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Systolic Automata for VLSI on Balanced Trees* 
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Canada 

Summary. Systolic tree automata  with a binary (or, more generally, bal- 
anced) underlying tree are investigated. The main emphasis is on input con- 
ditions, decidability, and characterization of acceptable languages. 

1. Introduction 

Systolic tree automata  were introduced in [-1], basically as a model for VLSI. 
(An essentially different model, a systolic trellis automaton,  was introduced in 
[2].) It was observed already in [1] that the new model gives rise to a number 
of new problems and problem areas which are interesting also from the point 
of view of classical language theory. This aspect was further exploited in [3]. 

The present paper deals with systolic tree automata,  where the underlying 
tree is the complete binary tree. The definitions and results are stated for this 
binary case only. However, this is done only because of notational simplicity. 
The reader should have no difficulties in verifying the results for arbitrary 
balanced trees. (We call a tree balanced if there is an integer k > 2  such that 
every node has exactly k sons.) Even the proofs remain almost the same in this 
more general case. Some of our results (such as the stability theorem in Sect. 3) 
can be easily extended to concern a slightly more general class of trees (for 
instance leftmost prefix preserving trees) than balanced trees. However, they 
can not be extended (at least not by the methods of this paper) to concern 
arbitrary systolic tree automata  of [1]. Some of the difficulties in generalizing 
the decidability of the emptiness problem (established in Sect. 6 below) are 
discussed in [3]. 

We shall investigate in this paper structural results concerning systolic 
binary tree automata,  as well as properties of the accepted languages. Sections 
3 and 4 deal with structural results as regards the input format. We prove first 

* This work was supported by Natural Science and Engineering Research Council of Canada 
Grant Nos. A7403 and A1617 

' On a leave of absence from the Computer Research Center in Bratislava, Czechoslovakia 
2 On a leave of absence from the University of Turku, Finland 

0001-5903/83/0018/0335/$02.00 



336 K. Culik II. et al. 

the "stability" result: there is no loss of generality in assuming that the input 
is fed on an arbitrary level (rather than on the first possible level as done 
according to the original definition). We then show that this result can not be 
extended to a "super-stability" result, where we could also scatter the input in 
an arbitrary fashion (preserving the order of the letters) on the level in 
question. 

The effect of nondeterminism is discussed in Sect. 5. It is shown that 
nondeterminism does not buy you anything. Although this result in itself is not 
surprising, it is a useful tool in several constructions, for instance, in [3]. 
Section 6 deals with decidability: it is shown that the basic problem dealing 
with systolic binary tree automata and the accepted languages are decidable. 
Finally, Sect. 7 discusses some open problems concerning especially the charac- 
terization of the accepted languages. It seems very likely that the family of 
languages acceptable by systolic binary tree automata has the following pro- 
perties, which make the family rather unique among the language families 
investigated so far: the family contains all regular languages and some lan- 
guages "high up" in the customary hierarchies but not nonregular context-free 
languages ! 

This paper is largely self-contained: only the very basics of formal language 
theory is assumed on the part of the reader. The reader is referred to [1] for 
further motivation and background material concerning systolic tree automata. 
References [1] and [2] contain, moreover, some further discussion concerning 
the different models for VLSI (starting with arbitrary graphs), as well as the 
notion of "systolic" (the information is pumped in to form a uni-directional 
flow). 

2. Basic Definitions and Preliminary Results 

We begin with an informal description of a systolic binary tree automaton, 
shortly, BT-VLSI. Consider an infinite binary tree without leaves. We may 
define the "levels" of the tree in the natural way: each level consists of all 
nodes whose distance from the root is a fixed number. Consider now an input 
word w over 2; with length t. We choose the first level in the tree with n > t  
vertices. The word w#  "-t (where ~ is a special symbol outside 2;) is now 
"fed", letter by letter to the level in question. This means the following. We 
consider also another alphabet 2;o (referred to as the operating alphabet) and a 
function g: 2; w { 4~ }--,Z o. The nodes of the level in question are labeled (in the 
correct order !) with the g-values of the letters in the word w # , - t .  

Information now flows bottom-up and in parallel. We consider also anoth- 
er function h: X2~2;o  . If the sons of a node have already been assigned (from 
left to right) the values a and b, their father is assigned the value h(a, b). The 
word w is accepted by our BT-VLSI if the root of the tree gets in this way a 
value from 2;~, where 2;~ is a designated subset of 2; o. 

Formally, a BT-VLSI is a sixtuple 
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where the 27's are alphabets such that 27o_C27o, #e is a letter not in X, and h 
and g are mappings of X 2 and 27 w { # }, respectively, into 2; o. 

The domain of h is extended to the set 

U 2`2"=A 
n ~ l  

as follows. Consider a word x in A. Hence, for some n>  1, the length of x 
satisfies Ix[=2". We write x=y ly2 . . . y2 ,_ ,  where each y is a word of length 2. 
We now apply h to each of the words y, yielding a new word 

x ~ -- h(y ~) h(y2) ... h(y2~- 1). 

If the length of xl exceeds l, i.e., if n__>2, we repeat the same procedure. 
Continuing in this way, we finally obtain a word z of length 1, i.e., a letter of 
2" o. We write H(x)=z.  Clearly, H is an extension of h, i.e., H(x)=h(x) for 
words x of length 2. 

The mapping g can be viewed in the natural way as a homomorphism of 
( X u { # } ) *  into 27~. A word w over 2; of length >_2 is accepted by our BT- 
VLSI G if H(g(w~ i) is in 2~ where i__>0 is the unique integer such that 

[w#i[--2" for some n_>l, and w>i.  

A word w of length 1 (resp. the empty word e) is accepted if g(w) (resp. g(#) )  is 
t in 2`0- 

The collection of all words accepted by G is denoted by L(G) and referred 
to as the language accepted by G. A language L is BT-VLSI  acceptable if L 
=L(G), for some BT-VLSI G. The family of all BT-VLSI acceptable languages 
is denoted by ~(BT-VLSI).  

Some elaborations of the notions introduced above will be considered in 
the sequel. Instead of an unlabeled binary tree, we could begin with a labeled 
one. Then the two functions h and g are replaced by the collection of functions 
h a and g,, where a ranges through the alphabet of labels. The definitions 
remain the same except that now h, and g~ are used for nodes labeled with a. 
This generalization was considered in [1], where it was also assumed that the 
labeling satisfies the following regularity condition: the infinite labeled tree 
possesses only finitely many infinite labeled subtrees. It was shown in [1] that 
every language acceptable by some BT-VLSI with an underlying regularly 
labeled tree belongs to the family ~~ as defined above. Because of 
this "normal form" result we have given above the simpler definition. It is to 
be emphasized, however, that in this result the regularity condition for the 
labeling is quite essential: if unrestricted labeling is allowed then, for instance, 
every language over a one-letter alphabet becomes BT-VLSI acceptable, al- 
though only finitely many labels are used. 

At a first glance, it might seem unnatural that the input has to be fed to a 
specific level of the tree. (From the VLSI point of view, this means that there is 
also a lower bound on the size of words that can be processed by a chip of a 
certain size - an upper bound being necessary in any case.) Hence, it would be 
desirable that an arbitrary BT-VLSI can always be replaced by an equivalent 



338 K. Culik II, et al. 

(i.e., accepting the same language) BT-VLSI which is stable in the following 
sense: the accepted language remains invariant if we drop the condition that a 
word must always be fed on the first possible level of the tree. (In the formal 
definition above, this condition amounts to the inequality Iwl>i. ) Indeed, we 
shall establish this result in the next section. Here we give now the formal 
definitions. 

A BT-VLSI (where the above notation is used for the different items) G is 
termed stable if, for all words w over 12 and all integers i and j such that both 
Iw#il and [w#Jl are powers of 2, H(g(w#i)) is in So if and only if H(g(w:ilJ)) is 

! 

in Z o. 
For a word w over Z, all words w' over s  { #}  satisfying conditions (i) 

and (ii) below are referred to as #e-versions of w. 

(i) The length of w' equals a power of 2. 

(ii) w' is obtained by shuffling (in the usual sense of the shuffle operation) w 
and some word in #*.  

(Thus, if we erase from w' all occurrences of :~, leaving all letters of 2; 
unchanged, we obtain w.) 

A BT-VLSI G is termed super-stable if, for all #-versions w' and w" of the 
same word w, the letter H(g(w')) is in 2;o if and only if H(g(w")) is in 2;o- 

Thus, G being stable means that the acceptance of a word w does not 
depend on the level w is fed in. G being super-stable means that, in addition, 
the acceptance of w is independent also of the choice of the nodes in the level 
chosen as the input level for w. We shall prove in the next two sections that, 
for every G, an equivalent stable BT-VLSI can be constructed but that there 
are BT-VLSI's for which no equivalent super-stable BT-VLSI exists. 

This section is concluded with a result from [1] needed in the sequel. 

Theorem 1. The family ~ (BT-VLSI )  contains all regular languages and is (effec- 
tively) closed under Boolean operations. 

3. Stability 

The purpose of this section is to establish the result concerning stability, 
mentioned already in Sect. 2. The result is especially pleasing because it shows 
that the somewhat unnatural input condition of the original definition can 
always be avoided. 

Theorem2. For every BT-VLSIG,  an equivalent stable BT-VLSIG'  can be 
effectively constructed. 

Proof. Consider a BT-VLSI 

G---(Z, I2o, 2;;, ~ ,  h, g), 

where the different items are as in Sect. 2. We now define a BT-VLSIG' as 
follows. It will be convenient to use a labeled tree and apply the normal form 
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result of Eli (referred to in Sect. 2), according to which such a labeling causes 
no loss of generality. Clearly, stability is not affected by this construction. 

The tree of G' is labeled as follows. The root gets the label R, all other 
nodes in the leftmost path get the label A, and all remaining nodes the label B. 
Clearly, the regularity condition for the labeling is satisfied: the number of 
distinct infinite labeled subtrees equals three. 

The terminal alphabet S, as well as the special symbol ~,  remain unaltered 
for G'. The operating alphabet of G' consists of the letters a of 2;0, as well as of 
their "primed versions" a', and of two additional letters s and r. The letter s is 
the only designated (accepting) letter of G'. The functions g~, gA, gB, hR, ha, hB, 
corresponding to our labeling, are defined as follows. 

Consider first the g-functions. The value gR(b) equals s or r, for b being a 
letter of 2; (resp. ~), depending on whether or not b (resp. the empty word) is 
in L(G). The value gn(b) equals g(b) (resp. (g(b))'), for b being a letter of 2; (resp. 
~). The value ga(=~ =) equals s or r, depending whether or not the empty word 
is in L(G). For letters b of 1;, gA(b) equals (g(b))' or g(b), depending on whether 
or not b is in L(G). 

Consider then the h-functions. For all pairs unlisted in the sequel, the value 
of the function equals r. 

The value hR(x, y) equals s in the following cases. (i) h(x, y) is defined and is 
in 2; o. (ii) x=s and y is a primed letter. (iii) y is a primed letter, y=z', h(x, z) is 
defined and is in X o. (iv) x is in 2; o and y results from a tree with all leaves 
labeled by ~.  

The value hB(x, y) (resp. hn(x, y') and hB(x', y')) equals h(x, y) (resp. (h(x, y))'), 
whenever h(x,y) is defined. The value ha(X , y) equals h(x,y), whenever the 
latter is defined. The value ha(x, y') equals s if h(x, y) is in 2; o and y' results 
from a tree where all leaves are labeled with ~.  (Clearly, we can check the 
latter condition. According to our convention, ha(X, y') equals r in the remain- 
ing cases.) The value hA(S,y' ) equals s, for all primed letters y'. The value 
hA(X' , y') equals s, for all x' and y'. Finally, hA(X', y)=h(x, y) whenever the latter 
value is defined. 

It is now fairly straightforward to verify that G' is stable and equivalent to 
G. Indeed, our definitions above guarantee that, if the empty word or a word 
of length one is in L(G), then it is also in L(G') and, moreover, can be accepted 
from an arbitrary level, and vice versa. 

Consider then a word w over 2; with length >2. We claim that w is in L(G) 
if and only if w is in L(G') and, moreover, that whenever w is in L(G'), it can 
be accepted from an arbitrary (sufficiently long) level. 

Assume first that w is in L(G). Consider an arbitrary sufficiently long level 
in the tree for G'. Feed w to this level. Several cases arise, depending on the 
length of w as compared with the length of the level. (i) The length of w 
exceeds half of the length of the level. Then w is accepted, by points (i) or (iii) 
in the definition of h R . 

(ii) The length of w equals half of the length of the level, w is now accepted, 
by point (iv) of the definition of hR, as well as by the fact that ha(x, y)=h(x, y) 
in appropriate cases. 
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(iii) The length of w is less than half of the length of the level. If the length 
of w is not a power of 2, w is accepted, because of point (ii) in the definition of 
h R, and because of the definition of h A. (Recall that w is in L(G).) If the length 
of w equals a power of 2, w is still accepted, because of point (ii) in the 
definition of h R, as well as the definition of h a. 

Assume, secondly, that w is not in L(G). An analysis similar to the one 
outlined above shows that w is not in L(G') (no matter on what level w is fed 
in). This completes the proof of Theorem 2. [] 

4. Super-Stability 

Although the result of the last section shows that the input can be fed on an 
arbitrary level, we shall now prove that one cannot go further: super-stability 
cannot be achieved. 

Theorem3. Every language accepted by a super-stable BT-VLSI is regular. 
Consequently, there are BT-VLSI's for which no equivalent super-stable BT- 
VLSI can be constructed. 

Proof. Clearly, the second sentence is a consequence of the first sentence. This 
follows because, for instance, the language {a2"[n>0} is obviously in L,C(BT- 
VLSI). 

To prove the first sentence, assume that G is a super-stable BT-VLSI. (Our 
notation for the different items of G is the same as before.) We shall prove that 
L(G) is regular, by constructing a deterministic finite automaton M accepting 
L(G). 

First some initial observations. Consider the letters 

c~,=H(g(#2")) and ~,(a)=H(g(#-z"-la)), 

belonging to the operating alphabet of G, where a is an arbitrary letter in the 
terminal alphabet of G, and n>  1 is an arbitrary integer. Thus, ~, and/~,(a) are 
the outputs associated with the root of the following trees: 

# #  . . . . . . . .  # # #  . . . . . . . .  #a 

It is obvious that e,, as well as each/~.(a), is an ultimately periodic function 
of n. Let N be an integer divisible by all the periods (i.e., the period of ~. and 
/~,(a), for every a in the terminal alphabet) and also greater than all the 
threshold ("initial mess"). 
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The states of our automaton M are the letters of the operating alphabet of 
G. The input alphabet of M equals the terminal alphabet of G. The initial state 
is H(g( #e 2,)). 

The transition function 6 is defined as follows. Let A be a state (i.e., a letter 
of the operating alphabet of G) and let a belong to the terminal alphabet of G. 
Choose any word w with [wJ=2 kN, for some k, such that H(g(w))=A. Define 

6 (A, a) = H(g(w #' a)) 

where i=[wl.2N-[w[ - 1. (If no word w satisfying our conditions exists, the 
definition of 6(A,a) is arbitrary because A will not be a reachable state.) Our 
choice of N guarantees that 6(A,a) is independent of w. Intuitively, 6(A,a) 
indicates how the output A changes in the leftmost path in N steps when the 
word fed to the additional leaves is # ia :  

N B 

w # . . . . . . . . .  # 

Thus, in our picture 6(A,a)=B. 
To complete the definition of our finite automaton M, we now specify the 

final states. Consider an arbitrary state A and choose again a word w with 
H(g(w)) =A and Iw[ =2  kN, for some k. By definition, A is final if and only if 

H(g(w:fl:i)), where i=lwl.2N-Iwl, 

belongs to the set Z o of designated letters of G. By our choice of N, this 
definition is again independent of w. 

It is now easy to verify that L(M)=L(G). Indeed, the inclusion L(M)~_ L(G) 
is obvious. To establish the reverse inclusion, consider an arbitrary word w 
= a  1 ... a t (where the a's are letters) in L(G). Since G is super-stable, we may 
input (and accept !) w in the form 

2~ ~iOa 1 ~ i l  ... at ~i , ,  

where the ?s are chosen in such a way that, in every step between the 
terminals the height of the tree grows by N. This implies that w causes in M a 
transition from the initial state to one of the final states, showing that w is in 
L(M). [] 
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Theorems 2 and 3 give a pretty good idea how much leeway we have in the 
input format. It seems likely that Theorem 3 can be extended to concern 
"weak" super-stability, meaning that every input w can be fed on an arbitrary 
level and to an arbitrary position in such a way that letters of w remain 
adjacent, i.e., only shuffles of the form ~iw @J are allowed. 

5. Nondeterminism 

The purpose of this section is to discuss the familiar generalization to nonde- 
terminism for BT-VLSI's. We skip the detailed definitions and proofs because 
it is straightforward to fill them in. Although the idea of nondeterminism is 
very simple, it is very useful in several constructions, as exemplified in [3]. 

A nondeterministie BT-VLSI differs from the one defined in Sect. 2 in that 
the range of the functions g and h is the set of subsets of the operating 
alphabet. Otherwise, everything remains the same but H(g(w :~i)) may consist 
of several letters of the operating alphabet. The word w is accepted if at least 
one designated letter is among the letters of H(g(w #ei)). Thus, as is customary 
in connection with nondeterministic devices, the same input may give rise to 
several computations. All failures are disregarded if there is one successful 
computation. 

Theorem 4. A language is acceptable by a nondeterministic BT-VLSI if and only 
if it is acceptable by a deterministic BT-VLSI. Consequently, every language 
acceptable by a nondeterministic BT-VLSI is accepted by a (deterministic) 
stable BT-VLSI. 

Proof The second sentence is a consequence of the first sentence, by Theo- 
rem 2. The " i f '  - part of the first sentence is trivial because deterministic BT- 
VLSI's are a special case of nondeterministic ones. The "only if '  - part of the 
first sentence is established by the familiar subset construction: for a nonde- 
terministic BT-VLSI G, an equivalent deterministic one, G', is constructed by 
letting the operating alphabet of G' consist of the subsets of the operating 
alphabet of G and by defining the new functions h' and g' in the appropriate 
manner to take care of all transitions of G. [] 

6. Decidability 

By Theorem 1 and by the fact (see, for instance, [1]) that 5~ con- 
tains rather complicated exponential languages, we can conclude that 5e(BT- 
VLSI) is a rather "large" family of languages. On the other hand, we shall 
prove in this section that this family has all the reasonable decidability proper- 
ties and is, consequently, a relatively "small" family. 

Theorem 5. It is decidable whether or not the language accepted by a given BT- 
VLSI is empty. 

Proof Consider an arbitrary BT-VLSI 

o = ( Z , ~ o , Z  o, ~:,h,g). 
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We have to decide whether or not L(G) is empty. By Theorem 2, we may 
assume that G is stable. 

We define subsets A i, B i, C i, i=0 ,1 ,2 , . . . ,  of the set 2; o as follows. By 
definition, 

Ao={g(a) lainS} ,  Bo=qS, Co = {g(4~)}. 

For any i>0,  a letter x is in Ai+ 1 if and only if x = h(y, z) where both y and 
z are in A i. For any i>O, a letter x is in Ci+ l if and only if x=h(y,z)  where 
both y and z are in Ci. Finally, for any i>0,  a letter x is in Bi+ t if and only if 
x = h(y, z) where one of the following three alternatives (i)-(iii) is satisfied: 

(i) y is in A i and z is in Bi, 

(ii) y is in A i and z is in Cz, 

(iii) y is in B i and z is in C r 

We can immediately check whether or not the empty word is in L(G). 
Hence, we may assume this is not the case. Then L(G) is non-empty if and 
only if some letter of 2;0 is in AiuBi ,  for some i. (Recall that G is stable.) On 
the other hand, for all i, the triple (Az+ t, B~+~, C~+ t) is completely determined 
by the triple (Ai, B~, C~). Since all of the sets involved are subsets of 2;0, this 
implies that repetitions must occur, and we obtain the decidability. [] 

Theorem 1 now immediately yields the following corollary of Theorem 5. 

Theorem 6. The equivalence problem for BT-VLSI's is decidable. 

We give, finally, the following decidability result of a somewhat different 
kind. The corresponding problem for trellis automata is undecidable. 

It is interesting to observe that most of the important decision problems for 
BT-VLSI's are, in fact, decidable, whereas undecidability holds for correspond- 
ing problems (for instance, emptiness) concerning trellis automata. 

Theorem 7. It is decidable whether or not a given BT-VLSI  is stable. 

Proof Given an arbitrary BT-VLSI G, we first construct, by Theorem 2, an 
equivalent stable BT-VLSI G'. We then modify G and G' in such a way that 
the original special symbol ~ will belong to the terminal alphabet and that all 
words whose length is not a power of 2, as well as all words where the special 
symbol :1# occurs somewhere else than at the end of the word, are rejected. 
These modifications are easy to perform. Call by K and K' the modified BT- 
VLSI's. 

By Theorem 6, we can decide whether or not K and K' are equivalent. But 
clearly G is stable if and only if K and K' are equivalent. [] 

7. Open Problems 

Although a number of results about the basic properties of BT-VLSI's, as well 
as the accepted languages, have been established, some important open prob- 
lems still remain. In our estimation, the most important ones deal with the 
characterization of the family ~(BT-VLSI).  For instance, it seems most likely 
that this family contains no non-regular context-free languages (which, in view 
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of Theorem 1, would make this family quite unique in language theory). How- 
ever, we have not been able to establish this conjecture. The reference [1] 
contains a criterion that could perhaps be used. However, the corresponding 
very natural-looking result concerning context-free language fails as shown in 
I-41. 

It seems very likely that an exact characterization of languages over a one- 
letter alphabet in ~(BT-VLSI) can be obtained. Such a characterization would 
involve the Boolean closure of regular languages and some suitably chosen 
exponential languages. 

In addition, some important decision problems, such as the decidability of 
the super-stability of a BT-VLSI or of the regularity of a language in ~(BT- 
VLSI), remain open. 
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Note Added in Proof 

Mike Paterson (EATCS) Bulletin 18, 29 (1982), has shown that there are nonregular context-free 
BT-VLSI acceptable languages. 


