
Acta Informatica 2, 311--333 (1973)
�9 by Springer-Verlag 1973

On Procedures as Open Subroutines. I

Hans Langrnaack

Received June 5, t973

Summary. An ALGOL program with open subroutines or macro program is a
program whose procedures may be implemented as open subroutines. A macro program
may be considered to be an abbreviated notation of a program without procedures.
I t is proved that the so called macro program problem is algorithmically unsolvable
for ALGOL 60 and other ALGOL-like languages: There does not exist any algorithm
which decides for any given program whether it is a macro program or not (Theorem 4.3
and 4.4 in part II). Sublanguages of ALGOL-like languages for which the macro
program problem is solvable are furtheron investigated (Theorem 4.t, 5.2-5.5 in
part II). For this purpose macro grammars theory is applied�9

The methods of the paper are developped in part I and the key lies in a generalized
langugage ALGOL 60-P-G which has the so called modularity property: There is an
effective process which constructs for every original ALGOL 60-P-G program a formally
equivalent one without procedure nesting (Theorem 3�9 The process mainly works
by eliminating global procedure parameters (Theorem 3.t). ALGOI. 60 and other
known ALGOL-like languages do not have the modularity property (Theorem 3.4).
Elimination of global procedure parameters is successful only for sublanguages of
ALGOL 60 (Theorem 2.3-2.7).

1. Introduction

Mainly two different techniques to implement procedures in higher pro-
gramming languages are available, the closed subroutine technique and the open
subroutine or macro technique. The first technique is more general than the latter
and creates statically shorter machine programs, but the macro technique yields
shorter execution times if this technique is applicable. As there exist higher
language programs, especially systems programs, for which extremely short exe-
cution times are desired we must be interested in criteria which allow to decide
whether the macro technique can be applied. We introduce the notion of a
program with open subroutines or macro program (Definition 4.t) and we in-
vestigate the so called macro program problem: Does there exist an algorithm
which decides for any given program whether it is a macro programm or not ?

In order to shorten our proofs we restrict ourselves to the language A L G O L
60-P introduced in [4]. A L G O L 60-P has the following main restrictions and
m(Mifications compared to A L G O L 60 [5]:

a) Only proper procedures, no function procedures are allowed.

b) Specification and value parts in procedure headings are empty.

c) Only identifiers are allowed as actual parameters of procedure statements.

312 H. Langmaack

d) Beside begin and end we have an additional pair of statement braces { }.
They act as block-begin and block-end. We require that all procedure bodies are
included in these braces and we call them body braces in this context. In other
contexts they are called call braces.

e) The only data types are real and bool. Declarators in type declarations
are written ref real and ref bool instead of real and Boolean.

f) We exclude arrays, subscripted variables, switches, switch designators, and
unsigned integers as labels.

See [4] for a more complete definition of ALGOL 60-P.

In [4] the notion of a syntactical ALGOL 60-P program is introduced. A
syntactical program H is called [ormal if there is for every occurrence (i, Z~) of
an identifier Z i in H exactly one defining occurrence (~', Zi)= ~(i, Z~), Zj = Z o
in H. i and ?' represent the occurrence positions of the identifiers Z~ and Z i in H.
Two formal programs are called identical if they differ only by an admissible
renaming of identifiers. A formal program is called distinguished if different defining
occurrences of identifiers (i, Z~)4= (i, Zi) are denoted by different identifiers
Z i =~Z i. A formal program is called compilable if any applied occurrence (i, Zi) of
an identifier, bound by the defining occurrence ~(i, Z i) = (i, Zi), is applied
appropriately according to the definition. The notion of a partially compilable
program may also be introduced and we may say when a program II ' results [ram
another program H by application o/the copy rule (H~H') . If H ~ H' then H is
partially compilable and H' is at least formal. If a formal program H is original,
i.e. a program without call braces, then the set

is called the execution of H. E n contains the execution tree Tn, and it is defined
when an original program is called to have/ormally correct parameter transmissions.
By the help of the reduced execution E,n or the reduced execution tree Trn(_E,u
we may say when two original programs are /ormally equivalent. The program
properties to have formally correct parameter transmissions and to be a macro
program are invariant for formally equivalent programs (see Theorem 4 in [4]).

In 2. we prove theorems on elimination of global procedure parameters in
ALGOL 60-P programs. There exists an effective process which constructs for
every original program without global formal procedure parameters a formally
equivalent one without any procedure nesting (Theorem 2.4). The same is true
for original programs without procedure identifiers as actual parameters (Theo-
rem 2.6). We do not have such an effective process for the class of all ALGOL 60-P
programs (see.Theorem 7 in [4]). Beyond this, in Theorem 2.7 we present an
example of an original program which is not formally equivalent to ' any program
without global formal procedure parameters. So the" "expressional power" of
ALGOL 60:P diminishes as soon as procedure nestings are disallowed.

In 3. we generalize ALGOL 60-P to ALGOL 60-P-G such that ALGOL 60-P
is a sublanguage. In ALGOL 60-P-G additional formal and actual procedure
parameters of new kind are introduced. All notions for ALGOL 60-P may be
readily transferred to ALGOL 60-P-G. There is an effective process which
constructs for every ALGOL 60-P-G program a formally equivalent one without

Procedures as Open Subroutines. I 3 t 3

any procedure nesting (Theorem 3.3). So the expressional power of ALGOL 60-P-G
does not diminish when procedure nestings are disallowed. We say ALGOL 60-P-G
has the modularity property whereas ALGOL 60-P does not have this property
(Theorem 3.4). In proofs on executions of programs procedure nestings are highly
disturbing as applications of the copy rule yield additional procedure declarations.
The importance of ALGOL 60-P-G lies in the fact that we may restrict ourselves
to programs without procedure nestings.

In 4. we show that the macro program problem is algorithmically unsolvable
for ALGOL 60-P-G (Theorem 4.3). The unsolvability is reduced to the unsolv-
ability of the halting problem for a special type of two tape pushdown automata
(Theorem 4.2). The Theorems in 2. and 3. allow to show that the macro program
problem is also algorithmically unsolvable for ALGOL 60-P, even if we restrict
ourselves to compilable,programs which have formally correct parameter trans-
missions (Theorem 4.4). The unsolvability holds also for ALGOL 60, PL/I, and
ALGOL 68. Two premisses are responsible for the unsolvability of the macro
program problem in ALGOL 60-P: 1. ALGOL 60-P allows procedure nestings
and 2. allows "naked" procedure identifiers as actual parameters. We have
solvability if one of these premisses is invalid (Theorem 4.t and its Corollary).

In 5. macro grammars theory is applied to the macro program problem.
Macro grammars are highly related to ALGOL programs with procedures. Several
solvability results on macro grammars are known in the literature (Theorem 5.1,
Aho [t], Fischer [3], Rounds [7]). Therefore the unsolvability results in Theo-
rem 4.3 and 4.4 are surprising. But, actually, macro grammars represent only
special ALGOL 60-P-G programs, namly without procedure nesting and without
procedure parameters of old kind. The macro program problem is solvable for
this class of special programs (Theorem 5.2). Theorem 5.3 and 5.4 show that the
premisses for the decidability in Theorem 5.2 and 4.t may be essentially
weakened. Especially Theorem 5.4 whose pr09f combines Fischer's and our
methods can be applied to show a conjecture presented in [5] : The macro program
problem is solvable for ALGOL programs without global formal procedure
parameters, but under inclusion of procedure nestings and of expressions and
statements as actual parameters (Theorem 5.5).

At the end of this paper we have listed some open questions.

2. Elimination of Global Procedure Parameters in ALGOL 60-P Programs

We deal with programs in ALGOL 60-P

At first we consider an original, distinguished program f I . Let (i,/) and (/', g)
be two defining occurrences of non-formal identifiers / and g, such that t~he scope
of] is contained in the scope of g.l Then we define a one-element relation in H

n . :={ ((i , /) , li, g))}.
Definition 2.1. We consider T n. We extend the relation R n to all programs

IrI 'ET n by induction. L e t / / " be a generated program in T n, let R n. be defined
already for the immediate predecessor/ / ' ~-//". We may transfer the relation R n.

I The scope of an identifier / is the smallest block containing tile defining occurrence
6 /o f this identifier.

314 H. Langma~ck

in a natural way from H ' to H " and we denote this transferred relation in H "
also by Rn,.

a) If for H ' ~-H" in H ' a copy o' of a procedure a is called which does not
properly contain the declaration ~ of [, then we define

Rn,,: = Rn,.

b) If a copy o' of a procedure a is called which properly contains the declaration
of [and which does not properly contain the declaration y of g and if a relation

(i', [') R n, 0", g') holds where (i', [') is the defining occurrence of the ident i f ier / '
of that copy ~' of ~ contained in o', then we define

R,r, : = Rn,,,-,{ ((i " , r ') , (i ', g '))} .

(i",]") is a defining occurrence and is the modification of (i',]') in the modified
body of a', which replaces the procedure statement calling a'.

c) If a copy a' of a procedure a is called which properly contains the declaration
y of g (and consequently properly contains the declaration q~ of]) and if a rehttion
(i',]') R n, (i', g') holds where (i',]') and (/", g') are the defining occurrences of the
identifiers of those copies ~0' and y' of ~0 and y contained in a', then we define

Rn,, : = R, , u { ((i",]"), (i", g"))}-

(i",]") and (/"', g") are defining occurrences and are the modifications of (i',]')
and (f', g') in the modified body of a', which replaces the procedure statement
calling a'.

Lemma 2.1. a) For a l l / / ' E T a Rn, iS a function defined on the set of all defining
occurrences of identifiers of copies of ~ and mapping onto the set of all defining
occurrences of identifiers of copies of y.

b) R~z may be written as a disjoint union ZR'nw~R'n where 1R~ is a t- t
mapping onto the set of those definining occurrences of identifiers of copies of y
which are local to some procedure body.

c) If (i',]') R n, (i', g') holds then the scope of]" is contained in the scope
of g'. If the scope of] is properly contained in the scope of g then all containments
of scopes are proper.

L e t / 1 be a distinguished original program of the form

begin .. . proc7 (~1 x,); {~}; ..-;
I

proc g (Yz y ~) ; { . . . proc/(x z x~); {Q}; . . . } ; . . . end

~0

~o

The procedures ~ and ~v are declared within the same block; the smallest surround-
ing procedure of ~ is ~p. ~ is generated from q0 by an admissible renaming of

Procedures as Open Subroutines. I 3t 5

identifiers in 9 which are local to 9 , / included. (This means especially that
Yt y , do not occur in 9, / in 9 becomes T, [in 9 remains T, all identifiers global
to 9 remain unchanged and their defining occurrences are outside the extended
body of ~.)

Theorem 2.1. Let (i,/) denote an applied occurrence of / in ~p and let the
distinguished, original p rogram/ I be generated f r o m / / b y a renaming of some
(i,/)-s to (i,/)-s. T h e n / / a n d / ~ are formally equivalent.

In order to prove this Theorem 2.t we consider the one-element relation

R,,:={((V, '

i n / / a n d we extend this relation to all programs I-['ET n due to Definition 2.1.

Lemma 2.2. If (i ' , / ') R n (~',]') holds then the copy Up' of ~ denoted by (~',]')
can be generated from the copy 9' of 9 denoted by (i ' , / ') by an admissible
renaming of identifiers i n 9' which are local to 9 ' , / ' included.

F o r / I we have analogous relations Rh, , /1 ' ETTr and an analogous Lemma 2.2.

Lemma 2.3. We consider T u and T~. Then for every program I I ' e T a there
exists exactly one (" nearly identical") p rogram/I ' E TI~ with the following prop-
erties:

1) / / ' a n d / I ' are identical with the exception of some renamings of applied
occurrences (f , / ') of identifiers of copies 9' of 9 i n / / ' :

2) (i ' , / ') is renamed to an applied occurrence (i',]') of the identifier of a
copy ~' of ~ i n / I ' . ~ is that procedure which stands in/~r' on t h e " same place"
where ~ in 11" stands.

3) I n / / ' the relation

~(i', l') Rn,~(l"',]')

holds. ~ (?", 7') is primarily a defining occurrence i n / I ' , but because of property t)
also a defining occurrence i n / / ' .

4) The relations R n, and Rh, are identical.

�9 Vice versa, for every program/1' ETh there exists exactly one p rogram/ /ET n
with the same properties t)-4).

Proo/. For 1-I'ET n we have at most one/~'ET~. If there would be another
11'lET?z t hen /1 ' and/~'x would have the same reduced main program [4] such
t h a t / 1 ' and/I'1 would be identical:

We cons ider / /ETn; then/~ET~ is a program with the desired properties t)-4).

Let now / / " E T n be a generated program with the immediate predecessor
1I' ~ f l " . Let H " result from H ' by the procedure statement

h (al av)

2 F o r o u r c o n v e n i e n c e w e h a v e d r o p p e d i i n (i , /) a n d (i, 7).
2! Acta Informatica, Vol. 2

3t6 H. Langmaack

in H ' . By induction hypothesis there exists a nearly identical p rogram/I 'E Tfi.
S ince / / ' is partially compilable/7' is partially compilable, too, because of property
t) and 2). I n / ' I ' we have on the same spot as h(a I a,) in /7' a procedure

s ta tement

with the same number ~ of parameters, and this statement generates/1"-~/1' .

Indifferently, whether h is properly renamed to h or not we may infer from
Lemma 2.2 and property t)-4) f o r / / ' and /7 ' to property 4) for / - /" a n d / I " .

Let now h be properly renamed to h. Then h = / ' denotes a copy cs of q~ i n / / '
and h =] ' fenotes a copy ~' of ~ i n / / ' with al'R..at' in 17'. We consider the
modified bodies of ~p' and ~', which replace h (a 1 a,) and h (~ ~,) in / - / "
and /1" . Proper renamings may come into these modified bodies firstly by properly
renamed actual parameters a,, ~,, secondly by different non-formal identifiers g,
in the bodies of ~0' and ~'. These are global to the bodies because of Lemma 2.2
and property t) and 2) f o r / / ' and/7 ' . Both f o r / / " a n d / 7 " situation a) in the
definition of Rn,, and R~,, applies.

In the first case the induction hypothesis 6a, Rn,8~ , in 11' leads to 8a,Rn,,6a ,
i n / / " by definition of Rn,,. In the second case we have a ~ i n / / ' on the same spot
as ~ i n / 7 ' . If ~ ----g then by induction hypothesis 6~Rn,6 ~ holds i n / / ' such that
8gRn,,8 ~ holds in / / " by definition of Rn,,. If g is different from'g then by
Lemma 2.2 6gRn,~ ~ with g - - / ' and ~----]' holds in/- / ' . Then ~----~ holds such
that 8gRn,,b ~ is true by definition of Rw,. Otherwise ~Rn,8 ~ would hold by
induction h~/pothesis such that ~ would be the identifier of a copy both of ~0 and
Up which is wrong.

Let now h and h be identical, h denotes a procedure a' i n / / ' and h a nearly
identical procedure ~' i n / I ' on the same spot as a' i n / / ' . We consider the modified
bodies of a' and ~', modified by the copy rule. Proper renamings may come into
these modified bodies firstly by properly renamed actual parameters a,, ~,,
secondly by different non-formal identifiers g, ~ which are global or local to the
bodies of a' and ~'.

In the first case we argue as before. In the second case we have ~gRn,6 ~
i n / 7 ' by induction hypothesis. If g is global then by Lemma 2.t b) ~ is global
too and we have 6gRn-8 ~ by definition of Rn,,. But, even if g is local, then the
definition of Rn,, guarantees that the properties t)-3) hold f o r / 7 " a n d / 7 " , too.

The proof for the "vice versa" direction is similar. Q.e.d.

Theorem 2.t is an immediate consequence of Lemma 2.3.

Theorem 2.2. L e t / 7 be a distinguished, original program of the form

begin . . . proc g (Yl Ym); {..- proc / (x 1 x .) ; {0}; "-}; "" end

Procedures-as Open Subroutines. I 3t 7

Let all global parameters ~e [of 9 be global to the extended body 8 of~. If we remove
and put it immediately in front of ~v, then we get a p rog ram/7 which is formally

equivalent to /7 .

Proo]. Let [/ b e given. We create a procedure ~ from 9 as in Theorem 2.t
and put it immediately in front of ~. This new p r o g r a m / ~ is obviously formally
equivalent to 17 because no copy of ~ is called in T~. Now, we rename all applied
occurrences of] to 7 in the main part of ~p. By Theorem 2A we get a formally

equivalent program/~t where no copy of 9 is called in T~. So we may remove

from/-~ and we get a program which is identical with/~r and formally equivalent
to/-/ . Q.e.d.

L e t / 1 be a distinguished original program of the form

begin. . . , proc Xo(X l x.); { . . . a . . . } , . . . end

We assume that in the body of ~0 there is at least one applied occurrence of the
non-formal identifier a which is global to the body of ~ (a might be x0), i.e. a is
a global parameter of ~.

Immediately behind the very first beg in o f /~ /we put a defining occurrence
of a non-formal identifier ~ with any declaration, e.g.

ref real or proc 4; { }.

For every procedure declaration

proc Yo (Yl Y ,) ; { . . . }

we add m + t new accompanying/ormal parameters

p r o c Yo (Yo, Ya, Yz Y. , Y.); {...} (*)

and for every procedure statement

"o (~ , - . . , ,u.,,,)
we add m + t accompanying actual parameters

.o

of the following form:

a) If u, is equal x 0 then ~,, is ~qual a.

b) If u, is non-formal but unequal x 0 then ~, is equal ~.

c) If u, is formal and consequently equal a y , of (.) then ~, is equal y~.

The created program F / i s obviously formally equivalent t o /~ r In IX'ET n there
'are no applied occurrences of the first accompanying formal parameters Y'0 of

t

the procedure identifiers Y0"

3 The extended body of a procedure is the body extended by the parameter part,
proc-symbol and procedure identifier excluded. Extended bodies act as blocks (see [4]).
An applied occurring of an identifier in the body ot a procedure ~ whose defining
occurrence lies outside the extended body of ~ is called a global parameter of q~. Thus,
the identifier [denoting 9~ is a global parameter of ~, if / occurs in the body of 9~.

21"

3 t 8 H. Langmaack

Theorem 2.3. Let us rename certain applied occurrences of a to x o in the
body of that procedure ~ denoted by xo. We get a new program/~. Then the
distinguished original programs I2' a n d / ~ are formally equivalent.

With other words: Global non-formal parameters of a procedure may be
replaced by formal parameters. With the help of Theorem 2.2 we may conclude

Theorem 2.4. There is an effective process which constructs for every original
program without global formal procedure parameters ~ a formally equivalent one
without any procedure nesting.

One remark concerning Theorem 2.3 will be useful in 5. : If procedure ~ i n / 1
denoted by x 0 has at least one formal parameter then no parameterless procedur e
Y0 needs any accompanying formal parameter Y0 and no procedure statement u 0
without actual parameters needs any accompanying actual parameter u0.

Let 0t and ~ be the declarations of a in H and/~. In order to prove Theorem 2.3
we consider the one-element relations

Rn: = ((~x o, ~a)}, R~: = {(~x 0, ~a)}

i n / / a n d / ~ and we extend these relations to all p rograms/ / ' E T n and/7' E T~.

Lemma 2,4. For any procedure statement

u0 (*~o, ua, ~1 %, ~)

i n / I ' ~ Th the following conditions hold:
t

I) If u, is the identifier x 0 of a copy ~' of ~ then tSu, R~.cSf~, or ~, is the first
accompanying formal parameter x0 of u, (o, F6 , for short). ~ is the procedure
declaration of x~ in/~.

II) If u, is non-formal but does not denote any copy of ~ then ~, = ~.

III) If u, is the identifier ~0 of a copy ~' of ~ then if a ----- x o > (6, ----u, or ~, Fu,)
and if a 4= x 0 > 6, ---- ft. ~ is the declaration of the formal parameter ~o in I]t.

IV) If u, is formal but does not denote any copy of ~ then u, is a formal
parameter y', and ~, is the accompanying f.ormal parameter y'.

Proo/. Lemma 2.4 is evident for/7. Let no w /7 " be a generated program in Th
and we assume that Lemma 2.4 is already proved for the immediate predecessor
/7' w/7". L e t / 7 " result f rom/7 ' by the procedure statement

Uo (Uo, ua, ul , u,,, ~,)

in /7 ' . If there is a procedure statement
~ s ~Pl tt ~ t s I t ~ p t

(Uo' Ux' Ux' "'" Uu' ~u)

in the new modified procedure body i n /7 " then there is a corresponding procedure
statement

t g , ua, ul , . . . , %, u s)

in the body of the procedure denoted by u o.

4 A global parameter of a procedure ~ which is a tormal parameter of a larger procedure
is called a global [ormal parameter of q0.

Procedures as Open Subroutines. I 3 t 9

We discuss the three different situations a),,b), c) in the definition for Rh,,.
t �9

a) I) Let u~ be the identifier x o of a copy ~' of ~. Then u, is global to the
body of the procedure denoted by u 0. Then u~'= u~.

(t) If ~u~R~,O(~ then by Lemma 2.1 ~ is also global to the body of the
procedure denoted by u 0. Then ~" = @ Then ~u~'Ryt,,O(~" by definition of R~,,.

(2) If u~F(~ then u0 = @ Then ~ is replaced b y ~0, ~i' =~0 and ~ ' is non-
formal. Then OuoR~,6(~ o and 6u~'RTr, O~' by definition of R~

II) Let u~ be non-formal but not denote any copy of ~. Then ~', = & Then u~'
does not denote any copy of ~ and ~ ' = &

t _ l ~ t t III) Let u, be the identifier x o of a copy of ~. Then uoFu, and u o is the
l I I t v

identifier x o of a copy ~' of ~. Then OuoR~,O(~ o. u, is replaced by g0, u, = u 0.

(t) If a = x o then R~, is the identical function and u o =u0.
I I v tP v t t

(1.t) If ~' ' then ~',' u, = u o. ~u, R?r,,~u,. u, = u, = Then

(1.2) If u, �9 u o =u,~' and u, =u,. Then ~u, R~.,~u,.
(2) If a 4: xo then ~', = & u~ t does not denote any copy of ~ and ~ ' = &

(IV) Let u: be formal but not denote any copy of ~. Then u; is equal a y', and
u, is equal y,.

0) If ul is local' to the body of u o then so is u,. ~' Then u~' and ~ ' are formal
I t �9 I t ~ t l _ t � 9 t t

�9 equal y , . u, does and local to the modified body of u 0, u, is eclual a y~ and u, is
not denote any copy of ~.

(2) If u~ is a formal parameter of u o- then so is ~. We have u~' = u, and ~" = uK
with ~ __> t. u~ and ~, are non-formal.

(2.t) If u" is the identifier x~ of a copy ~' of ~ then ~u~'R~,,6~" by definition
of R3,,.

(2.2) If u~' does not denote any copy of ~ then g~ '= &

b) I) Let u; be the identifier x~ of a copy ~' of ~.

(t) If Ou~R~,O~; then ~ is non-formal and global to the body of u o. Then
v t t v t

i s *r = ~ .

(t. t) If u~ is global, too, then is u~' = u~. Then ~ u'," Rfi.. ~ ~ by definition of Rfi,..
(t.2) If u~ is local, then u;' is the identifier x0' of a copy ~" of ~ with

Ou~'R~,,Og~" by definition of R~,,.
(2) If u;F~; then u, is formal. Then both u~ and u, are local to the body of u o.

Then u~" is the identifier x~' of a copy ~" of ~ and u;'F~'.

II) Let u~ be non-formal but not denote any copy of ~. Here we conclude as
in case a) II).

III) Let u; be the identifier ~; of a copy ~' of ~. u: is local to the body of u 0.
u;' is the identifier xo' of a copy ~" of ~.

(t) If a = x o and
(t . t) if u, ~' = u,,' then ~ ' =u~ t.

(, .2) If ~Fu~, then 4', is local to the body of u 0. Then ~ ' is the identifier x0
of a copy ~" of ~ and ~'Fu~'.

320 H. Langrnaack

(2) If a 4= x0 then 6' = ~. Then 6~' = 6~ = ~.
IV) Let u~ be formal but not denote any copy of g. Here we conclude as in

case a) IV).

c) I) Let u: be the identifier x0 of a copy ~' of ~.

0) If ,~u',R~,.,56: and
(t.t) if u~ is global to the body of u0, then so is 6~. Then 6~' =6', and u~' =ul.

Then " ~" ~u, Rfi,,Su,.
(t.2) If u~ is local then so is 6~. Then u~' is the identifier xg' of a copy ~" of

with ~u~' R~-~ 61" by definition of R~,,.

(2) If u~F6~ then both u~ and 6', are Iocal to the body of u 0. Then u~" is the
identifier x~' of a copy ~" of ~ with u~'F6~'.

II) Let u; be non-formal and not denote any copy of ~. Here we conclude as
in case a) II).

III) Let u~ be the identifier ~r of a copy $' of $. Here we conclude as in case
b) III).

IV) Let u~ be formal but not denote any copy of ~. Here we conclude as in
case a) IV). Q.e.d.

Lemma 2.~. We consider T n and T~. Then for every program I I 'ET n there
exists exactly one ("nearly identical") program I~'ET~ with the following prop-
erties:

t) /-/' a n d / ~ ' are identical with the exception of some renamings of applied
occurrences (f, a') of identifiers of copies ct' of ~ i n / / ' .

2) 0", a') is renamed to an applied occurrence (f, x-0) of the identifier of a
copy g' of ~ in /~ ' .

3) In 17' the relation
z ~ (] " , ' "' ' s0) Ro.~ (7, a)

�9 s - - t holds. ~ 0 , xo) is primarily a defining occurrence in /~ t but because of ~) also a
defining occurrence in H s. u is an operator which yields for any def~p)ng occurrence
of a formal parameter the defining occurrence of the identifier ot the associated
procedure.

4) The relations R w and R~, are identical.

Vice versa, for every program H ' r Tfi there exists exactly one program H'~ T n
with the same properties 1)-4).

Proo/. For H'r we have at most one n '~Tf i . We consider II~Ta; then
/~r~ Tfi is a program with the desired properties.

Let now I I " ~ T n be a generated program with the immediate predecessor
/1 t v-/7". L e t / / " result f rom/7 ' by the procedure statement

Uo (60, ua, 6 , u . , ~,)

i n / / ' . By induction hypothesis there exits a nearly identical prog~m ~r,e Tfi.
Since 17" is partially compilable /~' is partially compilable, too, h6cause of t)

Procedures as Open Subroutines. I 321

and 2). I n / 1 ' we have

uo (~o, ua, ~h u.., ,~,)

on the same spot as u o (uo ~,) in H ' and this statement generates/-~"~/-~' .
At first we can infer from t)-4) f o r / / ' a n d / 7 ' to 4) f o r / / " and /~" .

We must now look at renamings in the bodies of those procedures in H '
a n d / 1 ' which are denoted by u o. If we have such a renaming (j', a') to (j', ~)
with zttSioRwtSa' we discuss the three different situations a), b), c) in the defini-
tions for R w, and Rh,o.

a) u o is the identifier x~ of copies 9 ' and (0' of ~v and ~ with tSx~ ----- ~ t ~ . a ' is
global to the body of u o ----xo and does not change, i~ is replaced by uo. By
Lemma 2.4 tSuoRn, tS~o holds. By Lemma 2.1, a) we have Uo = a ' . The renaming
is cancelled.

b) ~ t5 ~ = t~ x~ is local to the body of u o. a ' is global to the body of u o and does
- -P - - t t ~ l t t

not change, x• is modified to Xo with ~Xo Rn,,6a by definition of Rw,.

c) ,x 6 xo ----t~ Xo' and a ' are local to the body of u o. Xo-' and a are modified to xo
t t t t

and a 't with ~Z6Xo Rn,,6a by definition of Rn,,.
The "vice versa" direction is proved similarly. Q.e.d.

Theorem 2.3 is an immediate consequence of Lemma 2.5.

Now we should like to prove Theorem 2.3 if a is formal. But the additional
assumption is necessary that x o is never used as an actual parameter. For this
purpose we drop the accompanying formal parameters Yl y~ and the ac-
companying actual parameters ~ ~, . ao has the following form:

a) If u o is equal x 0 then ~o is equal a.

b) If u 0 is unequal x o then ~0 is equal ~.

The created p r o g r a m / 7 is formally equivalent to/-). In H ' E T n there are no
applied occurrences of accompanying formal parameters y~.

Theorem 2.S. Let a be formal and x o never be used as an actual parameter
i n / / . Let us rename certain occurrences of a to i0 in the body of that procedure
denoted by x o. We get a new program/1. Then the distinguished original programs
/-), H, a n d / ~ are formally equivalent.

With the help of Theorem 2.3, a generalized Theorem 2.5 which allows to
eliminate a global procedure parameter which occurs simultanously in several
"parallel" procedures, and with the help of a generalized Theorem 2.2 which
allows to move several "para l le l" procedures simultanously we may conclude

Theorem 2.6. There in an effective process which constructs for every original
program in which procedure identifiers do not occur as actual parameters a
formally equivalent program without any procedure nesting.

We consider a distinguished original program/- / . Let (i, f) and (j, g) be two
defining occurrences of a non-formal identifier f and a formal identifier g, such
that the scope of f is contained in the scope of g. We define

Rn: = { ((i,/), (/', g))}.

322 H. Langmaack

Definition 2.2. The extension of R n is defined by induction:

a) If for/-/ ' ~ / / " a copy Or' of a prgcedure Or is calIed which does not properly
contain the declaration ~ of], then we define

Rn,,:=Rn,.

b) If a copy Or' of a procedure Or is called which properly contains the declaration �9
9 of] and which is properly contained in the scope of g and if a relation (i',]') R a,
(f , u') holds where (i',]') is the defining occurrence of the identifier] ' of that
copy 9' of 9 contained in Or', then we define

s . . . : = R n . u { r'), li', ,,'))}.

(i " , / ") is a defining occurrence and is the modification of (i ' , / ') in the modified
body of Or', which replaces the procedure statement calling Or'.

c) If by s (~ u,) a copy Or' of the procedure Or is called whose formal
parameter is g (and which consequently properly contains the declaration ~ of /)
and if a relation (i ' , / ') R n , (j ' , g') holds where (i ' , / ') , (/", g') are the defining
occurrences of identifiers of those copies ~' and y' of ~ and y contained in a'
(y is the declaration of g), then we define

Sn. . : = Rn, . , - ,{

(i",]") is a defining occurrence and is the modification of (i ' , / ') in the modified
body of Or', which replaces the procedure statement s (u 1 u~). 6u I is the defining
occurrence of the t-th actual parameter u, where g' is the t-th formal parameter
of or'.

d) If a copy a' of a procedure a is called which properly contains the procedure
whose formal parameter is g (and consequently properly contains the declaration

of]) and if a relation (i', f) RN, (i', g') holds where (i ' , / ') , (]', g') are the defining
occurrences of the identifiers of those copies ~' and y ' of ~ and y contained in Or',
then we define

Ru,, : = R u, u { ((i" ,]"), (i", g"))}.

(i " , / ") and (/"', g") are defining occurrences and are the modifications of (i', [')
and (]', g') in the modified body of Or' which replaces the procedure statement
calling Or'.

Lemma 2.6. a) For every H ' E T n R w is a function defined on the set of all
defining occurrences of identifiers of copies of ~ and mapping into the set of
defining occurrences of identifiers.

b) R n may be written as a disjoint union l R ' a w * R " a where IR~ is a t- t
mapping onto the set of all defining occu, rences of identifiers of copies of $ and
where *R~ is a mapping into the set of defining occurrences of non-formal
identifiers global to all procedure bodies.

c) If (i',]') R w (l", u') holds then the scope of]' is properly contained in the
scope of u'.

Procedures as Open Subroutines. I 323

We return to Theorem 2.5 and consider the one-element relations

Rn:= { (6x o, 6a)}, R~: = {((~ x o, aa)}

in H and ri . We extend these relations to all programs H'E T n and / I 'E Th by
Definition 2.2.

Lemma 2.7. For any procedure statement

Uo(~o, ul u.)

i n / I ' E Th the following conditions hold:

I) If u 0 is the identifier x0 of a copy if' of ~ then we have 6u0Rfi,6fi o or
uo is the accompanying formal parameter x0 of Uo(UoFfio). ?p is the procedure
declaration of x 0 in/~/.

II) Otherwise Uo is equal 4.

III) Uo and u, do not denote any copies of ~0.

Lemma 2.8. We consider T n and Th. Then for every program/7 'ET n there
exists exactly one (" nearly identical") program/~'E T n with the following prop-
erties:

t) 17' a n d / 1 ' are identical with the exception of at most some renamings of
applied occurrences (/", u') of identifiers i n /7 ' .

-

2) (1", u') is renamed to an applied occurrence (j', x0) of the identifier of a
copy g' of ~ in l]t'. g is the declaration of the formal parameter ~o in/7.

3) I n / 7 ' the relation
~(i ' , ~o) n..~(i', ~')

' t ~ t holds. 6 (1, Xo) is primarily a defining occurrence in /~ ' but because of t) also a
defining occurrence in /7 ' .

4) The relations R n, and Rh, are identical.

Vice versa, for every program/~' E Th there exists exactly one program/7' E T n
with the same properties t)-4).

Theorem 2.5 is an immediate consequence of Lemma 2.8. We have omittet
proofs of Lemma 2.7 and 2.8 as they are similar to those of Lemma 3.t and 3.2
of the next paragraph.

In addition to Theorem 2.4 we give the following remarks. In [4], Theorem 7,
it is proved that there is no general .algorithm which transforms any original
program into a formally equivalent one without global formal parameters and
consequently one without procedure nesting. We can even prove

Theorem 2.7. There is an original program 17 which is not formally equivalent
to any original program without global formal procedure parameters.

Proo/. We consider the correspondence system ~ with

. r = {~, = (~ , ~,) = (~ , ~) } .

324 H. Langrnaa.ck

has the solutions t, and t, t, and 1, t , t etc. H~ of Theorem 8 in [4] has an
infinite execution tree Trz~ of the following structure

n ~ ~ (E , E) . . .
T

...{...Lx(A [t], -~. Et]); M(A [t] , .~. [t])}...
T T

...{a [t] (g [t 2)}. . .
T

T .'.{ } ' "
...{...Lx(A [~3,] : [v]); M(A [v], .4-Iv])}...

T T
. . .{a [~] (.~ iv])}...

T
. . .{A Iv] (A Iv- - t] , M, D, D)}...

T
...{M(A Iv - - l] , A i r - - 1])}...

T

f
...{M(A [1],-4 [t])}...

T
.{a [i] (% [~])}...

T
�9 {A [t] (E, M, D, D)} . . .

T
.{M (E, E')}...

._T
. {E(E) } . . .

T
.{E" (E, D, D, MI)}. . .

T
�9 {Mt (E, E)} . . .

T
.{ }...

7 nodes, see below

v ~ N \ { q

3" (v -- t) + 5 nodes

Tn~ has infinitely many nodes which are roots of finite subtrees. The depths
of these subtrees are unlimited. E.g. a node ...{M(A Iv],-4 Iv])} veiN, is root
of a linear subtree with 3 �9 v 4- 5 nodes. The depth of a tree is the number of nodes
in a longest finite ~-chain if there exists such a chain, otherwise the depth is oo.

If we had a formally equivalent program/1 without global formal parameters
then, due to Theorem 2.4, we had a formally equivalent p rogram/~ without any
procedure nesting. We consider nodes which are roots of finite subtrees. The
depths of these subtrees are limited by

P.GV +2

(see [4]) where P is the number of defining occurrences of non-formal procedure
declarations, G is the number of defining occurrences of non-.formal identifiers,
and F is the number of defining occurrences of formal parameters in/-~. Contradic-
tion ! Q.e.d.

Procedures as Open Subroutines. I 325

3. Generalized ALGOL 60 Programs

We consider the language ALGOL 60-P and we generalize this language to
ALGOL 50-P-G such that ALGOL 50-P is a sublanguage.

Procedure headings in ALGOL 60-P-G have the form

p r o c / (Yz Ymj) (xz, - ' . , x,1) (*)

Yl, " . , Y-t are identifiers. They are called formal parameters o[new kind. The
identifiers x z x~t are called]ormal parameters o! old kind. When m t is zero
then we drop the brackets <) as we do with () when n / i s zero. All the other
declarations look as in ALGOL 60-P.

Applied occurrences of identifiers in ALGOL 60-P are replaced by so called
terms. A term is a string generated in a finite process by the following rules:

t . Identifiers are terms.

2. If ~v is an identifier and if ~1 vm, m ~ t , are terms, then ~ (T 1 T~)
is a term, too. We call ~1 T,~ actual parameters o! new kind.

Definition 3.1. A s t r i ng /7 of ALGOL 60-P basic symbols added by < and) is
called a syntactical ALGOL 60-P-G program, if there is a synthetical ALGOL 60-P
program/- / ' such t h a t / 7 results f r o m / 7 ' in the following way:

a) Procedure headings in 17' are replaced by new headings of the form (,)
above.

b) Applied identifier occurrences are replaced by terms.

If in a syntactical p r o g r a m / 7 every occurrence (i, Z 3 of an identifier has a
uniquely associated defining occurrence 6 (i, Z~) of this identifier, t h e n / 7 is called
a]ormal ALGOL 60-P-G program.

Modes are assigned to constants and identifier occurrences as in ALGOL 60-P.
The mode of formal parameters of old and new kind is f o r m a l and the mode 0/
of the procedure identifier [of (.) is

o r

o r

o r

proc <formal , formal) (formal formal)

m! > 0 times n! > 0 times

proc <formal formal) , hi=O,
m! > 0 times

proc (formal formal),

n/> 0 times

m/----- O,

proc O, m / = n / = O.

Modes of "appl ied occurrences" of terms ~ are defined inductively:

t . I f ~ is an identifier then 8T is the mode of this identifier.

326 H. Langmaack

2. I f z is ~o (Ti, . . . , ~) , m ~ t , then 0 ~ is

(formal , formal)
T

m times.

Modes of r ight hand expressions in assignment s t a t ements or Boolean expressions
in if clauses of conditional s t a t ements are defined as irt A L G O L 50-P.

The definition of compilable A L G O L 60-P-G programs looks similar to t ha t
of A L G O L 50-P. Only condit ion 3) changes and splits to 3 a), 3 b), 3 c) :

3 a) For any applied occurrence of a t e rm ~0 (v z zm), m _> t, 0~v (vz, . . . , vm)
is a const i tuent of 0~p, i.e. the identifier ~0 denotes a procedure with m ___-- t formal
pa ramete r s of new kind.

3 b) Any applied coccurrence of a procedure identifier ~p mus t be followed by
a non -empty list (v z vm) of actual pa ramete r s of new kind if

(formal ~. formal)

m ~ 1 t imes

is a const i tuent of ~ ~p.

3 c) For any procedure s t a t ement

(~1 T .) (at1 ~ ,) ,

resp. V) (z, , . . . , Z .) , m > O,

resp. ~ (~1,-.. ; ~) , n > O,

resp. ~p

m, n > O ,

where ~ is an identifier and ~'1 , z . , , oc z ~ are te rms one of equations

~YJ = proc (formal formal) (formal, formal)

m > O-times n > O'times

resp. ~ 0 = proc (formal, . . . , formal)

m > O t imes

resp. 0 ~ p = p r o c (formal formal) or 0 ~ = f o r m a l

n > O t imes

resp. ~ = proc O or 0~ =formal

holds. The propert ies to be a syntact ical , formal, or compilable A L G O L 60-P-G
program are decidable.

In the same way as for A L G O L 50-P we m a y introduce the notion of a
partially compilable program and we m a y say wl~lz a p r o g r a m / / ' results]ram
another program 1-1by application o / the copy rule (1-I ~-1-1').

Procedures as Open Subroutines. I 327

Example:
/ I 1 =begin proc /<r> (x);{r(x)};

proc q(r); {q(l<r>);]<r> (r)};
q(q) end
T

. . . {q (/<q>);/<q> (q)} . . .

. . . {q (/</<q> >); / </<q>> (/ < q >) } {q (q) } . . .
T T T

�9 .. {/<q> (/<q>)} .-.
T

�9 .. {q(l<q>)}...
T

If H ~ H ' then H is partially compilable and H ' is at least formal. For an original
program H the execution

E.:={/1'I/1C-H' }
and the execution tree T n ~_E u are defined and it is clear when a program is called
to have/ormal ly correct parameter transmissions. We may introduce the reduced
execution E ,u and the reduced execution tree T,u. By their help we may say when
two original programs are called]ormally equivalent. The property to have formally
correct parameter transmissions is invariant for formally equivalent programs
(see Theorem 4 in [4]).

The languages ALGOL 60-P and ALGOL 60-P-G are not essentially different
if we restrict ourselves to programs without formal procedure calls. If H is a
compilable original ALGOL 60-P-G program of this form we replace in every
procedure statement

~o <T1 Tin> (~1 0~), m, n > 0,

those actual parameters ~1 ~,, ~x ~, by ~0 which are proper terms. In a
further step we replace all opening brackets { by (, all closing brackets > by),
and all strings) (or > (by , . We get a compilable original ALGOL 60-P program
/] which is formally equivalent with H.

T h e difference between both languages lies in the method how procedures]
which are called through formal procedure calls are supplied with actual para-
meters. In ALGOL 60-P alI actual parameters are supplied at the moment of the
call. In ALGOL 60-P-G actual parameters of old kind are supplied at the moment
of the call whereas actual parameters of new kind may be considered as if they
were supplied already at that moment when the procedure identifier] occurred
as an actual parameter of a procedure statement.

Look at the following example

H 2=begin procg; { };
proc / <r> (x) ; { } ;
proc q (y); {y (g)};
q (/<q>) end

T
. . . {/<q> (g)} . . .

Y

328 H. I~ngmaack

/ (q) (g) is a call of the procedure / through the formal procedure call y (g). The
formal parameter x of / of old kind is replaced by g at the moment of this call.
The formal parameter r of / of new kind was supplied already one step earlier in
the procedure statement q (/ (q)) where [occurred as an "ac tua l parameter" .
In higher systems programming languages we may find such mechanisms which
allow to supply a procedure with its actual parameters at different moments
before the call.

If 6/ is the defining occurrence of a non-formal identifier [and if 6g is the
defining occurrence of an identifier g with a scope surrounding the scope of] then
the relation Rn: =((~ / , ~g)} may be extended to all p r o g r a m s / / ' E T n as in Defini-
tion 2.1 ar.d 2.2. We may prove lemmata analogous to Lemmata 2.1 azld 2.7.
We should remark here that if g is formal then the images R n, (bg') may be
terms and not only defining occurrences of identifiers. A proper term R n, (bg')
or a non-formal identifier R n, (6g') consists only of non-formal identifiers which
are global to every procedure body in 17'. We say R n, (6g') is completely ncm-
[ormal. As we may assume programs to be distinguished we are allowed to identify
defining occurrences of identifiers with the identifiers themselves.

As in 2. we are confronted with the problem to eliminate global procedure
parameters. L e t / 7 be a distinguished original program of the form

b e g i n . . . p r o c xo<v 1 v , z ,) (x 1 x , , ,) ; { . . . a . . . } ; . . . e n d

We assume that in the body of ~ there is at lea_st one applied occurrence of an
identifier a which is global to the extended body of @. a may be formal or non-
formal. If a is a procedure identifier then the associated number m a of formal
parameters of new kind is assumed to be 0 and a is assumed to be different
from x 0.

We a l t e r /1 to H in the following way. ~b gets an additional formal parameter
v0 of new kind.

proc xo<~o, v 1 vm,,) (xz x,,,) ; {... a ...}.

Every applied occurrence of a term

Xo <T1 r,,>

(where the parameterlist may be empty) is added by one additional actual
parameter a of new kind

Xo <a, rl %~).

[I a n d / 7 are obviously formally equivalent. I n / 1 ' 6 T n there is no applied occur-
rence of any fortnal parameter v0.

Theorem 3.1. Let us rename some applied occurrences of a to ~0 in the body
of that procedure denoted by x o. We get a new program/1 . Then the distinguished,
original p rograms /7 a n d / I are formally equivalent.

Procedures as Open Subroutines. I 329

By Theorem 3.t and Theorem 2.2 extended to ALGOL 60-P-G we get:

Theorem 3.2. There is an effective process which constructs for every original
ALGOL 60-P program a formally equivalent ALGOL 60-P-G program without
procedure nesting.

With the help of a generalized Theorem 3.1 whic.h allows to eliminate a global
procedure parameter which occurs simultaneously in several" parallel" procedures
and with the help of a generalized Theorem 2.2 which is extended to ALGOL 60-P-G
and which allows to move several "parallel" procedures simultanously we may
conclude:

Theorem 3.3. There is an effective process which constructs for every orig;nal
ALGOL 60-P-G program a formally equivalent one without procedure nesting.

The assumption m, = 0 and a 4:x0 if a is a procedure identifier forces us to
apply the generalized Theorems. The proof principles of the generalized Theorems
are the same as for Theorem 3 A and 2.2.

Theorem 2.4, 2,6, 2.7, and 3.3 reveal a remarkable interpretation. If we define
a program without procedure nesting to be a modularly structured program and
if we define a programming language L to have the modularity property if every
original program of L is formally equivalent to some modularly structured
program of L then we can formulate (compare Dennis [2])

Theorem 3.4, ALGOL 60-P restricted to programs without global formal
procedl~re parameters or without procedure identifiers as actual parameters and
ALGOL 60-P-G have the modularity property. ALGOL 60-P does not have this
property.

As large systems programs should be modularly structured we may conclude
that ALGOL 60-P (and ALGOL 60) is not a best suitable systems programming
language.

Let 0r be the declaration of a i n / / . In order to prove Theorem 3.t we consider
the one-element relations

R, :={ (~x o, ~a)}, R~:=((~x0, ,~a)}
in H and/~r and we extend these relations to all p r o g r a m s H ' e T n a n d / 7 ' e T ~ b y
Definition 2.t or 2.2.

Lemma 3.1. For any term

Uo<Vl v,,>, m ~ 0

i n / 1 ' the following condition holds: If Uo is the identifier xo of a copy ~' of
then m > 1 and T~ is either a term with 6uoRn, z 1 or the first formal parameter ~
of new kind of u o (uoF,x). ~ is the procedure declaration of xo in/~r.

Proof. Lemma 3.t is evident for/~r. Let now 1~" be a generated program in T~
and we assume that Lemma }.t is already proved for the immediate predecessor
1~' v-H". Let H" result f o r m / I ' by the procedure statement

u0 <'1 *~> (~ ~)
in I-I'. If there is a term

t # r t t t
Uo <~1 *,">, m'" > 0

330 H. Lamgma~ck

in the new modified body i n / ~ " then there is s tanding on the "co r r e spond ing"
place in the body of u 0 a formal pa rame te r

r
U0

of u 0 or a t e rm
I t t

Uo (~"1 ~ , , , , ')

where Uo' is equal Uo if Uo is global to the body of u o or Uo' is a modification of u~
modified by the copy rule if Uo is local.

I t t t et
In the first case Uo (T1 T,,,,) is one of the actual pa ramete r s 31 Tin,

al ~t,, which are complete ly non-formal. By induction hypothesis and definition
of R~,, we conclude the following: I f Uo' is the identifier Xo of a copy ~ ' of ~ then

I s t t t !
m " > t and zl is a t e rm with ~Uo R~,,vl .

t r t
Let in the second case uo not denote any copy of ~. Then Uo does not denote

any copy of ~, too, and we need not prove anything. Let now u~ be the identifier
Xo of a copy ~ ' of ~. Then m " > t . We discuss the different si tuations a), b), c) in
Definition 2.1 and a), b), c), d) in Definition 2.2.

a) Uo is global to the body of u o and u~' = Uo.

(t) If tSuoRi~,v'l then 1.~ is complete ly non-formal and global to the body of u o
due to L e m m a 2,1 or 2.7. Then Tt' ~- vl" and t~uo'R~,,r't' by definition of R~,,.

I/., 0 F 3 1 "UO = ~ 0 T I = l"1" "["1 (2) If ' ' then ' and " is complete ly non-formal with
rSuoR~,z 1. So cSu'o'R~,,1.~" by definition of R~,,.

b) (t) If 6u~R~,z~ then 1.~ is complete ly non-formal and global to the body
t t

of u o. Then 1.~ = 1.1.
t t l e t l I I

(t . t) If u o is global, too, then u o ----% and duo R~,,~I by definition of R~,,.

(t .2) If uo is local, then uo' is the identifier x~' of a copy ~'" of ~0 and ~ uo' Rh,, 1.'~'
by definition of R~,,.

I t I
(2) If u'oFzi then 1.x is a formal pa rame te r and u o and r l are local to the body

I s �9 I t l r I I

of u 0. Then u o Is the identifier x 0 of a copy ~iI of ~ with uoF1.1.
c) in Definit ion 2.2:

(t) If ~u~R~,1.'~ and

(t . t) if uo is global to the body of u o then 1.[is global, too, with uIo =u'o' and
1.1 t = T~ I. We have 6uoIR~,,z~ by definition of R~,,.

! I I
(t.2) If uo is local then 1.1 is a formal pa rame te r of %. T1 is one of the actual

parameters 1.t ~,, ~1 0~ and is complete ly non-formal and global to the
body of %. Then we have ~Su'oIR~,,1.'l t by definition ofiR~,,.

(2) If u~ F . ~ then we argue as in case b) (2).

d) in Definition 2.2 and c) in Definition 2.t :

(t) I f 6u~R~,1.I~ and
(t . t) if u~ is global to the body of uo we argue as in case c) (1.t).

, I I t
(1.2) If uo is local then T 1 is a local identifier, too. We have (SUo R3,,1.1 by

definition of R~,,.
(2) If uoF , ~ then we argue as in case b) (2). Q.e.d.

Procedures as Open Subroutines. I 33t

Lemma 3.2. We consider T n and T~. Then for every program I I ' E T u there
exists exactly one (" nearly identical") p r o g r a m / l ' ~ T n with the following prop-
erties:

t) H ' and H ' are identical with the exception of some renamings of applied
occurrences ~o of identifiers of copies g' of ~ in/7 ' , g is the declaration of the formal
parameter vo of new kind of x o in /~ .

2) ~o is renamed to an "applied occurrence" of a term 7' in H ' .

3) In H ' the relation
~r~voRtr T

holds. O vo is primarily a defining occurrefice in/~r, but because of t) also defining
occurrence in/-/ ' .

4) The relations R w and RTr are identical.

Vice versa, for every program/~r, E Tfi there exists exactly one program II" 6 T n
with the same properties t)-4)�9

Proo/. For 1-I'~ T n we have at most one /~r~ Tfi. We consider H 6 T u, then
~ 6 T f i is a program with the desired properties.

Let now H " 6 T n be a generated program with the immediate predecessor
I - I 'wII" . L e t / / " result f r o m / / ' by the procedure statement

Uo (~ 7 .) (~1 = .)

in H ' . By induction hypothesis there exists a nearly ~ identical p rogram/ I 'E Th.

Since/ / ' is partially compilable/~r' is partially compilable, too, because of t) and 2).
In/~r' we have

uo (~1 %) (~1 ~ ~ ,)

on the " same" place as Uo(~ 1 ~,,)(~1 ~) in H ' and this statement
generates/7"-~/1 ' . At first we can infer from t)--4) for H ' and ~ ' to 4) for H "
a n d / I " .

We must now look at redamings in the bodies of those procedures in H '
�9 _ l I �9 ~ t I

and/1 ' which are denoted by %. If we have such a renaming vo to T with oz 0 Vo Rn, 7:
we discuss the situations a)-d) in the Definition 2A or 2.2 for Rn,, and Rfi,,.

a) Here u o is the identifier x0 of copies ~' and ~' of ~0 and ~ and vo is the nrst
formal parameter of u o. ~' is global to the body of u o and completely non-formal.
~' does not change when the copy rule is applied. Vo is replaced by ~x when the

- - t t
copy rule is applied. By Lemma 3.t OuoRn,~rt holds. Because of ~OvoRn,~ and
due to Lemma 2A or 2.7 we have ~1 =~ ' , i,e. the renaming is cancelled.

b) Here ~0~o-----6xo is local to the body of u o. x' is completely non-formal
and global to the body of u 0. v' does not change when the copy rule is applied.
--t n t vo is modified to v'0' when the copy rule is applied. ~rOVo Rn,,~ holds by definition
of Rn.,.

c) in Definition 2.2:

Here ~6vo = 6x0 is local to the body ot u o and ~' is a formal parameter of u o.
T' is replaced by an actual parameter ~1 Tin, a~ ~ which is completely

2 2 A c t a I n f o r m a t i c a , V o l . 2

332 H. Imaxgmaack

_ r r - . . t t i t non-formal and global to the body of u 0. v0 is modified to v o . z t b v o R w , 7 where
7 " is one of the actual parameters above holds by definition of R . - .

d) in Definition 2.2 and c) in Definition 2.1 :

z~t~v% =6x~ and 7' are local to the body of u 0. I f a is formal, then 7' is a formal
identifier, if a is non-formal then 7 t is a non-formal identifier. ~o and 7' are modified
to v0' and 7" when the copy rule is applied. - " t t z~Ov 0 Rw,7 holds by definition of R , - .

The vice versa direction is similar. Q.e.d.

Theorem 3.1 is an immediate consequence of Lemma 3.2. We apply Theorem 3.t
to the example

/~a = begin proc q (r);
{proc / (x); {r (x));
q (I); 1 (r)};

q(q) end
We get

/~rs = begin proc q(r);
{proc / <r) (x); {r (x)};
q (I <r>) ; / <r> (0};

q(q) end

By Theorem 2.2 /~s is formally equivalent with //1 which we have become
acquainted with before.

At this moment a " historical" remark seems to be useful in order to understand
the proceeding of our investigations better. Our earliest conjecture was that the
macro program problem for ALGOL 60-P is algorithmically solvable. Our first
definite results were Corollary of Theorem 3 in [4] and Theorem 4.t in the present
paper. In order to reduce our conjecture to these results we needed an appropriate
notion of equivalent programs such that the macro program property is invariant.
So we introduced the notion of formally equivalent programs and we could
actually prove Theorem 4 in [4] and Lemma 4A in the present paper. After this
we were looking for an effective process which eliminates all global procedure
parameters in a given p rog ram/ I , such t h a t / 1 is formally equivalent wi~h the
transformed program/~. We defined and tried even more general processes than
that process of Theorem 2.3 in the present paper. But all these processes failed
because for each of them we found sample programs/~ for which the transformed
programs/~ were not formally equivalent wi th /7 . /~s above is such a sample
program. We found that infinitely many (l) accompanying formal parameters
would be necessary. So we generalized ALGOL 60-P to ALGOL 60-P-G and we
could prove Theorem 3.t-3.3. Unfortunately, we were not able to prove the
solvability of the macro program problem for ALGOL 60-P-G programs without
procedure nesting. So we dropped our earlier conjecture and replaced it by the
contrary, namely Theorem 4.4.

In proofs on executions of programs procedure nestings are highly disturbing
as applications of the copy rule yield additional procedure declarations (see e.g.
Lemma 8 in [4]). The importance of ALGOL 60-P-G lies in the fact that we may

Procedures as Open Subroutines. I 333

restrict ourselves to programs without procedure nestings. So we are able to give
a fairly short proof of the unsolvability of the macro program problem for
ALGOL 60-P-G programs (Theorem 4.3). Beyond this, we were very lucky that
the ALGOL 60-P-G programs H a constructed in Lerama 4.3 are formally equiv-

alent with the ALGOL 60-P programs /~a in Lemma 4.4. This proved our new
conjecture (Theorem 4.4).

References

1. Aho, A. V. : Indexed g r a m m a r s - an extension of the contextfree grammars.
J. ACM IS, 647-67t (t968)

2. Dennis, J. B. : Modularity. In: Bauer, F.L. (ed.): Advanced course on software
engineering. Lecture Notes in Economics and Math. Syst. 81, 128-t82, Berlin-
Heidelberg-NewYork: Springer t973

3. Fischer, M.J . : Grammars with macro-like productions. Harvard University,
Cambridge (Mass.), Report No. NSF-22. Math. Ling. and Autom. Translation,
May t968

4. Langmaack, H. : On correct procedure parameter transmission in higher pro-
gramming languages. Acta Inforrnatica 2, t t0- t42 (1973)

5. Langmaack, H. : Ober eine Beziehung zwischen ALGOL-Programmen und Makro-
Grammatiken. In: Hotz, G., und Langmaack, H. (Hrsg.) : Tagung fiber Automaten-
theorie u~d formale Sprachen, Oberwolfach 29. Okt.--4. Nov. t972. Bonn: Mit-
teilungen der GMD Nr. 73/6, 1973

6. Naur, P. (ed.): Revised report on the algorithmic language ALGOL 60. Num.
Math. 4, 420-453 (t963)

7. Rounds, W. C. : Mappings and grammars on trees. Math. Systems Theory 4,
257-287 (1970)

Prof. Dr. H. Langmaack
Fachbereich Angewandte Mathematik u. Informatik
der Universit~t des Saarlandes
D-6600 Saarbriicken.
Bundesrepublik Deutschland

