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Summary. A class of binary trees is described for maintaining ordered sets of data. 
Random insertions, deletions, and retrievals of keys can be done in time proportional 
to logN where N is the cardinality of the data-set. Symmetric B-Trees are a modifica- 
tion of B-trees described previously by Bayer and McCreight. This class of trees properly 
contains the balanced trees. 

This paper will describe a further  solution to the following well-known problem 
in information processing: Organize and maintain  an index, i.e. an ordered set 
of keys or virtual  addresses, used to access the elements in a set of data,  in such 
a way  tha t  random and sequential insertions, deletions, and retrievals can be 
performed efficiently. 

Other  solutions to this problem have been described for a one-level stor~, in 
[t, 3-5, 7] and for a two-level store with a pseudo-random access backup store 
in [2]. All these techniques use trees to represent the da ta  sets. The class of trees 
to be described in this paper  is a generalization of the trees described in [t, 3-5],  
bu t  it is not  comparable  with the BB-trees described in [7]. The following tech- 
nique is suitable for a one-level store. 

Readers familiar with E2J and [3] m a y  recognize the technique a.~ a fur ther  
modification of B-trees introduced in [2]. In  [3] b inary  B-trees were considered 
as a special case and a m"dif ied representat ion of the B-trees of [2]. Binary  
B-trees are derived in a ~traightforward way  from B-trees, they do exhibit, 
however, an a symmet ry  in the sense tha t  the left arcs in a b inary  B-tree must  
be d-arcs (downward), whereas the right arcs can be either b-arcs or 0-arcs 
(horizontal). Removing this a symmet ry  natural ly  leads to the symmetr ic  binary 
B-trees described here. 

After this brief digression on the relationship of this paper to earlier work we 
will now proceed with a self-contained presentat ion of symmetr ic  binary B-trees. 

Notation. We will use t. ~t, v, w, x, y,  z to denote trees and p, q, r, s to denote 
nodes of trees, usually the root  nodes. We assume tha t  " n o d e s " ,  or to be precise 
" t h e  values stored at the nodes" ,  are taken from some set K of da ta  elements 
or " k e y s "  on which a tota l  rder, denoted by  < ,  is defined. Except  in very few 
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cases it is not necessary to distinguish between the nodes of a tree and the keys 
stored there, the meaning will be clear by context. " , "  is a special symbol used 
in describing B-trees. Its presence should convey the intuitive notion of hori- 
zontal arcs (e-arcs) to the left and right of a node as opposed to vertical arcs 
!~-arcs). 

Definition of Symmetric Binary B-Trees 

Symmetric binary B-trees, henceforth simply called B-trees, are defined 
recursively as follows: 

i) Let e be the empty tree and let # be the empty set. Then define T o (0) = # ,  
T o (0) = {e}, i.e. the set with the single member e. 

ii) For all integers h > 0 define 

Tf(h) ={(x,r, y) lx, yr  

TQ(h) =((x, ,r, y) l~T~(h), yET~Q(h--t),r~K } 
~{(x,r*, y) lx~Tf~(h--t), y~Tf(h),r~K} 
,_,{(x, ,r , ,  y) lx, y~T~(h),r~K } 

TaQ(h ) = T~(h)~T~(h). 

iii) A B-tree is a member of Tn~(h) for some integer h ~ 0 .  

Note. We call x the left subtree, y the fight subtree, r the root, and h the 
8-level or 6-height of a B-tree in Tfr We also say that  the node r is at the 
~-level or d-height h. 

For the purpose of this paper we will use the following list data  structure to 
represent B-trees: Pointers (or arcs) attached to the root of a tree will point to 
its subtrees, a left pointer to the left subtree and a right pointer to the fight 
subtree. We consider a node and the two attached pointers as a group of physi- 
cally adjacent data items, also called an " e n t r y " .  The presence of the special 
symbols �9 to the left of r and of �9 to the right of r shall be represented by  left 
and fight e-pointers resp., their absence by  b-pointers. In graphical representations 
of B-trees Q-pointers appear as horizontal, d-pointers as downward arcs. In the 
computer implementation of B-trees, one bit is used to distinguish e-pointers 
(t bit) from ~-pointers (0 bit). Empty  trees and pointers to them are omitted. 

A less formal, but  intuitively more appealing definition of B-trees using the 
terminology of E6] and ignoring empty B-trees is the following: 

B-trees are directed binary trees with two kinds of arcs (pointers), namely 
~-arcs (downward or vertical pointers) and p-arcs (horizontal pointers) such that :  

i) The paths from the root to every leaf all have the same number of ~-arcs. 

ii) All nodes except those at the lowest b-level have 2 sons. 

iii) Some of the arcs may  be e-arcs, but  there may be no successive e-arcs. 

In addition, the keys shall be stored at the nodes of a B-tree in such a way 
that  postorder traversal [6] of the tree yields the keys in increasing order, where 
postord,.~r traversal is defined recursively as follows: 
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1. If the tree is empty, do nothing. 

2. Traverse left subtree. 

3. Visit root. 

4. Traverse right subtree. 

Fig. t .  shows a graphical representation of a B-tree. Readers familiar with 
balanced trees It, 4, 5] should observe that  B-trees are r~ot balanced trees as 
shown by the B-tree in Fig. t .  

,) 

i 
Fig. t. Example of a symmetric binary B-tree 

Number of Nodes and Height of a B-Tree 

Let the height k of a B-tree be the maximal number of nodes in any path 
from the root to a leaf. Note that  the height k is larger than the ~-h.eight h whenever 
the tree has ~-pointers, in particular for a given tree we.have: 

h ~ k ~ 2 h .  

The height k of a B-tree is, as we shall see, related to the amount of work 
necessary in the worst cases to insert, retrieve, and delete keys in the tree. To 
obtain bounds on k we need the following theorem which characterizes Train (k), 
the class of those B-trees of a given height k with the least number of nodes. We 
state the theorem and sketch a proof using largely the terminology of the graphical 
representation of B-trees. 

T h ~ r c m  1. i) T~m(0)={e) ;  T=m(t)--~T8(t ). 

ii) t e Trim (k); k > t i f f  

a) there is exactly one longest path, say 2. 

b) ~ ends with a Q-pointer; in ~t ~-pointers and ~-pointers alternate. 

c) t contains no ~-pointers except those in ~t. 
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To prove the theorem we need the following lemmas: 

Lemma 1. Every longest path in tETmln(k), k > t ,  ends with a 0-pointer. 

Proof. If there is a longest path 4 without this property, then attach a new 
node via a 0-pointer at the end of 4, delete from t the root-node and the subtree 
of the root not containing 4. This results in a B-tree t' of the same height as t, 
but  with fewer nodes, a contradiction. 

Lemma 2. If t E Tmin (k), k > t,  and t has a longest path 4, then every 0-pointer 
in t is in ~t. 

Proo[. Assume there is a 0-pointer p not in 4. p points to some subtree u E T0 (m) 
for some m. Let u be of the form (ul, rl, u2). Replace u by  u a, and p by a/}-pointer 
to u v This results in a B-tree t' of height k, but  with fewer nodes than t, a con- 
tradiction. 

Lemma 3. If 4 is a longest path in rETrain(k), k >  t,  then 4 does not contain 
two or more successive b-pointers. 

Proo[. Case 1. 4 contains 3 successive b-pointers, say Pl, P~, Ps pointing to 
t, 1 E To (m) , t 2 E To (m --  1), t3 E To ~ (m --  2), respectively. Modify t as follows to obtain 
a B-tree t' of height k but  with fewer nodes than t: Delete all nodes in t at 0-level t 
except those nodes in t 2. Change p, into a 0-pointer. 

Case 2. Case t does not apply, but 4 has two successive b-pointers P2, P3 
and maybe a 0-pointer Pl preceding P2- Several specific cases arise, but  in all eases 
modify t as follows to obtain a B-tree t' of height k but  with fewer nodes than t: 
Change P2 into a 0-pointer, Pl into k b-pointer. Delete one node (r,) and one of 
its subtrees (x,). We illustrate just one ease. The described modification will 
transform the tree 

( into ~ p2 , 

Following [7] we indicate nodes by circles and trees by triangles. 

Proo] o] Theorem. i) Obvious. 

ii) Assume that  rETrain(k); k >  t .  Then 

a) follows from Lemmas t and 2, 

b) follows from Lemmas t and 3, 

c) follows from Lemma 2. 
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Now assume that  properties a), b), and c) hold. Let [t[ be the number of 
nodes in t. 

Let tbal(h ) be a completely balanced tree of height h, tmin(h ) a minimal B-tree 
of height h, tab c (h) a B-tree of height h with properties a), b), c). Then from those 
properties it is clear that  every tree tabc(h ) satisfies the following recurrence 
relation: 

) It~o(h)l=t+ tba, ~ - 1  +lt~=(h-t)l; heven 

It.~.(h)l-----t+ tb.,(~--~)+lt~,~(h--~)l; / ,odd  

[t~bAo) l --o 

It, b,(1)l----t. 
Thus all B-trees with properties a), b), c) and a given height h have the same 
number of nodes and therefore must be minimal, q.e.d. 

We now solve the above recurrence relations with I tab,(h)l=]tmin(k)[. For 
even tt we get 

= 2  + 2 .  (2h/s-t-- t) +[t, , la(h --2)[ 

=#~ +t=~(h-2) 
=2/ca + 2  ~/z-x + " "  -~2 x + 0  

= 2 h/t+x --  2. 

Similarly one obtains for odd h: 
h - - 1  

It=~(h)l=3.2 2 - 2 .  

This bound is better than the bound obtained for even h. Let t be a B-tree of 
height h. Using the worse bound obtained for even h, we obtain as bounds for It]: 

Taking logarithms we obtain: 

h 
~- + t __log, (it I +2)  

logo(!t] + t) ~ h  

and consequently as bounds for *' �9 .:~-.. height h of a B-tree t with It[ nodes: 

log, (It] + t) _<_h ~_2 logz([t[ +2)  --2.  
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B-Trees and Balanced Trees 

We wish to compare the class of balanced trees with the class of B-trees. 
The use of the special s y m b o l . ,  i.e. the distinction between horizontal  and 
vertical pointers, in the definition of B-trees makes B-trees str ict ly speaking 
different objects than  binary trees. Ignoring tha t  distinction, however, we can 
consider a B-tree as a binary tree since each node has 0, t,  or 2 sons. Given a 
b inary  tree t and a B-tree u we want  to consider t and u as essentially the same 
trees if u has the same structure as t except,for the use of Q-pointers and 8-pointers. 
The not ion of " s imi la r i ty"  makes this idea precise. 

Definition. Let  t be a b inary  tree and let u be a B-tree. Following [6] we 
define the b inary  relation _ of similarity between t and u recursively as follows: 

t ~- u if t----e and u = e  or 

if t = ( x , r , y )  and [uis(v,s,w) or(v, . s ,w )or (v , s . ,w )or (v ,  . s . ,w)]  
and x - ~ v  and r = s  and y - ~ w .  

t :~ u otherwise. 

The following theorem is a precise formulat ion of the s ta tement ,  tha t  each 
balanced tree can also be considered as a B-tree. We will see tha t  the converse 
does not  hold. 

Theorem. Let  t be a balanced tree, then there is a B-tree u such tha t  t ~-u. 

Prool. We recursively define a function fl mapping  balanced trees to B-trees 
such tha t  t ~_ fl (t). F rom the definition of fl it will be easy to see tha t :  

/ ~ h + t  i) if t is a balanced tree of odd height h, then fl (t)E T e [ ~  

"ii) iftisofevenheighth, thenfl(t)ET,(~).Thus~(t)ET,,([~])always. (2) 

iii) t fi(t). 
The function fl will not  change the s t ructure  of t, fl only decides which pointers 
of t should be ppo in te r s  or 8-pointers in considering t as a B-tree. 

Definition of 13. Denote by  xh_ 1, Yh-,  etc. balanced trees of height h -  t,  h - - 2  
etc. resp. 

Case 1. fl (t) = e if t = e; remember  tha t  e E TQ (0). 

Case 2. t is a balanced tree of odd height h. 

[(fl(Xh_l),r, fl(yh_l)) if t=(Xh_~,r, yh_~); h > t  
| 

fl(t)=~(fl(xh_2),r, fl(yh_l) ) if t=(Xh_vr, yh_t) ; h>3 
| 

[(fl(xh_~),r, fl(yh_2)) if t=(xh_x,r, yh_~) ; h ~  3. 
Case 3. t is a balanced tree of even height h ~ 2. 

/ (fl(xh_l),*r*,fl(yh_x) ) if t=(xh_l,r,  yh_~) 

f l ( t ) =  (fl(xh_2),r*,fl(yh_x)) if t=(Xh_2, r, yh_l) 

(fl(Xh_~), *r, fl(yh_z) ) if t=(Xh_X,r, yh_z). 

The proof of properties (2) is s t ra ightforward by induct ion on h. q.e.d. 
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This theorem says t ha t  essentially, i.e. up to similari ty,  the class of ba lanced 
trees is a subclass of the  class of B-trees.  T h a t  it is a proper  subclass can easily 
be seen f rom the fact  t h a t  there is no ba lanced tree similar to the B-tree in Fig. t ,  

Fig. ) shows a B-tree obta ined  f rom the ba lan red  tree in Fig. 2 according to 
the funct ion ft. 

The upper  bound  on the  height  of a B-t ree  obta ined  in (t) is app rox ima te ly  
2log 2 (It D ins tead of t ,  5 log2 (It[) for the  height of a balanced- t ree  [4]. This  means  
t h a t  the  upper  bound  for the  re t r ieval  t ime  is be t t e r  for balanced- t rees  t h a n  for 

1 I 1 I 1 

Fig. 2. A balanced tree of height 5 

Fig. 3. The balanced tree of Fig, 2 considered as a B-tree of (5-height 3 
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B-trees. On the other hand, these same bounds and the fact tha t  balanced-trees 
are a proper subclass of B-trees also sflggest tha t  less work should be required to 
update  B-trees than to update  balanced-trees. 

Maintenance Algorithms 

We now consider the algorithms for maintaining B-trees if keys are inserted 
and deleted randomly. The algorithm to retrieve keys is straightforward and will 
not be described here. The following transformations will be needed both in the 
insertion and the deletion processes whenever two successive p-pointers arise 
and must  be removed by  "sp l i t t ing" .  

Splitting Algorithm 

The function a will transform certain trees, which are no longer B-trees, 
back into B-trees. a will be applied only to trees of the form 

(u, * r, z), (u, * r*, y), (v, * r*, x), (w, r , ,  x) 
where 

~,, x~T.(h) 

~, y~T~(h) 

w, zeT~Qih--t). 

a applied to any one of those trees will result in a tree in the class T 6 (h + 1). 
Intui t ively a will t ransform trees to remove successive p-pointers, but  it will 
raise the ~-level of the tree by  one. Furthermore,  if t yields increasing keys on 
postorder traversal, then a (t) will. 

Case 1. Let u be of the form (ul, . ,1, u2). Then define: 

~({, ,  . , ,  z ) )= , ,  (( (~,1, , ,1, ,,,), . , ,  z ) ) =  (-i, ,1, (,,s, , ,  ~}). 

Now uxET~(h); (ur since uaGT~qCh--t), zETaq(h - - t ) .  Thus 
(u v rl, (u s, r, z) )E T6 (h + t). Furthermore postorder traversal of the resulting tree 
yields the keys in the same order as postorder traversal of the old tree. For trees of 
the general form (u, , r , ,  y) define: a((u,  , , * ,  y)) = (ua, r 1, (u s, r*, y)).  A similar 
argument  as before shows that  this tree is in T~ (h + l).  

Case2. u is of the form (u a, * '1" ,  us) or (u 4, r l , ,  us) and u s is (u s, "s, us). Then 
define 

] ((-1, ,,1, ,,s), ,,, (,,.. ,, ~)) 
(0,, Z)) Or r, / ((",, ,1, "s), ,,, (",, ", ~)) 

~ ((,,, , , , ,  y ) ) =  J ((,,,. ,,1, ,,s), ,,, (-,, , , ,  y)) 
( ((u,, r~, us), "s, (u., , . ,  y))  

if u = (ul, �9 r 1,,  us) 

if u=(u, ,rx*,U~) 

if u = (ul, * rl*, us) 
if u = (u,, rl *, u3). 

Similarly as in case t the resulting trees after applying a are in T6 (h + 1) and yield 
the keys on postorder traversal in the same order as before. 
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The  definit ion of a for (v, *r* ,  x) and for (w, r , ,  z) is left r ight  symmet r i c  
with cases I and  2. The  details are s t ra ight - forward  and are omit ted.  They  can 
also be found in our implementa t ion  in the procedures  S P L I T R R  and S P L I T R L .  
Case I is imp lemen ted  in S P L I T L L ,  case 2 in S P L I T L R .  

Insertion Algorithm 

VCe will recursively define a function ~ which will insert  a node s into a B-tree t. 
Star t ing wi th  an e m p t y  tree, L will build a B-t ree  b y  repeated  insert ion of nodes 
in such a w a y  tha t  postorder  t raversa l  of the tree will yield the keys  s tored a t  
the nodes in increasing order. We will not  give an explicit  proof t ha t  , will build 
and main ta in  B-trees  properly,  bu t  the following main-observa t ion  in the  defini- 
t ion o f ,  will make  the construct ion of an induct ion proof s t ra ight forward.  

Denote  b y ,  (q, z) the tree obta ined  by  insert ing node q into tree z. Then  

z E To (k) ~ t (q, z) E T 0 (k) u TQ (k). Fur thermore ,  if t (q, z) E T e (k), then  t (q, z) 

is (x, * r, y) or (x, r . ,  y) but  not  (x, �9 r . ,  y),  i.e. the root  of ~(q, z) (3) 

has exac t ly  one 0-pointer.  

zE Te(k ) ~,(q,  z)E re(k ) u Te(k + t). 

The double arrow means  "implies t h a t " .  

Definition of L To  insert  a node s into the  B-t ree  t: 

i) if t~-e then  t(s, t ) = ( e ,  s, e). Observe  t h a t  tE Te(0 ), t(s, t)E T0(t ). 

ii) t has one of the forms (x, r, y),  (v, * r, y),  (x, r . ,  w), (v, * r* ,  w) and  s is 
equal  to r. Le t  t (s, t) = t. This  means  t h a t  s is a l ready in the  tree.  In  an imple-  
men ta t ion  of t some special act ion m a y  then  be taken.  

iii) t has one of the forms as in ii) and  s<r .  Assume tETte(h ), thus  
x, yET~e(h--I  ) and v, wET6(h ). 

Case1. t is (x, r, y) or (x ,r . ,  w). Then  xET~e(h--t  ) by  the definit ion of 
B-trees.  Inser t  s into x, i.e. c o n s t r u c t ,  (s, x) and  proceed according to one of the  
following two cases. 

Case la.  ,(s, x)ET~o(h--t ). Then define 

(eCs, x) ,r ,y)  if t is (x,r,y), 
, ( s , t ) =  ( , ( s , x ) , r . , w )  if t is (x,r*,w). 

This means  t ha t  we s imply  insert  s into the left subt ree  x, bu t  do not  change t 
fur ther .  Note  t h a t  t (s, t) E T0~ (h). 

Case lb. e (s, x) E T~ (h). Then define 

(,(s, x), *r, y) if t is (x,r,y), 
, ( s , t ) =  ( , ( s , x ) , . r . ,w )  if t is (x,r . ,w).  

This means  t ha t  we insert  s into the left subtree  x, bu t  since this increases the 
d-height of the left subtree by  t ,  we also have  to change the left pointer  f rom r 
to become a 0-pointer.  Note t ha t  ,(s, t) ET o(h) and it  has  one of the forms 
described in (3)- 
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Case 2. t is (v, . r ,  y) or (v, . r . ,  w), i.e. tETo(h ). Thus vE To (h) b y t h e  definition 
of a B-tree. Insert  s into v, i.e. construct  t (s, v) and proceed according to  one of tile 
following two cases: 

Case Ca. t (s, v) E T~ (h). Then define 

(t(s, v), .r,  y) if t is (v , ,r ,y) ,  
t (s , t )--  ( t ( s , v ) , . r . ,w )  if t is (v , . r . ,w) .  

This means tha t  we simply insert s into the left subtree, but  we do not  change t 
further. Note  tha t  t (s, t) E T o (h). 

Case 2b. t(s, v)ETo(h ). Now (t(s, v), .r,  y) or (t(s, v), , r . ,  w) are no longer 
B-trees, bu t  a(t(s, v), . r , y )  and a(t(s, v), . r . ,  w) are B-trees in T n ( h + t ) .  We 
define 

l a ( t ( s , v ) , . r , y )  if t-----(v,.r,y), 
) if t = ( v , , r , , w ) .  

ivl t has one the forms as in if) and r < s. The definition of t is left-right 
symmetr ic  to case iii). The details are omitted.  

I t  is crucial to  observe tha t  the depth of recursion of t is l imited by  the height 
of the tree. Now one can represent B-trees in such a way, as e.g. in our imple- 
menta t ion,  t ha t  the work for the t ransformat ion performed by  t (and by  a) on 
a B-tree is at  each level bounded  by  a constant .  Then the total  amount  of work 
required for the insertion of a single node into a tree t is at  worst proport ional  to 
the  height  of the tree, i.e. to  21ogz([t I + 2 )  - -2 .  

Deletion Algorithm 

In  this algori thm we mus t  distinguish between a , o d e  and the key stored at 
a node. To delete a key s f rom a B-tree t, first locate tile node, say n, containing 
s in t. Then, if n has a nonempt3rleft  (right) subtree, replace s by  the next  smallest 
(next largest) key, say q, in t. q Js found easily proceeding from n one step along 
the left (right) pointer  and then along the r ight (left) pointer as long as possible. 
Now s is no longer in the tree and q is s tored at node n. The node m containing q 
originally is at  the lowest &level and will have at least one e m p t y  subtree. We 
will then delete m and the copy of q stored at m from t. Thus  we m a y  assume 
wi thout  loss of generali ty tha t  s will a lways be deleted from the lowest b-level 
in the tree and tha t  s will have at least one empty  subtree. In  our implementat ion 
the replacement of s by  q and the deletion of m from t are merged into a single 
algorithm. 

We now define recursively a function a which deletes a key s from a B-tree t 
- -under  the assumption tha t  s is stored at a node (at the lowest &level) with at  
least one e m p t y  sub t r ee - - and  results in a B-tree x(s, t). 

Observe tha t  in the definition of ~ we will get the following t ransformat ions:  

3' ~ To (k) ~o~ (s, y) E T~,(k) u TQ (k) 

y E T ~ ( k ) ~ ( s , y ) E T ~ ( k )  or a ( s , y )  E T  0 ( k - l )  and is of one of the forms (4) 

e, (Yl, *rl '  Y,), (Y~, rl*, Y2), bu t  n o t  (Yl, * r l* ,  3'2). 
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Definition of ~t. i) 

'e  if t is 

x if t is 

if t is 

o~(s,t)= t if t is 

if t is 

tE Too(t ) and  t has a t  least one e m p t y  subtree.  

(e, s, e) 
(x, *s, e) or (e, s*, x) 

(e ,r ,e)  and s=4=r or 

(x,.r,e) and s > r  or 

( e , r . , x )  and s < r .  

In  the last  three cases the key  s to be deleted is not  even in the tree and 
general ly in an implementa t ion  some special act ion will be taken.  

This  is case A in the implementa t ion .  

ii) Assume tha t  t is of one of the forms (x, r, y), (v, * r, y), (x, r*, w), (v, * r*, w) 
and s > r  and x, y, v, w4:e. 

Case 1. yEToo(h); cr y)E T0o(h); 

{(x,r,o~(s,y)) if t=(x ,r ,y)ETo(h+t)  
~(s,t)= (v,,,,,~(s,y)) if t=(v,,~,y)~T~(h+~). 

Thus  r162 t) E ToQ(h + t). 

Case 2. w E To (h + 1) ; ~ (s, w) e T~ (k + t) ; 

{(x,r,,~(s,z~)) if t=(x ,r , ,w)ET~(hWt)  
~(s , t )=  (v , , , , , ~ ( s ,w) )  if t = ( v , , , , , w ) e T ~ ( h + l ) .  

Thus  r162 (s, t) E To (h ,-t- t).  

In  our implementa t ion  cases t and  2 k are t aken  care of b y  shor teu t t ing  the  
recursion of a ( 9 o t o  QUIT)  as soon as no fur ther  modif icat ions of the tree are 
required.  

Case 3a. yero(h); ~(s,y)r t=(x,r,y)ETo(h + t ) ;  

J(x,*r,~(s,y)) if xETo(h ) 
~(s' t)= [a(x, .r,,t(s, y)) if xeTo(h ). 

Thus  ~ (s, t) E Tn (h + t) w TQ (k). This  is ease B in the implementa t ion .  

Case 3b. yET~(h) ; ot(s, y)ETQ(k - t ) ;  t=(y ,  .r, y)ET~(h + t) and 
v=(vx, rl, v,)ETn(h-k- t) 

o~(s,t)=l(v,,rl,(vz,*r,~(s,y))) if v, ETn(h) 
t(v~,rl*,a(v~, *r,,t(s,y))) if v,.eTQ(h). 

Thus  cr (s, t)E Toe (h + 1). This  is case C in the implementa t ion .  

Case 4. w E T o ( h + t ) ;  ~(s, w)ET~(h); 

. {(.~,r,o~(s,w)) if t=(x , r . ,w)ETo(h+l  ) 
0r (v,.r,o~(s,w)) if t=(v , . r . ,w)ET~(h+l) .  

Thus  ~. (s, t) E T~ o (h + 1). This is case F in the implementa t ion .  
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iii) If  s is smaller than r then definition of ~ is left-right symmetric with if). 
The details are straightforward and are omitted. 

Note that  the. depth of recursion necessary for 0t is limited by  the height of 
the tree. Similarly as in the insertion process the total  amount  of work required 
for the deletion of a single key is at worst proportional to the height of the tree. 

Main Result 

The work that  must be performed for random retrievals, insertions, and dele- 
tions is even in the worst cases proportional to the height of the B-tree, i.e. to 
log2([t]) where It[ is the number  of keys in the tree t. 

Generalization 

From the insertion and deletion algorithms discussed in this paper, it is quite 
clear tha t  the class of binary B-trees could be enlarged by  allowing up to n 
successive Q-pointers for n-----2, 3, 4 . . . .  before requiring any modification or 
" reba lanc ing"  of the tree. This would require less rebalancing, but  performance 
proportional in t ime to log(It I) would still be guaranteed. 

Implementation of Insertion and Deletion Algorithms for B-Trees 

For the ALGOL 60 implementation to be considered here a node in a B-tree 
shall consist of five fields, namely:  

LBIT: a Boolean variable to indicate tha t  the left arc is a Q-arc ( true) or a 
6-arc (false) 

LP:  the left downward pointer, an integer 

KEY:  the key in the node, a real 

RP: the right pointer, downward or horizontal, also an integer 

RBIT :  a Boolean variable to indicate that  the right pointer is a Q-arc (true) or 
a ~-arc (false) 

The absence of a pointer shall be represented by the value 0. Thus the insertion 
and deletion procedure have array parameters  LBIT,  LP, KEY,  RP,  R B I T  to  
store the nodes of the tree. The parameter  X is the key to be inserted into or 
deleted from the tree to whose root the parameter  ROOT is pointing (ROOT = 0 
for an empty  tree). The Boolean ROOTBIT  indicates ROOT as a Q-arc or as a 
8-arc. There are two procedure parameters  to maintain a hst of free nodes, namely 
ADDQ for the deletion procedure to enter a freed node into the free list, and 
G E T Q  for the insertion procedure to obtain a free node from the free list. Both 
ADDQ and GETQ have one integer parameter  pointing to the node added to or 
obtained from the free list. If  the key to be inserted is already in the tree, control 
will be transferred to the label parameter  FOUNDX. If the key to be deleted is 
not in the tree, control will be transferred to the label parameter  X N O T I N T R E E  
by  the deletion procedure. 
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The parameter  P in SYMSERT and SYMDELETE is the pointer to the root 
of the subtree in which tile insertion or deletion must  be performed. The parameter  
BIT  in SYMSERT indicates whether P is a 0-arc or a 6-arc. 

The four procedures SPLITRR,  SPLITRL,  SPLITLL,  and SPLITLR modify 
the B-tree in order to remove successive Q-pointers. They are used both in the 
insertion procedure SYMINS and in the deletion procedure SYMDEL, and are 
the implementation of the function a. 

Other local quantities in the procedures are: 

AUXP: an auxiliary integer variable used as a temporary store for pointers. 

DONE:  a label to which control is transferred after completing an insertion in 
order to shortcut the full recursion of SYMSERT. 

AUXX:  an auxiliary integer variable pointing to the key X after it has been 
found in the tree. AUXX ~ 0 otherwise. 

QUIT:  a label to which control is transferred after completing the deletion of the 
key in order to shortcut the full recursion of SYMDELETE.  

AUXD: an auxiliary integer variable used as temporary  store for pointers. 

SL: a label from where deletion of the key from the left subtree (smaller) is 
continued. 

GL: a label from where deletion of the key from the right subtree (greater) is 
continued. 

The insertion (deletion) algorithm has been written as two procedures, a non- 
recursive outer procedure SYMINS (SYMDEL) and a recursive inner procedure 
SYMSERT (SYMDELETE).  The outer procedure SYMINS (SYNIDEL) allows 
shortcutting the full recursion of SYMINSERT (SYMDELETE) via the label 
DONE (QUIT). The inner procedure SYMINSERT (SYMDELETE) performs 
insertions (deletions) in a B-tree recursively. 

I t  is assumed that  the six procedures SPLITRR,  SPLITRL,  SPLITLL,  
SPLITLR,  SYMINS, and SYMDEL are all declared in the same block or in such 
a way tha t  SPLITRR,  SPLITRL,  SPLITLL,  and S P L I T L R  can be used both 
in SYMINS and in SYMDEL. 

Note. The tree in Fig. t is a suitable tree for testing. Inserting the keys in the 
order 8, 9, t t ,  t5, 19, 20, 2t, 7, 3, 2, t ,  5, 6, 4, t3, 14, 10, 12, 17, t6, 18 will build 
up the tree. Deleting the keys in the order t, 6, 2, 21, t6, 20, 8, t4, t l ,  9, 5, t0, 
t2, t,3, 3, 4, 7, t 5, 17, 18, t0 will exercise all the cases which can arise in any dele- 
tion process. 

procedure SPIITRR (P, LP, RP, RBIT); 
integer P; integer array RP, LP; 
Boolean array RBIT; 
begin integer AUXP; 

AUXP: =R1 ) [P]; RBIT [AUXP] :-----false; 
RP [P] :=LP [AUXP] ; RBIT [P] :=false;  
LP [AUXP] :=P;  P : = A U X P  

end OF SPLITRR 
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procedure SPLITRL (P, LP, RP, LBIT, RBIT); 
integer P; integer array LP, RP; 
Boolean  a r r a y  LBIT, RBIT; 
begin integer AUXP; 

AUXP: =- LP [RP[P]] ; 
LBIT [RP [P]] :----false; LP [RP [P]] :-----RP [AUXP] ; 
RP [AUXP] : = RP [P] ; RP [P] : = LP [AUXP] ; 
RBIT [P] : ---- false;  LP [AUXP] : = P; P: = AUXP 

end OF SPLITRL 

procedure SPLITLL (P, LP, RP, LBIT); 
integer P; integer array LP, RP; 
Boolean array LBIT; 
begin integer AUXP; 

A U X P : = L P  [P]; LBIT [AUXP] ' -~false;  
LP[P]  : = RP [AUXP] ; LBIT [P] : -- false;  
LP [AUXP] : = P; P: = AUXP 

end of SPLITLL 

procedure SPLITLR (P, LP, RP, LBIT, RBIT); 
integer P; integer array LP, RP; 
Boolean  a r r a y  LBIT, RBIT; 
begin integer AUXP; 

AUXP: = RP ELP [P]]; 
RP [LP [P] ] :=  LP [AUXP] ; RBIT [LP [P] ] :=  false;  
LP [AUXP] : ---- LP [P]; LP [P]: = RP [AUXP]; 
LBIT [P] :=false; RP [AUXP] :=P; P: =AUXP 

end OF SPLITLR 

procedure SYMINS (X, ROOT, ROOTBIT, FOUNDX, LP, RP, KEY, LBIT, 
RBIT, GETQ) ; 

va lue  X; real  X; in t ege r  ROOT; Boolean  ROOTBIT; 
label FOUNDX; integer array LP, RP; array KEY; 
Boolean  a r r a y  LBIT, RBIT; p r o c e d u r e  GETQ; 
begin  p r o c e d u r e  SYMSERT (P, BIT); 

integer P; Boolean BIT; 
if P = 0  then 

begin comment INSERT X AS NEW LEAF; 
GETQ (P); KEY EP] :=X;  B I T : = t r u e ;  
LP [P] : ~ RP [PI : = 0; LBIT [P] : = RBIT [P] :---- false 

end 
else if X - -  KEY [P] then  go to  FOUNDX 
else if X < KEY [P] then  

begin c o m m e n t  INSERT X IN LEFT SUBTREE; 
SYMSERT (LP [P], LBIT EP]); 

if LBIT [P] then  begin 

21 Acta Informatma, Vol. I 
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end 

if LBIT [LP [P]] then begin SPLITLL (P, LP, RP, LBIT); 
B I T : = t r u e  end 

else if RBIT [LP [P]] then begin 
SPLITLR (P, LP, RP, LBIT, RBIT); B I T : = t r u e  end end 

else gala DONE 

else begin comment INSERT X IN RIGHT SUBTREE; 
SYMSERT (RP [P], RBIT [P]); 

if RBIT [P] then begin if RBIT [RP [P]] then 
begin SPLITRR (P, LP, RP, RBIT); 

B I T : = t r u e  end 
else if LBIT [RP [P]] then begin 

SPLITRL (P, LP, RP, LBIT, RBIT); BIT: =t rue  end end 
else goto DONE 

end  OF SYMSERT; 
SYMSERT (ROOT, ROOTBIT) ; DONE: 

end OF SYMINS 

procedure SYMDEL (X, ROOT, XNOTINTREE, LP, RP, KEY, LBIT, 
RBIT, ADDQ) ; 

value X; real X; integer ROOT; 
label XNOTINTREE; integer array LP, RP; array KEY; 
Boolean array LBIT, RBIT; procedure ADDQ; 
begin integer AUXX, AUXD; 

comment RECURSIVE B-TREE DELETION ALGORITHM; 
procedure SYMDELETE (P); integer P; 

begin c o m m e n t  DID WE FIND THE KEY TO BE DELETED; 
if X = K E Y  [P] then AUXX: = P ;  
if X _~ KEY [P] ALP [P] ~ 0 then 

SL: begin SYMDELETE (LP [P]) ; 
c o m m e n t  CASES D, E, G; 
if LBIT [P] then begin c o m m e n t  CASE G; 

LBIT [P] :=fa lse ;  ga la  QUIT end OF CASE G 

else begin comment CASES E, D; 
if RBIT [P] then begin comment CASE E; 
AUXD:----RP [P]; RP [P] :=LP [AUXD] ; 
LP [AUXD] : = P; P: ---- AUXD; 

if LBIT [RP [LP [P]]] then 
begin SPLITRL (LP [P], LP, RP, LBIT, RBIT) ; 

LBIT [P] : = t r u e  end 
else if RBIT [RP [LP [P]]] then 
begin SPLITRR (LP iP], LP, RP, RBIT) ; 

LBIT IP] :-~true end; 
goto QUIT 

end OF CASE E 
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else begin comment  CASE D; 
RBIT [P]:----true; if LBIT [RP [P2] then begin 
SPLITRL (P, LP, RP, LBIT, RBIT); goto QUIT end 
else if RBIT [RP [P]] then begin 
SPLITRR (P, LP, RP, RBIT); goto QUIT END 
end OF CASE D 

end OF CASES D, E 
end OF SL AND CASES D, E, G 

else if X ~ KEY [P] A RP [PJ 4:0 then 
GL: begin SYMDELETE (RP [P])" 

comment  CASES B, C, F; 
if RBIT [P] then begin c o m m e n t  CASE F; 

RBIT [P] :=fa lse ;  goto QUIT end OF CASE F 

else begin c o m m e n t  CASES B, C; 
if LBIT [P] then begin c o m m e n t  CASE C; 
AUXD: = LP [P]; LP [P] : ----- RP [A-UXD]; 
RP [AUXD]:=P;  P :=AUXD;  

if RBIT [LP [RP [P]]] then 
begin SPLITLR (RP [P], LP, RP, LBIT, RBIT); 

RBIT [P] : = t r u e  end 
else if LBIT [LP [RP [P]]] then 
begin SPLITLL (RP [P], LP, RP, LBIT); 

RBIT [P] : = t r u e  end; 
goto QUIT 

end OF CASE C 

else begin c o m m e n t  CASE B; 
LBIT [ P ] : = t r u e ;  

if RBIT [LP [P]] then begin 
S PLITLR (P, LP, RP, LBIT, RBIT); goto QUIT end 
else if  LBIT [LP [P]] then begin 
SPLITLL (P, LP, RP, LBIT) ; goto QUIT end 
end OF CASE B 

end OF CASES B, C 
end OF GL AND CASES B, C, F 

else begin comment ARRIVED AT LEAF OR NEXT TO ONE, CASE A; 
if AUXX = 0  then 9oto XNOTINTREE; 

KEY [AUXX] : = KEY [P] ; 
AUXD:=  if LBIT [P] then LP [P] else RP [P]; 
ADDQ (P); P :=AUXD;  if P4:0 then goto QUIT 

end 
end OF SYMDELETE; 

21"  
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A U X X :  = 0; 
if ROOT----0 then goto XNOTINTREE else 

S Y M D E L E T E  (ROOT); 
Q U I T :  

end OF SYMDEL 

References 

1. Adelson-Velskii, G.M., Landis, E .M.:  An informatioh organization algorithm. 
DANSSSR 146, 263-266 (t962). 

2. Bayer, R., McCreight, E .M.:  Organization and maintenance of large ordered 
indexes. Acta Informatica 1, 173-t89 (1972). 

3. Bayer, R. : Binary B-trees for virtual memory. Proceedings of 1971 ACM SIGFIDET 
Workshop on Data Description, Access and Control, edited by E. F. Codd and 
A. L. Dean. pp. 219-235 (Nov. 1t-12, 197t), San Diego. 

4. Foster, C. C,: Information storage and retrieval using AVL-trees. Proc. ACM 20th 
Nat'l. Conf., p. 192-205. 1965. 

5. Knott,  G. D. : A balanced tree structure and retrieval algorithm. Proc. of Sympo- 
sium on Information Storage and Retrieval, Univ. of Maryland, April t-2,  t97t, 
pp. 175-196. 

6. Knuth,  D. E. : The art of computer programming, vol. t. Addison-Wesley, 1969. 
7. Nievergelt, J., Reingold, E. M. : Binary search trees of bounded balance. To appear, 

Proceedings of 4th ACM SIGACT Conference t972. 

Prof. Dr. Rudolf Bayer 
Mathematisches Inst i tu t  
der Technischen UniversitAt, Mtinchen 
D-8000 Mtinchen 2 
Arcisstr. 21 
Federal Republic of Germany 


