m) if finite. Otherwise rn is called unbounded. 
(d) m is called T-continual for some subset ~_c T of transitions, iff there is 

some infinite string we  T ~ such that  re(w) and 7"__ In(w). 
Remark: Every live mark ing  rn is T-cont inual  for T =  T, but  the converse is 
usually not  true. A mark ing  __m is T-cont inual  iff the predicate  hot (7",__m) in [18] 
is true. 

N o w  we define the following sets of mark ings  according with (a) to (d) 
above:  

(aa) N O T B L O C K E D ( T ) : =  {rneN/e/[__m is not T-blocked} 

(bb) N O T D E A D : =  {m_eN/P/Im is not dead} 

(cc) U N B O U N D E D ,  = {m_eN/P/lm is unbounded} 

(dd) C O N T I N U A L ( T ) :  = {meN/P/Ira is T-continual} 

F r o m  the monoton ic i ty  proper ty  of  Petri nets it follows immediate ly  that  the 
four sets of mark ings  defined by (aa) to (bb) are all right-closed. We shall now 
show that  they also satisfy p roper ty  RES. 
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Theorem 3.11. Let N=(P ,T ,F ,B)  be a fixed net and T o T  be arbitrary. Then 
each set K e {NO TBLO CKED(T), NO TDEAD, UNBOUNDED, C O N T I N  UAL(T)} 
satisfies property RES. 

Proof. Let be G:=G(N,m)for  some m~lN/p/. 

Case 1: K = N O T B L O C K E D ( T )  
From Lemma 3.8 one concludes that reg(_~.)nK=l=0 iff for some t e T  there 
exists an arc in G which is labelled by t, i.e. teL(G). This clearly is decidable, 
hence the set K has property RES. 

Case 2: K = N O T D E A D  
Again from Lemma 3.8 one concludes that reg(_m.)nKq:0 iff there exists 
v~L(G) such that d(v)>=0. Since L(G) is a regular subset of T*, which can be 
constructed from G effectively, the set A(L(G))'.={A(v)IveL(G)} is a regular, 
hence semilinear, subset of Z/e/. Then S :=  A(L(G))nN/el is a semilinear subset 
of N/P/, a representation of which can be constructed effectively. Hence " S + r  
is decidable and S * 0  iff ~ vEL(G): A(v)>O. Thus K has property RES. 

Case 3 : K." = U N B O U N D E D  
Again we find, using Lemma 3.8, reg(m_)c~K+0 iff 3veL(G): A(v)>_O_. We 
construct the semilinear set S: = A(L(G))n {_m'~N/P/l_m',O) and then S * 0  iff 
reg(m)nK=g0, which is decidable using the finite representation of S. Hence, 
also in this case the set K has property RES. 

Case 4: K = C O N T I N U A L ( T )  
Let et~lN/r/ be defined by e t ( t ) : = i f  t~T  then 1 else 0 ft. We first show the 
following claim: 

Claim: reg(_m_)c~K4:O iff 3 veL(G): A(v)>O and ~(v)>_ k~(et ). To see this assume 
first, that there exists veL(G) such that d(v)>__0 and tP(v)__> ~g(er Then by 
Lemma 3.9 there exists m'ereg(_m) and a string usT* such that m'(uv). Since 
d(v)>O also m'(uv n) for every n e N  and m' is T-continual by T~_In(r176 

Conversely, if m'ereg(~_) is T-continual, then there exists an infinite se- 
quence w e T  ~, such that m'(w) and T~_In(w). Obviously w has a decom- 
position w=wlwEw 3 .... where wiET* and ~'(wi)> ~(s 

Now /f / t(W1)/ 'f / l ,  m"(W1WE)m2, tTff(W1WEW3)ln 3 . . . .  defines an infinite se- 
quence of markings m', __m 1, __m 2 . . . . .  Therefore there must exist indices i<j  such 
that __mi< mj. 

Defining v:=wi+lwi+2.. .w j we then have mi(v)__m j with A(v)>O and 
~(v) >__ ~(~).  

Since mieR(N,m' ) there exists ueT* such that m__ ' (u) m__" with __mi~reg(.m"), 
hence uveL(G,m__) and veL(G). This proves the claim. 

Now, in order to decide whether there exists some veL(G) with d(v)>O and 
kU(v)=> 5v~t) we proceed as follows: 

First, R:=L(G)n{weT*[~F(w)>~P(.C_f)} is a regular set, since it is the in- 
tersection of two regular sets. A finite representation of R can be constructed 
from the coverability graph G=G(N,m__). Then S : = A ( R ) n N  k is a semilinear 
set, a finite representation of which can be effectively constructed. 
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The question "S 4: 0?" is therefore decidable and equivalent to: 

"'~ veL(G): A(v)>O /x T(v)> T(er 

Hence also in this case the set K has property RES. 
The following result is a direct consequence of the proof of Theorem 3.11 

and solves problem P24 (iii) of the problem collection in [-9]. 

Theorem 3.12. Given a P/T-net N=(P,T,F,B),  a marking meN/el, and a set 
T ~_ T of transitions, then 

(a) It is decidable, whether m is T-continual. 
(b) It is decidable, whether m is T-blocked. 
(c) It is decidable, whether there exists an infinite firing sequence we T ~ such 

that re(w) and In(w)= T. 

Proof. The claim in Case 4 of the proof for Theorem 3.11 says, that m is T- 
continual iff some coverability graph G(N,m) contains a path _m'- * )m," la- 

12 

belled by veT*, such that A(v)>O and each t e T  occurs at least once in v. 
Hence we have (a). 

Part (b) is even more simple, since Case 1 of the preceding proof says, that 
m is T-blocked iff G(N, m) does not contain an arc m' , m" labelled by some 
teY. 

From the arguments given to verify the claim in Case 4 of Theorem 3.11 
one easily deduces that m has the desired property of (c) iff G(N,m) contains a 

path __m'-Y~* m '' such that veT*, A(v)>O and each t e T  occurs at least once 
v - -  

within v. 
The main result of this section can now be stated as follows: 

Theorem 3.13. For each Ke{NOTBLOCKED(T); NOTDEAD; UNBOUN- 
DED," CONTINUAL(7")} the finite set res(K) can be constructed effectively. 

Proof. Immediate consequence of Theorem 3.11 and Theorem 2.14. 

An important application of Theorem 3.13 concerns the question, whether 
a given P/T-net is bounded for every initial marking. 

Definition 3.14. A P/T-net N=(P, T,F,B) is called bounded, iff R(N,m__) is finite 
for each marking __meN/e/. 

Theorem 3.15. It is decidable, whether a given P/T-net N=(P,T,F,B)  is 
bounded. 

Proof. N is bounded iff res (UNBOUNDED)=O,  which is decidable by Theo- 
rem 3.13. 

This Theorem has been proved in [2] by a completely different method. 
Known results on the boundedness problem allow to give a hint concerning 
the complexity of the algorithms considered here. A marking m of a P/T-net N 
is bounded iff there is no m 'e res (UNBOUNDED)  with m'<_m. On the other 
hand, there is a constant c such that boundedness of a marking m in a P/T-net 
N cannot be decided in space 2c'l/size(N)[21, 24]. The complexity of computing 
res (UNBOUNDED)  cannot be smaller than this lower bound. 
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4. Controlling a P / T - N e t  Using Residue Sets 

Having computed a residue res(K) of a right-closed set K, it may be useful to 
control a net in such a way that all reachable markings are lying in K. For  the 
examples K = N O T D E A D  and K = C O N T I N U A L ( T )  this is of particular im- 
portance, however, there will be other examples of interest too. 

In the following we shall present a general construction for controlling the 
behaviour of an arbitrary P/T-net by some right-closed set K, just by changing 
its set of transitions and without adding new places. 

Properties of controlled nets using particular right-closed sets will be con- 
sidered in section 5. 

Construction 4.1 

Let (N, too) with N = (P, T, F, B) be a P/T-net  and K _ N w/be  a right-closed net 
satisfying property RES. 

Then using the residue set res(K) we effectively construct the K-restriction 
(NK,h, mo), or (NK,mo) if h is not important,  by a P/T-net Nt(=(P, T',F',B') and 
2-free homomorph i sm h: T'*--~ T* as follows: 

a) T':= T I ~ T  2 
where 7"1:= {t~TIVm__'eres(K) S__meres(K): max(_m_', F(t))+ A(t)>m} 

and T2:={t  m [ teT-Tl ,meres (K)  } 
b) for all t eT  1 let F'(t):=F(t) and B'(t):=B(t) 
c) for all tm_eT 2 let 

F'(t,,): = max [F(t), m - A (t)] 

B'(tm):= max [B(t), __m] 

(Recall that by Definition 2.5 max is evaluated for each place-component  
separately). 

Since 
F(t, p)> m(p)- A(t, p)r 

F(t, p)~rn (t)) - B(t, p) + F(t, p),*~ 

B(t, p)~rn(p) 

part c) can be equivalently formulated by c') for all tracT2, pep  let 

(F'(t.~, p), B'(t,., p)): = if B(t, p) >re(p) then (F(t, p), B(t, p)) 
else (.m_ ( p ) -  A(t, p), __re(p)) 

d) h is defined by 

{t t' if t 'eT 1 
h(t ' ) := if t '=tmeT 2 

If (N,__mo) is given together with initial marking m o, then the K-restriction 
(NK,h,m_o) is defined only if rn0eK. 
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Remark. Note,  that  even if t, t '~ T are such that  F(t)+ F(t') and B(t)'t: B(t') and 
m , m ' e r e s ( K )  are all different, then F'(t,,)=F'(t'~,) and  B'(tm)=B'(t'~, ) is possible  
and  only one of  t,, and  t~,, is ac tua l ly  ne-eded. - - - 

Also  for m + m ' ,  m ,m '~ res (K)  it can happen  that  

F'(tm)~F'(tm, ) 

which means,  that  whenever  t m, is enabled  in N K so is t,, and  since A'(t,,) 
= A'(tm, ) we can omi t  the t rans i t ion  t m, and  use T ' -{ t in ,}  ins tead of T'  wi thout  
affecting the result. 

We  will show that  N K behaves  like N, when only mark ings  in K are used. 
To be more  precise, the reachable  mark ings  of N, s tar t ing in m o e K  and never 
leaving K in between,  are  exact ly those of N K and  a t rans i t ion  t in N can fire 
iff an equal ly  label led  t rans i t ion  t' in Nr can do so. 

Theorem 4.2. Let N be a P/T-net, K a right-closed set, and Nr the K-restricted 
P/T-net from Construction 4.1. 

Then for all m l e K  , t e T  we have: 

(a) m l ( t ) m  2 in N and m__z~K iff 

~ t ' e T ' : h ( t ' ) = t A m l ( t ' ) m  2 in N r. 

In particular for all initial markings moeK we have 

(b) R(NK, mo)=RI~(N, mo) and (c) L(N K, h, mo)=FK(N, mo) 

Proof. W e  shall first show:  

Claim 1 
V t ' e T ' :  d(h(t'))=d(t') 

Proof of Claim 1. The c la im is obvious  for t e T  I. N o w  let 

t '=tmeT 2 with t e T - T 1 ,  meres (K) ,  and  peP. 

If  B(t,p)>__m__(p) then A(t ' ,p)=B(t ,p)-F(t ,p)=A(t ,p) ,  and if B(t,p)<m(p) then 
A(t ' ,p)=B'(t ' ,p)-F'( t ' ,p)=m(p)-(m_(p)-A(t ,p))=A(t ,p) ,  both  by c') of con- 
s t ruc t ion  4.1. 

Claim 2. F o r  every m l e K :  __ml(t) m 2 in N and m 2 e K  implies  ml(t ' )m 2 in Nr 
for some t 'eT'  with h(t')=t. 

Proof of Claim 2. If  t~T  1 take  t ' : = t .  If  t ~ T - T  1 take t ' : = t  m for some 
m e r e s ( K )  with __.m E ~_/~. By Cla im 1 it is sufficient to show 

m 1 _-> F'(t ') .  

Indeed  ml=m2-d(t')=m__2-d(t)~m-A(t), and m l ~ F ( t ) ,  which implies  
m I __> max  IF(t) ,  m - A (t)] = F ' ( t ' )  

Claim 3. F o r  every m l ~ K :  m l ( t ' ) m  2 in N K implies  m l ( h ( t ' ) ) m  2 in N and 
mzeK.  
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Proof of Claim 3. If  t ' eT  1 then h(t')=t. For m l > m '  with m'Eres(K) by defini- 
tion of T 1 there is meres(K)  with max (m_',F(t))+A(t)>m. Hence _mz=m 1 
+ A(t)>max(m__',F(t))+ A( t )>meK.  If t ' e T - T  1 then t '= t  m for some meres(K).  
Then m t >-- F'(t~,) = m a x ( m -  A (t), F(t)) > F(t) and m 2 =m~ - F'(t,,) + B'(t,,) > B'(tm) 
= m a x  (B(t),m)->m~K. Part a) of Theorem 4.2 now follows from claTm 2 affd 
claim 3. From this part  b) and c) can be easily derived by induction on the 
reachability set. 

Remark. It is important  to note that, even though R(NK, mo)=Rx(N,m__o), it is 
often the case that R(N~,m_o)~=R(N, mo)~K.  

To illustrate the construction of the K-restriction N K and Theorem 4.2 we 
give the following example. 

Example 4.3. Consider the P/T-net N in Fig. 4.1. a) and K : = r e s ( K ) + l N  * with 
res(K) = { m l , / T / z }  and ml :  = (2, 0, 0, 0), D/z: = (0, 0,  0,  1). 

a a 

Pl P P4 

a) I ] d ~  N P l y '  
h) I_E_J 

b b 

1 / / 
d NK 

Fig. 4.1. 

By A (c) = (1, - 1 ,  0, 0) and A (d) = (0, 0, - 1 , 1 )  and following the notat ion of 
Construction 4.1 we obtain: 

Tl={C,d}, Ta={aml,ama, bml,bmz} 

The construction of F and B results in the P/T-net  N K of Fig. 4.1 b). For  each 
transition t the labelling h(t) is given outside the box of t. To give an 
application of Theorem 4.2 we consider the initial marking m0: =_m 1 +__m2~K. 

Instead of looking at particular firing sequences we give an interpretation 
of N r. 

For the P/T-net (N, mo) all reachable markings m~R(N,  m0) satisfy the 
following "invariant  equations":  

i 1 : m ( p l ) + m ( p 2 ) = 2  

i2: __m(p3)q- _re(p4) = 1 

Together with property R(NK, mo)~_ K of N K it follows 

(*): VrneR(NK, mo): (re(p2)=0 vm(P3)=0)  
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Hence, places P2 and P3 can be seen as "critical sections" of two "reader 
processes", represented by the two tokens in Pl or P2 and a "writer process" in 
the right hand side part of N k. By Theorem 4.2 the labelled firing sequences 
h(w)EL(N k, h,m__o) are exactly those firing sequences wcF(N, mo) that respect the 
condition (,) of mutual exclusion. (How the net NK can be systematically 
simplified will be shown later on). 

Remark. In this example by the construction of the K-restriction we have 
found an "implementation" of the fact (,) in the sense of [11]. This obser- 
vation can be generalized as follows: 

Every fact with bounded input places can be 

"implemented" by a K-restriction. 

This is true, since facts can be equivalently formulated as 

VmcR(N, mo): (m(Pl)>kl) v ... v (_m_(pr)> kr) 

where {Pl . . . . .  Pr} are the output places of the fact together with the com- 
plementary places of the input places. 

In the remainder of this section we give some methods how the net N K can 
be simplified. This part can be skipped for a first reading. 

The definition of N K by Construction 4.1 is fairly general and independent 
from the initial marking m o. The only and obvious requirement is mocK, 
because m0r implies RK(N, m0)= FK(N , too)=0 so that no construction would 
be needed. 

This independence, however, usually leads to the construction of large P/T- 
nets NK that could in many cases be simplified if there is just one fixed initial 
marking m o for which the new P/T-net N K has to be built. 

For instance, the following case may occur: The initial marking __mock is 
{t}-blocked in (N, mo) for some toT. Then transition t is not needed for the 
construction of (NK,mo) and can (and should) therefore be removed from T 
before starting the construction of (NK, m__o). Such a transition t is usually called 
dead in m o (cf. Def. 6.1). 

Moreover, even if t is not dead in m o for N it may be dead for __mo in N K. 
Since this property depends on K, we call such transitions K-dead for m o. K- 
dead transitions can be computed effectively from N and therefore removed 
before the construction of N K. 

Definition 4.4. Let N=(P, T,F,B) be a P/T-net and K be a right-closed subset 
of N/P/. A transition toT is said to be K-dead for m~N/P/, if t is not contained 
in any firing sequences wcFK(N,m ). t is dead for m. if t is K-dead for m with K 
= ] N / e / .  

Definition 4.5. Let N=(P, T,F,B) be a P/T-net, moC]N/P/ a marking and 
mocK~_N/el, K a right-closed set. 

The K-restricted coverability graph GK(N,m__o) is defined as G(N, mo) in 
Definition 3.6 with the following modification: 
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Replace line (4) by:  

(4') choose m e N O D E S ,  t e T  such that F(t) <__m, reg(m+A(t))c~K+O 

and the pair (m, t) has not  been considered before; 

L e m m a  4.6. Let N=(P ,  T,F,B) be a P/T-net, Kc_N/~'/ a right-closed set, and 
Gr(N, mo) a K-restricted coverability graph of N. Then a transition t s T  is not 
K-dead in m__ o if and only if GK(N, m__o) containes a path 

m o = m o ~  m' l - - -~m'--~ ' ' ' t2  - - ~  tn )m__', such that t =t,n>_l 

Proof. If  t e T  is not  K-dead in too, then there is a firing sequence w 
=tl . . . t ,EFK(N, mo), m o ( t l ) m l ( t z ) . . . ( t , ) m  . with t , = t  and __m~K for all 
l < i < n .  

There is a unique path __mo ~ m ' ~  t: t, , , ... , m, in GK(N, too) with (m~(p)+ 

co =~m'~(p)=__m~(p)). This follows directly from the construct ion in Definitions 
3.6 and 4.5. The addit ional  condi t ion in (4') of  Definit ion 4.5 is satisfied for all 
O<i<n since m~eK. 

The reverse direction follows from the following stronger claim, which will 
be proved by induct ion on n e N :  

Claim: For  any constant  c e N  and any path 

>----/'?'/1 ) " ' "  ) t T l n  1 ) 

in G~(N, mo) there are markings m,_ 1, m, EN/P/ and a firing sequence 
w t,e FK(N, too) satisfying: 

a) _mo(w)_m._ l(t.)_m. 
b) m,_l (p)=m~,_~(p) i fmi ,_ l (p)+co 
c) __m,_ 1 (P) > c if m',_ 1 (P) -- co. 

If  n =  1 then we have the path _.m 0 =__m~ h , ,__m a and a), b) and c) are valid by 
mo(2)rno(t~)__m ~ for m I = m o + A ( t l ) .  By condi t ion reg(_m__o+A(G))~K+O in Def- 
inition 4.5 also m l ~ K  and t~eFr(N,m__o) is valid. 

N o w  assume that the claim holds for all paths of  length n. Let  c ' e N  be a 
constant  and 

mo=---mo ~1 ~.-i m', ~, , t . . . .  > ' "  ) - i  )---ran >-~-mn+ 1 

be such a path of length n + 1. 
The following is a s tandard  a rgumenta t ion  on coverabili ty graphs and 

therefore not  developped in full detail here (cf.: [29, 3]). We first consider those 
co-components m',(p) which are different f rom rn', I(P), i.e. __m'.(p)=o)~m',_ I(P). 
By the construct ion of  Gr(N, mo) such components  result f rom existence of  
predecessor nodes m x such that  ' < ' ' __mx=__m. but  m j p ) < m , ( p ) .  
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If v x is the sequence of transition on this path, then ~' v~eFK(N,m_.) for any 
marking __m, with m,(p)=m',(p) if m',(p)4=co and sufficiently many tokens in No(P) 
for m__',(p)=co. Let  be c o a number  that is sufficiently large for all firings 

c" c" c" v~, v~ ... v ~ = :  v associated to the new co-components in m,. For  these com- 
ponents  p we therefore have A(v)(p)> c'. 

Next  we define the constant  c to be used in the induction hypothesis by 

c : = c o +  (1) 

c '+  (2) 

max{F(p,  t.)} + (3) 
peP 

max {F(p, t.+ 1)} + (4) 
peP 

max{re(p)} (5) 
peP 

_m~res(K) 

Intuitively, (1) and (3) serve to make v firable in m,, (2) serves to satisfy c), (4) 
serves to make t,+ 1 firable and (5) is used to show the final marking in K. 

More  formally, by induction hypothesis, there is a firing sequence 
wt.~FK(N,m__o), satisfying a), b) and c) in the claim. 

We consider ~ : = w t . v e F ~ ( N ,  mo) and mo(U~) th . for some ~ . e K .  

a') mo(~)  rh . ( t .+ l )  rh.+l,  where r h . + l = r h . + A ( t . +  0 follows from the definition 
of GK(N ,mo) together with (4). 
b') rh.(p)=m'.(p) ifm'.(p)+co holds by the construct ion of GK(N, mo) 
c') ~ . (p)  > c' if m'.(p) = co =m'._ 1 (P) follows from 

~ . (p )  = th._ , (p) + B(p, t.) - F(p, t.) 

> rh . _ l (P ) - F (p, t .) 

> c - F(p, t.) 

> c - m a x { F ( p ,  t.)} >c '  
peP 

rho(p)>__c' if m ' , ( p ) = c o W - m ' l ( p )  follows from (1) and A(v) (p)>c '  as discussed 
above. 

Finally it remains to prove:  ff~t,+l~FK(N, mo), or equivalently ~ , + l e K .  By 
the construct ion of Gr(N,__mo) in line (5') we have reg(m__',+A(t,+l))c~K4=O , i.e. 
__m'. + A (t.+ i) >mr~s for some mres~res(K ). 

If m'.(p) + co then by b'): 

~ . +  I (P)=~.(P)  + A(t.+ 1)(/)) 

=ggL'n(p) -[- A (tn+ 1)(P) ==- D'lres(P) 

If m',(p)=co then by c') and (5): 
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~ ,+  I(P)= ~,(P) + A (t,+ O(P) 

> c - F ( p  t ) 

>= max {m(p)}>mres(p). 
meres(K) 

We conclude: ~ ,+  1 >---rares and rh,+ leK.  
Using the preceding result and remarks we now can modify Construction 

4.1 of the K-restriction (NK,__mo) of (N,__mo) as follows. 

Construction 4.7. 

Step 1: Take the notation as in Construction 4.1. Replace T in (N,__mo) by T: 
={teTlt is not K-dead in mo} 
Step 2: Define (NK, too) or (NK, n, too) following Construction 4.1. Using the modi- 
fied P/T-net (N, mo). 
Step 3: Delete all transitions t' from Nr such that F'(t")<F(t') for some other 
transition t" with h(t")=h(t'). 
Step 4: Delete all transitions t,, that are still dead in the initial marking __mo of 
the resulting P/T-net. 

The following example shows that step 4 is some times needed. 

Example 4.8. Consider the P/T-net (N, mo) of Example 4.3. 

(NK,__mo) of Figure 4.1 (b) is also the result of step 1 to 3 in the preceding 
Construction 4.7.; a and b are not K-dead in m o, but a,,1 and b_~ 2 are dead in 
too, and can be deleted. Figure 4.2 shows (NK, mo) after having applied Con- 
struction 4.7 completely. 

2 

Fig. 4.2. P/T-net (NK, m__o) 

Another situation that might occur and which is also not easy to detect in 
general, is the following: 

After having constructed a P/T-net (NK, mo) using Construction 4.7, we know 
that each transition of (NK,mo) will be enabled in some reachable marking in 
R(NK, mo). But again one can still omit further transitions in N K without 
affecting it's behaviour as described in Theorem 4.2. 

Let us again give an example that illustrates such a situation. 
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Example 4.9. Consider the P/T-net (N, mo) from Figure 4.3 where mo=( l ,  2) 
and the coverability graph G(N,m_o) is drawn too. 

2 
"~  PZ 

2 

(1,2) 

(2, (3,1 ( 

t3,0) (4.0 (0).0) ) 

t ( ~ t  t~ 
t ~ 

Fig. 4.3. 

If the right-closed set K___N 2 is defined by res(K):= {(0, 2), (3,0)} then we 
get the P/T-net (NK, mo) depicted in Fig. 4.4, where a coverability graph 
G(N~,mo) is drawn, too. 

Pz 

3 

2 ~ P2 

(1,2) 

(3,1) (1 :.O)l~.~-~t pr, t(0.2) 

It(3,0 ) t(o 2)1t(3 O) 

(3.0) (CO,CO)'~ T' 

Fig. 4.4. (NK, mo): Where T ' :=  {t", t(o. 2), t(3. o), t'(o, 2), t'(a,o)} 
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N o w  one can show tha t  for all maR(N~,mo) the invar iant  re lat ion __re(p1)> 1 
holds. Hence,  whenever  t'~o ' 2) is enabled  in (NK, mo) sO is ti3 ' 0), and thus rio ' 2) 
can be deleted f rom T'. 

Moreover ,  we can simplify N r even more  by redefining F '  and B' for t13 ' o) 
as follows: 

F'(G, o~):= F(t') 
B'(G, o)),= B(t') 

Hence,  we finally get NK=(P, T', F',B') where T ' :  = {t", t'(3 ' o), t(o. 2), t~3, o)} and 
F '  and B' are defined for t", t(o ' 2) and t(3 ' o) as before. 

This last example  shows that  o ther  me thods  which provide  in format ion  
abou t  the reachabil i ty  set R(N,m__o) might  be useful in order  to simpli ty the K-  
restricted net (NK,__mo) even further. 

In m a n y  cases one can use place invar iants  and place invar iant  inequalit ies 
for that  purpose.  Let  us first recall the definit ion of place invariants.  

Definition 4.10. A (linear) place-invariant for a P/T-net N = ( P , T , F , B )  is a 
vector  x_aZ IPI such that  x r. m = x  r. m' for all re_aN/P/and all m'eR(N,m). 

This is equivalent  to saying _x T- A =O r, (see [2]) ~ r  is the t ranspose  of _x). 

A (linear) place-invariant for a P/T-net (N, mo) with initial marking m o is a 
vector  x_.eTllPI such that  _xr. m o = x  r.  m for all __ms(N,__mo). 

Obviously,  each place- invar iant  for N is also a p lace- invar iant  for (N,__mo) 
but  the converse need not  be true. If  x is p lace- invar iant  for (N, too) then x r. mo 
is a constant  c e Z  so that  one obtains  an invar iant  equa t ion  of the form 

_x(p) . re (p)=  c 
peP 

which is valid for all reachable  mark ings  m e R ( N ,  rno). 
Somet imes  it is useful not  to consider invar iant  equations of the form 

described above  but  to consider invar iant  relations of the form defined below. 
Fo r  example  the invar iant  re lat ion m(p0_>_l was used in Example  4.9 to 
simplify the K-res t r ic ted  P/T-net (Nr, m__o). 

Definition 4.11. A (linear) place invariant relation for a P/T-net N =.(P, T, F, B) is 
a vector  __xe7Z/~'/, such that  

V maN/P/ V m'~R(N,__m): (X T" m t  ~ x T . m ) ,  

A (linear) place invariant relation for a P/T-net (N, mo) with initial ma rk ing  __mo 
is an xeZ/P/ ,  such that  x r .  m'>xT.mo for all m'aR(N, too). 

Obviously,  each place- invar iant  relat ion for N is also a p lace- invar iant  
relat ion for (N ,~o)  but  not  conversely. 

L e m m a  4.7. Let N K (resp (Nr,mo)) be the K-restriction of N (resp. (N, mo) ) using 
the Construction 4.1 or its modified version 4.6. 



664 R. Valk and M. Jantzen 

Then every place-invariant (resp. place-invariant relation) for N (resp. 
(N, mo)) is also a place-invariant (resp. place-invariant relation) for N K (resp. 
( UK, mo)). 

This L e m m a  can be applied in Example 4.3: 

Invar iant  equat ions i 1 and i 2 for (N, mo) also hold for (NK, mo). Hence 
transitions a,,, and b~ 2 are dead in m 0 and can be omitted. 

5. Maximal  Subbehaviour and Liveness of  P/T-Nets 

In this section we consider K-restricted P/T-nets (NK, mo) for some particular 
right-closed sets K. Their behaviour  is characterized as the maximal subbe- 
haviour  of  the original P/T-net  (N, mo) with respect to well-defined properties. 

The behaviour  of  a system can be defined as the set all possible sequences 
of actions. For  the definition of "maximal  subbehaviour"  we therefore use a 
formalism that is independent  of the representat ion of states: a transition 
system. Since there is no partial ordering or operat ion defined on the state 
space, we cannot  use the notat ion of  closed nets etc. The connect ion to the 
previous sections will then be established by interpreting marking graphs of 
P/T-nets as transit ion systems. Therefore it is sufficient here to consider only 
initially connected transit ion systems with finite sets of transitions. 

Definition 5.1. A transition system TS=(S ,T , - . , So )  is defined by a set S of 
states, a set T of transitions, a transitional relation ~ ~_ S x T x S, and an initial 
state soeS. 

t t 
We write s----~s for (s, t, s')e--* and extend this not ion to words weT *  

2~ w t  S t  w Sr  I S t  I t by s ,s for all seS, s , iff ~s"eS: s , A ~S' for all s, s'eS, 
weT*,  teT.  

R(TS, s ) :={s ' [3weT*:s  w ~s'} is the set of states reachable from s and 

F(TS, s ) :={weT*13s '~S:s  w ~s'} is the set of transition sequences from s. 
w l  w 2  w 3 Fo~(TS, s):={wET~'lthere is an infinite path s - - -+s  1 •s 2 , . . . a n d  w 

=wlw2w 3 ...} is the set of  infinite sequences of transitions from s. 
R(TS) :=R(TS ,  so) , F(TS). .=F(TS, So) and F~,(TS):=Fo~(TS , So) are the sets of 

reachable states in TS, finite and infinite transition sequences in TS, respective- 
ly. In this paper  we assume for all transit ion systems TS, that  T is finite and S 
=R(TS).  

Definition 5.2. A transit ion system TS = (S, T,--~, So) is called 

a) notblocked for T~_T, iff for every state seR(TS)  and some teT" there is a 
we T *  such that wt~F(TS,  s). 
b) notdead, iff for every state seR(TS)  the set F(TS, s) is not  finite 
c) T-continual for a subset 7"___ T iff for every state seR(TS)  there is an infinite 
string weFo~(TS , s) with T_~In(w). 
d) live, iff for every state s~R(TS) and every t e T  there is a word weT *  such 
that  wteF(TS ,  s). 

These properties are not independent,  as shown by the following simple 
theorem. 
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Theorem 5.3. A transition system TS = (S, T,--~, So) is notblocked for 7" iff it is 7"- 
continual. TS is T-continual iff TS is live. 

Proof. Let be TS notblocked for 7"={t 1 . . . . .  t~} and ssR(TS). Then there are 
words w 1 .. . .  ,wriT* and states sl, . . . ,s,eS such that 

wllt l  w2t2 wr i t  
S ~'S 1 -- '---~S 2 > . . . - - ~ S  r .  

Repeating this construction we define inductively an infinite transition se- 
quence w with ~ c  In(w). Hence TS is 7"-continual. The other statements of the 
Theorem are now obvious. 

Definition 5.4. Let TS=(S, T,~,So) be a transition system. A transition system 
TSi-=(SI, T,---~i,So) is called a subsystem of TS iff Si~_S and --*i---- ' .  

I f  ~(TS)={TS~IieI} is a set of such subsystems (with the same initial state), 
then 

TS (~ )=  {S', T,-,',So} 

defined by S ' = ~  S i and - - " = U - - - ' i  is the union of r It is the smallest 
i E l  i e I  

subsystem containing all TS~ as a subsystem, and therefore called the ~- 
maximal subsystem of TS. (Recognize that in fact R(TS(~))= S'.) 

Definition 5.5. Let TS=(S, T,--~,so) be a transition system. Then we define the 
following classes of subsystems: 

a) notdead(TS) is the class of notdead subsystems of TS 
b) if ~'_c T then T-continual(TS) is the class of all T-continual subsystems of 
TS 
c) live(TS) is the class of all live subsystems of TS. 

Theorem 5.6. For given transition system TS=(S, T,-~,So) and T ~_ T the classes 
notdead(TS), T-continual(TS) and live(TS) are closed under arbitrary union. 
Hence the notdead-maximal subsystem TS(notdead), the T-continual-maximal 
subsystem TS(7"-continual), and the live-maximal subsystem TS(live are uniquely 
defined and not dead, 7"-continual and live, respectively. 

Proof. Let be TSi=(Si, T,-~,so) (i~1) a set of T-continual T-continual sub- 
systems of TS=(S, T,--~so) and TS'=(S', T,--~',So) the union, i.e. S '=.~Si  and 

- -~ '=~)-*~.  For an arbitrary state seS' we have to show that there is some 
i ~ l  

wEF~(TS, s) with 7"~In(w). But since ssS~ for some j e I  such an infinite word 
wsFo~(TS~,s ) exists in TS i. By the definition of the union of subsystems 
weF~o(TS, s) also holds. 

The case of the class notdead(TS) is similar but even simpler. For the class 
live (TS) the Theorem follows from the first part  the proof  as special case 
= 7, as stated in Theorem 5.3. 
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Definition 5.7. Let (N,__mo) be a P/T-net N=(P, T,F,B) with initial marking m o. 
To (N, mo) we associate the transition system TS(N, mo):=(R(N, mo), T,--.mo) 
where (-~-1, t, LT/2)~ --~ iff m I , m__2~R(N, mo) and m 1 (t) __m 2 . 

If (N,h, mo) is a net with labelling homomorphism h: T * ~ X *  then in 
TS(N, mo) we replace T by X and t by h(t) in the definition of --~ and write 
TS(N,h, mo). If (N, mo) is a P/T-net, then we say that a net (N',__mo) (resp. 
(N',h, mo) ) has the Cg-maximal subbehaviour of (N, mo) (resp. of (N,h, mo) ) iff 
the transition system TS(N',mo) (resp. TS(N',h, mo) ) is the Cg-maximal sub- 
system of TS(N, too) (resp. of TS(N, h, mo) ) with cg~{notdead, T-continual, live}. 

We are now ready to formulate as a Theorem, that for a P/T-net (N, m__o) a 
P/T-net (N',h, mo) with notdead-maximal, R-continual-maximal or live-maxi- 
mal subbehaviour can be effectively constructed. 

Let us first recall the standard liveness definition for P/T-nets. 

Definition 5.8. A P/T-net (N, mo) or (N, h, mo) with N =(P, T, F, B) is live, if 

Vt~T  Vm~R(N,__mo) 3 m'~R(N,__m): m'(t). 

Theorem 5.9. For every P/T-net (N, mo) a P/T-net (N',h,m-o) can be effectively 
constructed such that anyone of the following properties holds: 
a) (N', h, re_o) has the notdead-maximal subbehaviour of (N, mo) 
b) (N', h, too) has the 7"-continual-maximal subbehaviour of (N, re_o) 
c) (N', h,m-o) has the live-maximal subbehaviour of (N,m-o) 

Proof. In all three cases we define (N', h, mo) as the K-restriction (NK, h, mo) for 
different right-closed sets K. (Construction 4.1 or 4.6). 

Then TS': = TS(N~, h, too) = (S', T,---,', m-o) is a subsystem of TS: = TS(N, m-o) 
=( S , T , ~ , mo) .  Recall that by Construction 4.1 and 4.6 we have h:T'-*T.  
Since by Theorem 4.2 we have: 

and also 
S' = R(NK, m__o) = RK(N, m__o) ~_ R(N, too) t / 

( , -~I  ' m 2 in  TS')iff 

(m-l(t')m2 in N K and h(t')-=t) iff 

(m-_l(t)m2 in N and ml ,m2sK ) iff (*) 

(m-1 t 'm2 and rnl ,m2eK ) 

We now prove for K e { N O T D E A D ,  CONTINUAL(7")} (Def. 3.10) the follow- 
ing statement (**): 

For  every m_eRK(N,m__o) and weT  ~ ] 
and (T_In (w)  if K =  CONTINUAL(T))  we have: l (**) 
w~F~o(TS, m ) implies w~Fo~(TS',m ) 

Suppose the conditions in (**) and weFo(TS',m__). 
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Then with w=w 1W 2 . . . .  (wlsT+), we have in N 

m_(w1) m l ( w 2 )  m 2 ( w 3 )  . . . .  

It follows mieK for all ieN.  
Indeed, wi+lwi+2...~Fo~(TS, mi), hence F(TS, mi) is infinite and 

m~eNOTDEAD. If K = CONTINUAL(7") then T c In(w) implies 
T~_In(wi+awi+2...), hence mleCONTINUAL(T)  for all i~N. From (*) we 
conclude weFo)(TS' m). 

Now we consider the cases a), b), and c) of the Theorem. 

a) Take K : = N O T D E A D  as right-closed set satisfying RES. Then TS' is 
notdead: if m~R(TS') then m~S' = R(N', too) = R~c(N, mo)_~ K: = NOTDEAD.  By 
definition of K the set F(N,m) is not finite and therefore an infinite sequence 
w e t  '~ can fire in m, i.e. w~F~,(TS, m). Then by (**) also weF,,,(TS',m__) and 
F(TS',m) is infinite too. It remains to show that TS' is the notdead-maximal 
subsystem of TS, i.e. every notdead subsystem 

T S  i = (Si, T , - - ~ , m o )  

of TS is also a subsystem of TS'=(S',T,-~',mo). Indeed m~S~ implies 
m~NOTDEAD,  and as before m~S', and also -~__-~ ' .  

b) Take K : =  C O N T I N U A L ( T )  as right-closed set satisfying RES. Then TS' 
is T-continual: if m~R(TS') then m~S'=R(N',mo)=RK(N, mo)~-K 
= C O N T I N U A L ( T ) .  By definition of K the set F~(N,m) contains wET ~ with 

T ' T~In(w) .  Then by (**) also w~F~( S, m) and m is T-continual also in TS'. It 
remains to show that TS' is the T-continual-maximal subsystem of TS, i.e. 
every T-continual subsystem 

T S  i = (Si, T,--%mo) 

of TS is also a subsystem of TS'=(S',T,--*',mo). Indeed meS' implies 
maCONTINUAL(T) ,  and as before rueS', and also --~i~-~'. 

c) Take K = C O N T I N U A L ( T )  as right closed set satisfying RES. TS' is T- 
continual by b) and live by Theorem 5.3. Every live subsystem TS~ of TS is T- 
continual, and by a) also a T-continual and live subsystem of TS'. Therefore 
TS' is the live-maximal subsystem of TS. 

Knowing from Theorem 5.3 that a subsystem of TS is T-continual iff it is 
notblocked for T, one might think that in part b) of the preceding proof the 
choice of K: = N O T B L O C K E D ( T )  would be equivalent to K." 
= CONTINUAL(T) .  

But this is false. A closer look at the construction of the P/T-net (Nr, h, m__o) 
shows that by inhibiting to fire out of the set NOTBLOCKED(T) ,  also the 
firing of some t~T may become impossible! In such a case the transition 
system is not T-continual. Let us mention that in case c) of the Theorem 
R(NK, m__o) and R(N,m__o) are equal if (N, mo) is live. By the result of Hack [15], 
however, it is undecidable whether two nets have the same reachability sets. 
Therefore our Theorem cannot be used as a decision procedure for liveness of 

(N, mo). 
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Example 5.10. The right-closed set K = C O N T I N U A L ( T )  for the P/T-net N in 
Fig. 5.1 a) has the residue res(K)={m 1, m z, m 3, rn4} with m1:=(2,0,0),  m2: 
=(0, l, 1), m3: =(1, 1,0), __m4: = (1, O, 1). 

Pl 

b 

NK ~ / 
Fig. 5.1. 

The K-restriction (NK, h,m0) of (N, mo) in Fig. 5.1 b) is constructed according to 
Construction 4.1 and simplifications, obtained by using the invariant equation: 
VmeR(N, mo): m(pl)+m(pz)+m(p3)=2.  (N~,h, mo) has the maximal live subbe- 
haviour of (N, too). 

Theorem 5.9 solves a problem of Nivat and Arnold [22] for the case of 
P/T-nets. Using our terminology they call a behaviour F(N, mo) central if 
F(N,m__o)~_FG(Fo,(N, mo)) where FG(L) is the set of finite prefixes of L~_X ~'. In 
[22] the problem to realize the maximal central subbehaviour is solved for 
finite automata and stated as open problem for more powerful devices. Ob- 
viously the maximal central subbehaviour is the notdead-maximal subbe- 
haviour in our terminology. Theorem 5.9 also gives a new solution to the older 
and celebrated banker's problem of Dijkstra [8]. 

Example 5.11. We demonstrate our approach on the banker's problem, given 
by Dijkstra in 1965 as an example of a resource sharing problem. For the 
description of the problem we refer to [1]. 

Figure 5.2 shows the example in [1] of the banker's problem as a P/T-net. 
The following invariant equations hold for all meR(N, m0): 

il : m(c)+ m(Ip)+ m(le)+ m(1R)= 10 

i 2 : m(Ie) + m(Ce) = 8 

i3: m(le) +m--Ace) = 3 

i4: m(lR) + m(cR) = 9 

The set of reachable markings R(N, mo) of this net is exactly the set of all 
markings satisfying the four invariants [-16]. Furthermore by these invariants 
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every reachable marking is uniquely determined by the components corre- 
sponding to the three places c e, cQ and c R. By the arc from rp to ce the initial 
claim of 8 units in cp can be restored if the maximal amount of 8 units is loan. 
The net behaves correctly if all  customers can perform their transactions. 
Therefore all reachable markings should be T-continual. In other words, before 
granting another unit of mony the banker has to verify, that the marking, that 
would be reached by this step, is still T-continual. For instance in the reach- 
able marking with (_O_(cp), m(cQ), m(cR))=(4, 3, 6) an infinite firing sequence can 
fire (namely (gQgQgQrQ)o), but neither customer P, nor customer Q has a chance 
to terminate his transactions. Hence the marking m is {gQ, rQ}-continual, but 
not T-continual. 

In [16] general formulas are given, that describe all T-continual markings 
for such nets. For this example, from 195 reachable markings 60 are not T- 
continual and contain 24 total deadlocks (c.f. Definition 3.10). The set of 135 
reachable and T-continual markings can be described by a residue set R of 10 
markings: 

R =  {(8,2,0), (8,0,2), (2,0,8), (0,2,8), 

(7, 3, 0), (7, 0, 3), (3, 0, 7), (0, 3, 7), 

(1, o, 9), (0,1, 9)} 

This description can be further reduced by observing that R consists of all 
permutations of (8, 2, 0), (7, 3, 0), and (1,0, 9) excluding 8 not reachable mark- 
ings, that do not satisfy the invariants. Hence the banker has to know only 
these three markings. 

8 3 

r e t u r n ~  

Ip Cp I 0 

l o a n  

of  c u s t o m e r  

Fig. 5.2. 

c :  b a n k e r ' s  c a s h  

CQ I R c R 

c l a i m  

6. Decidable Properties of Liveness, Promptness and o~-Behaviour of P/T-Nets 

In this section we give applications to some other open problems for P / T - n e t s .  

In [4] the following definitions for liveness of transitions are proposed accord- 
ing to [18]. 
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Definition 6.1. Let meN/P/ be a marking of a P/T-net N=(P,  T,F,B). Then a 
transit ion t e T is called 

a) dead in m i ffm is {t}-blocked. 
b) warm in m iff V n e N 3 w e T * "  m(w)/x 7J(w)(t)>n. 
c) hot in m iffm is {t}-continual. 

Theorem 6.2. For any P/T-net N = ( P , T , F , B ) ,  any marking meN/p/, and each 
transition t ~ T  it is decidable, whether t is dead, warm or hot in m. 

Proof. a) t is dead in a marking m of N iff m is {t}-blocked. This is decidable 
by Corol lary  3.12. 
b) Add  a new place Pcount to N and let F(t, Pcount):= 1, in order to count  the 
number  of  firings of  t. Then t is warm in m iff Pcount is unbounded  in m. Un-  
boundedness  is decidable. A different p roof  is contained in [18]. 
c) t is hot  in m, iff m is {t}-continual. The latter proper ty  is again decidable by 
Corol lary  3.12. 

We now consider nets that  are models of  systems communica t ing  with the 
environment.  Act ions  or transitions that are visible from the exterior are 
distinguished from internal transitions. 

Definitions 6.3. A signal net is a P/T-net  N=(P ,  T, F,B) with initial marking 
m 0, where T = TEuT  I, TEc~TI=O. Transit ions in T~ are called external, whereas 
transitions in T~ are internal. 

An impor tant  proper ty  of such systems is to react within a finite delay to 
inputs from the environment.  Such systems are called prompt.  Compare  the 
similar definitions in [14, 15] using 2-1abels for internal transitions. 

Definition 6.4. A signal net N=(P,  T,F,B,  mo) is 

a) strongly prompt, if 3 k e n  Vme(__mo) V we T~* : re(w) ~ Iw[ < k, where Iwl is the 
length of w. 
b) prompt, if Vme(mo)  ~ k e n  VweT/*:  re(w) ~lwl  <k.  

Theorem 6.5. For a signal net N it is decidable, whether it is strongly prompt and 
also whether it is prompt. 

Proof. Given a signal net (N, mo) with N = (P, T, F, B), we extend it as shown in 
Fig. 6.1. 

In this construct ion all transitions t e T  E are connected with Pl in the given 
way, and also all teT~ are connected with P3 and P4- The new net is called N', 
and has the initial marking as N for P and as indicated for the new places. 

a) N is not  strongly prompt ,  iff t 3 is warm in the initial marking of N'. To 
prove this, recall that  N is not  strongly prompt  iff V k e n  
3me(m0)  3weTs*:  m(w)/x  Iwl>k. __m is also reachable in N', if PI remains mar-  
ked and two firings of transitions in T~ are separated by a firing of t 2. Then 
after firing of  t 1 the sequence weTt* with Jwl>k can fire alternating with t 3. 
Therefore  t 3 is warm. 

On the other hand, if t 3 is warm in N '  a firing sequence w in N' with 
~(w)( t )>k contains k - 1  transitions of T~ and no transit ion of T E. Hence N is 
not  strongly prompt .  
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I . . . .  5 
// IE 3 

I TE I 

I _ _  _1  

Pl 

% 
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Fig. 6.1. 

N t 

b) N is not prompt, iff t 3 is hot in the initial marking of N'. N is not prompt iff 

~__me(mo) Vk~N 3 we TI*: m(w~/x Iwl >k. 

iff 3__m~(_mo): F ( N , m ) ~  7"i* is infinite 

iff ? me(_m_o): F,~(N, rn)c~ T~* +0  

i ff  t 3 is hot in the initial marking of N'. 

By Theorem 6.2 it is decidable, whether t 3 is warm or hot. The first part of the 
theorem is from [-23], who also conjectured the second part, not knowing our 
results. 

Infinite sequences of transition firings have been used already in this paper. 
The set (or language) of all infinite firing sequences is called the infinite 
behaviour or c0-behaviour of a net and is systematically studied in [28]. 

Definition 6.6. For P/T-nets (N,h, mo) with initial marking m o we now also 
consider not 2-free labelling homomorphisms h: T*--*X*. h is extended to 
h: T~~ X ~176 where T~ := T * u  T ~, X~~ X * w  X '~ by h(w)(i):=h(w(i)) for all 
w e T  ~, i~N  (we assume h(w)eX* for w e T  ~ iff 3i Vj>i:  h(w(]))= 2). 

Lo,(N, h,m__o)= {h(w)eX'Tw6Fo~(N, mo)} is the co-behaviour of (N, h, mo). We 
consider the following classes of o)-behaviours 

4~ = {Fo(N, rno) I N is P/T-net with initial marking too} 

~L~(N, h, mo)lN is P/T-net with initial marking mot 
~o,: =~  and 2-free labelling homomorphism h 

[ L o ~ ( N ,  h, mo)lN is P/T-net  with initial marking mo ~ z  
~ : -  ~l and labelling homomorphism h 
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Theorem 6.7. The emptiness problem for co-behaviours in o~, ~o~ and ~ is 
decidable. 

Pro@ It is sufficient to consider 5r For any P/T-net (N, h, mo) we have: 

Lo(N,h, mo)=t=~ i f f 3 t e T :  h(t)4=Z and m 0 is {t}-continual. 

In connection with this theorem, one may ask for the decidability of the 
membership problem: " w e F t ? "  for given w~T ~ and N, for instance. However, 
already the formulation of the problem is difficult: what is the finite represen- 
tation of we T~ 

In general this representation can be given by a Turing machine computing 
all prefixes of w. Then the problem is certainly undecidable. More interesting 
cases are those, where w is given by an m-regular expression like w=ab(aab) ~ 
Some of these co-words are m-behaviours of labelled nets. 

For  such cases the "membership problem" in the following form is decid- 
able: 

Theorem 6.8. For given Z-free labelled P/T-nets (N,h,_m0) and (N',h',m0) it is 
decidable whether there is some wc Lo~(N, h, too) such that we L~(N', h',m__o). 

Proof By well-known methods (e.g. [14]) a net (N, ~',mo) can be constructed 
such that 

L(N, ~, rho) = L(N, h, too) ~ L(N', h', m__'o) 

Then weL~(1V, h',rho) iff Vi: w[i]eL(N,~,mo) iff Vi: w[i]eL(N, h, rho) A w[i] 
eL(N',h',m'o) iff w~L~,(N,h, mo)nLo,(N',h',m'o). (The first equivalence is false 
for not Z-free labelled nets, see [28]). 

Hence L,o(N,h,m__o)c~Lo,(N',h',m'o)+-~3 iff Lo,(N,h',~o)4=~ , which is decidable 
by Theorem 6.7. 

For particular problems, as fairness, for instance, it is interesting to consid- 
er some subsets of co-behaviour in nets. In [28] the notion of i-definability 
of Landweber [20] is studied with respect to sets of markings as definable sets, 
which specify the subset. The resulting classes have been shown to be different 
if only bounded places are involved in the definition of defining sets [28]. 

In [5] it was then proved that the latter classes coincide with the classes 
obtained by defining sets of transitions. 

Definition 6.9. Let (N,h,m__o) be a Z-free labelled P/T-net with N=(P, T,F,B) 
and d~ {E 1 . . . . .  Ek} a set of sets Ei_c T. Then an co-sequence weT  ~ is called 

a) 1-firing for g, if 3 Eeg  3 i eN:  w(i)eE. 
b) l'-firing for B, if 3 E e g  VieN:  w(i)eE. 
c) 2-firing for g, if 3 E ~ g :  In(w)~E#=O. 
d) 2'-firing for g, if 3Eed~ In(w)__E. 
e) 3-firing for E, if 3E~g: In(w)=E, 
f) 3'-firing for ~, if 3Eeg:  In(w)__E. 

For i~{1, 1', 2,2', 3, 3'} we define the transitional i-behaviour of (N, h, mo) by 
i K,o(N, h,m o, g ) =  {h(v)~X'~lwF~(N, mo)A V is /-firing for g} and denote the cor- 

responding classes by K~. 
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T h e o r e m  6.10. The emptiness problem is decidable for all classes 
K~( i~{  1, 1', 2, 2', 3,3 '}) 

Proof. I t  is i n t e r e s t i ng  to see h o w  the  dec i s ion  p r o b l e m  for the di f ferent  cases is 
r educ ib le  to T - c o n t i n u a l i t y .  F o r  ins tance ,  K~(N, h, mo,g)~=r iff for s o m e  E ~ g  

t 
a t r a n s i t i o n  teE appea r s  o n  a n  arc  m ~m' of the cove rab i l i t y  g r a p h  
G(N,  m0) a n d  m' is { t} -con t inua l  for some  t'~T. 

However ,  it is easier  to r educe  all five cases to the case i =  3. In  fact, f rom 
the resul ts  in [-28], [-5] a n d  1-73, it fol lows tha t  

K~_K~ for i~{1,  1', 2 ,2 ' ,  3'} 

F u r t h e r m o r e ,  it is suff icient  to cons ide r  g = { E } .  H e n c e  for g iven  P/T-net 
(N, h, __m0), where  N = (P, T, F ,  B) a n d  E _ T the  dec i s ion  p r o b l e m  is: 

" is  there  some  w~F~(N,m__o) such tha t  I n ( w ) ~ _ E ? "  

This  is e q u i v a l e n t  to :  

" is  m 0 E - c o n t i n u a l ? " ,  

which  is dec idab le  by  C o r o l l a r y  3.12. 
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