
Acta Informatica 18, 335-344 (1983)

�9 Springer-Verlag 1983

Systolic Automata for VLSI on Balanced Trees*

K. Culik II, J. Gruska t, A. Salomaa 2

Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1,
Canada

Summary. Systolic tree automata with a binary (or, more generally, bal-
anced) underlying tree are investigated. The main emphasis is on input con-
ditions, decidability, and characterization of acceptable languages.

1. Introduction

Systolic tree automata were introduced in [-1], basically as a model for VLSI.
(An essentially different model, a systolic trellis automaton, was introduced in
[2].) It was observed already in [1] that the new model gives rise to a number
of new problems and problem areas which are interesting also from the point
of view of classical language theory. This aspect was further exploited in [3].

The present paper deals with systolic tree automata, where the underlying
tree is the complete binary tree. The definitions and results are stated for this
binary case only. However, this is done only because of notational simplicity.
The reader should have no difficulties in verifying the results for arbitrary
balanced trees. (We call a tree balanced if there is an integer k > 2 such that
every node has exactly k sons.) Even the proofs remain almost the same in this
more general case. Some of our results (such as the stability theorem in Sect. 3)
can be easily extended to concern a slightly more general class of trees (for
instance leftmost prefix preserving trees) than balanced trees. However, they
can not be extended (at least not by the methods of this paper) to concern
arbitrary systolic tree automata of [1]. Some of the difficulties in generalizing
the decidability of the emptiness problem (established in Sect. 6 below) are
discussed in [3].

We shall investigate in this paper structural results concerning systolic
binary tree automata, as well as properties of the accepted languages. Sections
3 and 4 deal with structural results as regards the input format. We prove first

* This work was supported by Natural Science and Engineering Research Council of Canada
Grant Nos. A7403 and A1617

' On a leave of absence from the Computer Research Center in Bratislava, Czechoslovakia
2 On a leave of absence from the University of Turku, Finland

0001-5903/83/0018/0335/$02.00

336 K. Culik II. et al.

the "stability" result: there is no loss of generality in assuming that the input
is fed on an arbitrary level (rather than on the first possible level as done
according to the original definition). We then show that this result can not be
extended to a "super-stability" result, where we could also scatter the input in
an arbitrary fashion (preserving the order of the letters) on the level in
question.

The effect of nondeterminism is discussed in Sect. 5. It is shown that
nondeterminism does not buy you anything. Although this result in itself is not
surprising, it is a useful tool in several constructions, for instance, in [3].
Section 6 deals with decidability: it is shown that the basic problem dealing
with systolic binary tree automata and the accepted languages are decidable.
Finally, Sect. 7 discusses some open problems concerning especially the charac-
terization of the accepted languages. It seems very likely that the family of
languages acceptable by systolic binary tree automata has the following pro-
perties, which make the family rather unique among the language families
investigated so far: the family contains all regular languages and some lan-
guages "high up" in the customary hierarchies but not nonregular context-free
languages !

This paper is largely self-contained: only the very basics of formal language
theory is assumed on the part of the reader. The reader is referred to [1] for
further motivation and background material concerning systolic tree automata.
References [1] and [2] contain, moreover, some further discussion concerning
the different models for VLSI (starting with arbitrary graphs), as well as the
notion of "systolic" (the information is pumped in to form a uni-directional
flow).

2. Basic Definitions and Preliminary Results

We begin with an informal description of a systolic binary tree automaton,
shortly, BT-VLSI. Consider an infinite binary tree without leaves. We may
define the "levels" of the tree in the natural way: each level consists of all
nodes whose distance from the root is a fixed number. Consider now an input
word w over 2; with length t. We choose the first level in the tree with n > t
vertices. The word w# "-t (where ~ is a special symbol outside 2;) is now
"fed", letter by letter to the level in question. This means the following. We
consider also another alphabet 2;o (referred to as the operating alphabet) and a
function g: 2; w { 4~ }--,Z o. The nodes of the level in question are labeled (in the
correct order !) with the g-values of the letters in the word w # , - t .

Information now flows bottom-up and in parallel. We consider also anoth-
er function h: X2~2;o . If the sons of a node have already been assigned (from
left to right) the values a and b, their father is assigned the value h(a, b). The
word w is accepted by our BT-VLSI if the root of the tree gets in this way a
value from 2;~, where 2;~ is a designated subset of 2; o.

Formally, a BT-VLSI is a sixtuple

Systolic Automata for VLSI on Balanced Trees 337

where the 27's are alphabets such that 27o_C27o, #e is a letter not in X, and h
and g are mappings of X 2 and 27 w { # }, respectively, into 2; o.

The domain of h is extended to the set

U 2`2"=A
n ~ l

as follows. Consider a word x in A. Hence, for some n> 1, the length of x
satisfies Ix[=2". We write x=y ly2 . . . y2 ,_ , where each y is a word of length 2.
We now apply h to each of the words y, yielding a new word

x ~ -- h(y ~) h(y2) ... h(y2~- 1).

If the length of xl exceeds l, i.e., if n__>2, we repeat the same procedure.
Continuing in this way, we finally obtain a word z of length 1, i.e., a letter of
2" o. We write H(x)=z. Clearly, H is an extension of h, i.e., H(x)=h(x) for
words x of length 2.

The mapping g can be viewed in the natural way as a homomorphism of
(X u { # }) * into 27~. A word w over 2; of length >_2 is accepted by our BT-
VLSI G if H(g(w~ i) is in 2~ where i__>0 is the unique integer such that

[w#i[--2" for some n_>l, and w>i.

A word w of length 1 (resp. the empty word e) is accepted if g(w) (resp. g(#)) is
t in 2`0-

The collection of all words accepted by G is denoted by L(G) and referred
to as the language accepted by G. A language L is BT-VLSI acceptable if L
=L(G), for some BT-VLSI G. The family of all BT-VLSI acceptable languages
is denoted by ~(BT-VLSI).

Some elaborations of the notions introduced above will be considered in
the sequel. Instead of an unlabeled binary tree, we could begin with a labeled
one. Then the two functions h and g are replaced by the collection of functions
h a and g,, where a ranges through the alphabet of labels. The definitions
remain the same except that now h, and g~ are used for nodes labeled with a.
This generalization was considered in [1], where it was also assumed that the
labeling satisfies the following regularity condition: the infinite labeled tree
possesses only finitely many infinite labeled subtrees. It was shown in [1] that
every language acceptable by some BT-VLSI with an underlying regularly
labeled tree belongs to the family ~~ as defined above. Because of
this "normal form" result we have given above the simpler definition. It is to
be emphasized, however, that in this result the regularity condition for the
labeling is quite essential: if unrestricted labeling is allowed then, for instance,
every language over a one-letter alphabet becomes BT-VLSI acceptable, al-
though only finitely many labels are used.

At a first glance, it might seem unnatural that the input has to be fed to a
specific level of the tree. (From the VLSI point of view, this means that there is
also a lower bound on the size of words that can be processed by a chip of a
certain size - an upper bound being necessary in any case.) Hence, it would be
desirable that an arbitrary BT-VLSI can always be replaced by an equivalent

338 K. Culik II, et al.

(i.e., accepting the same language) BT-VLSI which is stable in the following
sense: the accepted language remains invariant if we drop the condition that a
word must always be fed on the first possible level of the tree. (In the formal
definition above, this condition amounts to the inequality Iwl>i.) Indeed, we
shall establish this result in the next section. Here we give now the formal
definitions.

A BT-VLSI (where the above notation is used for the different items) G is
termed stable if, for all words w over 12 and all integers i and j such that both
Iw#il and [w#Jl are powers of 2, H(g(w#i)) is in So if and only if H(g(w:ilJ)) is

!

in Z o.
For a word w over Z, all words w' over s { #} satisfying conditions (i)

and (ii) below are referred to as #e-versions of w.

(i) The length of w' equals a power of 2.

(ii) w' is obtained by shuffling (in the usual sense of the shuffle operation) w
and some word in #*.

(Thus, if we erase from w' all occurrences of :~, leaving all letters of 2;
unchanged, we obtain w.)

A BT-VLSI G is termed super-stable if, for all #-versions w' and w" of the
same word w, the letter H(g(w')) is in 2;o if and only if H(g(w")) is in 2;o-

Thus, G being stable means that the acceptance of a word w does not
depend on the level w is fed in. G being super-stable means that, in addition,
the acceptance of w is independent also of the choice of the nodes in the level
chosen as the input level for w. We shall prove in the next two sections that,
for every G, an equivalent stable BT-VLSI can be constructed but that there
are BT-VLSI's for which no equivalent super-stable BT-VLSI exists.

This section is concluded with a result from [1] needed in the sequel.

Theorem 1. The family ~ (BT-VLSI) contains all regular languages and is (effec-
tively) closed under Boolean operations.

3. Stability

The purpose of this section is to establish the result concerning stability,
mentioned already in Sect. 2. The result is especially pleasing because it shows
that the somewhat unnatural input condition of the original definition can
always be avoided.

Theorem2. For every BT-VLSIG, an equivalent stable BT-VLSIG' can be
effectively constructed.

Proof. Consider a BT-VLSI

G---(Z, I2o, 2;;, ~ , h, g),

where the different items are as in Sect. 2. We now define a BT-VLSIG' as
follows. It will be convenient to use a labeled tree and apply the normal form

Systolic Automata for VLS! on Balanced Trees 339

result of Eli (referred to in Sect. 2), according to which such a labeling causes
no loss of generality. Clearly, stability is not affected by this construction.

The tree of G' is labeled as follows. The root gets the label R, all other
nodes in the leftmost path get the label A, and all remaining nodes the label B.
Clearly, the regularity condition for the labeling is satisfied: the number of
distinct infinite labeled subtrees equals three.

The terminal alphabet S, as well as the special symbol ~, remain unaltered
for G'. The operating alphabet of G' consists of the letters a of 2;0, as well as of
their "primed versions" a', and of two additional letters s and r. The letter s is
the only designated (accepting) letter of G'. The functions g~, gA, gB, hR, ha, hB,
corresponding to our labeling, are defined as follows.

Consider first the g-functions. The value gR(b) equals s or r, for b being a
letter of 2; (resp. ~), depending on whether or not b (resp. the empty word) is
in L(G). The value gn(b) equals g(b) (resp. (g(b))'), for b being a letter of 2; (resp.
~). The value ga(=~ =) equals s or r, depending whether or not the empty word
is in L(G). For letters b of 1;, gA(b) equals (g(b))' or g(b), depending on whether
or not b is in L(G).

Consider then the h-functions. For all pairs unlisted in the sequel, the value
of the function equals r.

The value hR(x, y) equals s in the following cases. (i) h(x, y) is defined and is
in 2; o. (ii) x=s and y is a primed letter. (iii) y is a primed letter, y=z', h(x, z) is
defined and is in X o. (iv) x is in 2; o and y results from a tree with all leaves
labeled by ~.

The value hB(x, y) (resp. hn(x, y') and hB(x', y')) equals h(x, y) (resp. (h(x, y))'),
whenever h(x,y) is defined. The value ha(X , y) equals h(x,y), whenever the
latter is defined. The value ha(x, y') equals s if h(x, y) is in 2; o and y' results
from a tree where all leaves are labeled with ~. (Clearly, we can check the
latter condition. According to our convention, ha(X, y') equals r in the remain-
ing cases.) The value hA(S,y') equals s, for all primed letters y'. The value
hA(X' , y') equals s, for all x' and y'. Finally, hA(X', y)=h(x, y) whenever the latter
value is defined.

It is now fairly straightforward to verify that G' is stable and equivalent to
G. Indeed, our definitions above guarantee that, if the empty word or a word
of length one is in L(G), then it is also in L(G') and, moreover, can be accepted
from an arbitrary level, and vice versa.

Consider then a word w over 2; with length >2. We claim that w is in L(G)
if and only if w is in L(G') and, moreover, that whenever w is in L(G'), it can
be accepted from an arbitrary (sufficiently long) level.

Assume first that w is in L(G). Consider an arbitrary sufficiently long level
in the tree for G'. Feed w to this level. Several cases arise, depending on the
length of w as compared with the length of the level. (i) The length of w
exceeds half of the length of the level. Then w is accepted, by points (i) or (iii)
in the definition of h R .

(ii) The length of w equals half of the length of the level, w is now accepted,
by point (iv) of the definition of hR, as well as by the fact that ha(x, y)=h(x, y)
in appropriate cases.

340 K . C u l i k I I . e t al.

(iii) The length of w is less than half of the length of the level. If the length
of w is not a power of 2, w is accepted, because of point (ii) in the definition of
h R, and because of the definition of h A. (Recall that w is in L(G).) If the length
of w equals a power of 2, w is still accepted, because of point (ii) in the
definition of h R, as well as the definition of h a.

Assume, secondly, that w is not in L(G). An analysis similar to the one
outlined above shows that w is not in L(G') (no matter on what level w is fed
in). This completes the proof of Theorem 2. []

4. Super-Stability

Although the result of the last section shows that the input can be fed on an
arbitrary level, we shall now prove that one cannot go further: super-stability
cannot be achieved.

Theorem3. Every language accepted by a super-stable BT-VLSI is regular.
Consequently, there are BT-VLSI's for which no equivalent super-stable BT-
VLSI can be constructed.

Proof. Clearly, the second sentence is a consequence of the first sentence. This
follows because, for instance, the language {a2"[n>0} is obviously in L,C(BT-
VLSI).

To prove the first sentence, assume that G is a super-stable BT-VLSI. (Our
notation for the different items of G is the same as before.) We shall prove that
L(G) is regular, by constructing a deterministic finite automaton M accepting
L(G).

First some initial observations. Consider the letters

c~,=H(g(#2")) and ~,(a)=H(g(#-z"-la)),

belonging to the operating alphabet of G, where a is an arbitrary letter in the
terminal alphabet of G, and n> 1 is an arbitrary integer. Thus, ~, and/~,(a) are
the outputs associated with the root of the following trees:

. # # # #a

It is obvious that e,, as well as each/~.(a), is an ultimately periodic function
of n. Let N be an integer divisible by all the periods (i.e., the period of ~. and
/~,(a), for every a in the terminal alphabet) and also greater than all the
threshold ("initial mess").

Systol ic A u t o m a t a for VLSI on Ba lanced Trees 341

The states of our automaton M are the letters of the operating alphabet of
G. The input alphabet of M equals the terminal alphabet of G. The initial state
is H(g(#e 2,)).

The transition function 6 is defined as follows. Let A be a state (i.e., a letter
of the operating alphabet of G) and let a belong to the terminal alphabet of G.
Choose any word w with [wJ=2 kN, for some k, such that H(g(w))=A. Define

6 (A, a) = H(g(w #' a))

where i=[wl.2N-[w[- 1. (If no word w satisfying our conditions exists, the
definition of 6(A,a) is arbitrary because A will not be a reachable state.) Our
choice of N guarantees that 6(A,a) is independent of w. Intuitively, 6(A,a)
indicates how the output A changes in the leftmost path in N steps when the
word fed to the additional leaves is # ia :

N B

w # #

Thus, in our picture 6(A,a)=B.
To complete the definition of our finite automaton M, we now specify the

final states. Consider an arbitrary state A and choose again a word w with
H(g(w)) =A and Iw[=2 kN, for some k. By definition, A is final if and only if

H(g(w:fl:i)), where i=lwl.2N-Iwl,

belongs to the set Z o of designated letters of G. By our choice of N, this
definition is again independent of w.

It is now easy to verify that L(M)=L(G). Indeed, the inclusion L(M)~_ L(G)
is obvious. To establish the reverse inclusion, consider an arbitrary word w
= a 1 ... a t (where the a's are letters) in L(G). Since G is super-stable, we may
input (and accept !) w in the form

2~ ~iOa 1 ~ i l ... at ~i , ,

where the ?s are chosen in such a way that, in every step between the
terminals the height of the tree grows by N. This implies that w causes in M a
transition from the initial state to one of the final states, showing that w is in
L(M). []

342 K. Culik II. et al.

Theorems 2 and 3 give a pretty good idea how much leeway we have in the
input format. It seems likely that Theorem 3 can be extended to concern
"weak" super-stability, meaning that every input w can be fed on an arbitrary
level and to an arbitrary position in such a way that letters of w remain
adjacent, i.e., only shuffles of the form ~iw @J are allowed.

5. Nondeterminism

The purpose of this section is to discuss the familiar generalization to nonde-
terminism for BT-VLSI's. We skip the detailed definitions and proofs because
it is straightforward to fill them in. Although the idea of nondeterminism is
very simple, it is very useful in several constructions, as exemplified in [3].

A nondeterministie BT-VLSI differs from the one defined in Sect. 2 in that
the range of the functions g and h is the set of subsets of the operating
alphabet. Otherwise, everything remains the same but H(g(w :~i)) may consist
of several letters of the operating alphabet. The word w is accepted if at least
one designated letter is among the letters of H(g(w #ei)). Thus, as is customary
in connection with nondeterministic devices, the same input may give rise to
several computations. All failures are disregarded if there is one successful
computation.

Theorem 4. A language is acceptable by a nondeterministic BT-VLSI if and only
if it is acceptable by a deterministic BT-VLSI. Consequently, every language
acceptable by a nondeterministic BT-VLSI is accepted by a (deterministic)
stable BT-VLSI.

Proof The second sentence is a consequence of the first sentence, by Theo-
rem 2. The " i f ' - part of the first sentence is trivial because deterministic BT-
VLSI's are a special case of nondeterministic ones. The "only if ' - part of the
first sentence is established by the familiar subset construction: for a nonde-
terministic BT-VLSI G, an equivalent deterministic one, G', is constructed by
letting the operating alphabet of G' consist of the subsets of the operating
alphabet of G and by defining the new functions h' and g' in the appropriate
manner to take care of all transitions of G. []

6. Decidability

By Theorem 1 and by the fact (see, for instance, [1]) that 5~ con-
tains rather complicated exponential languages, we can conclude that 5e(BT-
VLSI) is a rather "large" family of languages. On the other hand, we shall
prove in this section that this family has all the reasonable decidability proper-
ties and is, consequently, a relatively "small" family.

Theorem 5. It is decidable whether or not the language accepted by a given BT-
VLSI is empty.

Proof Consider an arbitrary BT-VLSI

o = (Z , ~ o , Z o, ~:,h,g).

Systolic Automata for VLSI on Balanced Trees 343

We have to decide whether or not L(G) is empty. By Theorem 2, we may
assume that G is stable.

We define subsets A i, B i, C i, i=0 ,1 ,2 , . . . , of the set 2; o as follows. By
definition,

Ao={g(a) lainS} , Bo=qS, Co = {g(4~)}.

For any i>0, a letter x is in Ai+ 1 if and only if x = h(y, z) where both y and
z are in A i. For any i>O, a letter x is in Ci+ l if and only if x=h(y,z) where
both y and z are in Ci. Finally, for any i>0, a letter x is in Bi+ t if and only if
x = h(y, z) where one of the following three alternatives (i)-(iii) is satisfied:

(i) y is in A i and z is in Bi,

(ii) y is in A i and z is in Cz,

(iii) y is in B i and z is in C r

We can immediately check whether or not the empty word is in L(G).
Hence, we may assume this is not the case. Then L(G) is non-empty if and
only if some letter of 2;0 is in AiuBi , for some i. (Recall that G is stable.) On
the other hand, for all i, the triple (Az+ t, B~+~, C~+ t) is completely determined
by the triple (Ai, B~, C~). Since all of the sets involved are subsets of 2;0, this
implies that repetitions must occur, and we obtain the decidability. []

Theorem 1 now immediately yields the following corollary of Theorem 5.

Theorem 6. The equivalence problem for BT-VLSI's is decidable.

We give, finally, the following decidability result of a somewhat different
kind. The corresponding problem for trellis automata is undecidable.

It is interesting to observe that most of the important decision problems for
BT-VLSI's are, in fact, decidable, whereas undecidability holds for correspond-
ing problems (for instance, emptiness) concerning trellis automata.

Theorem 7. It is decidable whether or not a given BT-VLSI is stable.

Proof Given an arbitrary BT-VLSI G, we first construct, by Theorem 2, an
equivalent stable BT-VLSI G'. We then modify G and G' in such a way that
the original special symbol ~ will belong to the terminal alphabet and that all
words whose length is not a power of 2, as well as all words where the special
symbol :1# occurs somewhere else than at the end of the word, are rejected.
These modifications are easy to perform. Call by K and K' the modified BT-
VLSI's.

By Theorem 6, we can decide whether or not K and K' are equivalent. But
clearly G is stable if and only if K and K' are equivalent. []

7. Open Problems

Although a number of results about the basic properties of BT-VLSI's, as well
as the accepted languages, have been established, some important open prob-
lems still remain. In our estimation, the most important ones deal with the
characterization of the family ~(BT-VLSI). For instance, it seems most likely
that this family contains no non-regular context-free languages (which, in view

344 K. Culik II. et al.

of Theorem 1, would make this family quite unique in language theory). How-
ever, we have not been able to establish this conjecture. The reference [1]
contains a criterion that could perhaps be used. However, the corresponding
very natural-looking result concerning context-free language fails as shown in
I-41.

It seems very likely that an exact characterization of languages over a one-
letter alphabet in ~(BT-VLSI) can be obtained. Such a characterization would
involve the Boolean closure of regular languages and some suitably chosen
exponential languages.

In addition, some important decision problems, such as the decidability of
the super-stability of a BT-VLSI or of the regularity of a language in ~(BT-
VLSI), remain open.

References

1. Culik II, K., Salomaa, A., Wood, D.: VLSI systolic trees as acceptors. Res. Rept. CS-81-32,
Dept. of Computer Science, University of Waterloo, Waterloo, Ontario, 1981

2. Culik II, K., Gruska, J., Salomaa, A.: Systolic trellis automata (for VLSI). Ibid., CS-81-34
3. Culik II, K., Gruska, J., Salomaa, A.: On a family of L languages resulting from systolic tree

automata. Ibid., CS-81-36
4. Culik II, K., Gruska, J., Salomaa, A.: On nonregular context-free languages and pumping.

EATCS Bulletin 16, 22-24 (1982)

Received February 8, 1982/August 24, 1982

Note Added in Proof

Mike Paterson (EATCS) Bulletin 18, 29 (1982), has shown that there are nonregular context-free
BT-VLSI acceptable languages.

