
Acta Informatica 23, 223-229 (1986)

�9 Springer-Verlag 1986

A Faster Approximation Algorithm
for the Steiner Problem in Graphs

Y.F. WU 1'3, P. Widmayer 2'4, and C.K. Wong 2

1 Department of Electrical Engineering and Computer Science, Northwestern University,
Evanston, IL 60201, USA

2 IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA

Summary. We present an algorithm for finding a Steiner tree for a connect-
ed, undirected distance graph with a specified subset S of the set of vertices
V. The set V - S is traditionally denoted as Steiner vertices. The total
distance on all edges of this Steiner tree is at most 2(1 - lfl) times that of a
Steiner minimal tree, where l is the minimum number of leaves in any
Steiner minimal tree for the given graph. The algorithm runs in
O(IEI log lVI) time in the worst case, where E is the set of all edges and V
the set of all vertices in the graph. It improves dramatically on the best
previously known bound of O(ISI IVI2), unless the graph is very dense and
most vertices are Steiner vertices. The essence of our algorithm is to find a
generalized minimum spanning tree of a graph in one coherent phase as
opposed to the previous multiple steps approach.

1. Introduction

Consider a connected, undirected distance graph G=(V,E,d) and a set S___ V,
where V is the set of vertices in G, E is the set of edges in G, and d is a
distance function which maps E into the set of nonnegative numbers. A path in
G is a sequence of vertices v l , v2 , . . . , v k of V, such that for all i, l < i < k ,
(v i, vi+ I)~E is an edge of the path. For a path p, V(p) is the set of all vertices,
and E(p) the set of all edges in p. A loop is a path vl, ..., v k with v~ = v k. The
length of a path is the sum of the distances of its edges. A connected subgraph
Gs=(V~,Es, ds) of G with S~_ V ~ V, Es~ {(vl,v2)[(vl,v2)6E, {V1,V2}m~ Vs} , and d,
equals d, restricted to Es, is called a Steiner tree for G and S, if Gs does not
contain a loop. Given a Steiner tree for G and S, G~=(V,,E,,d~), D(G~) is

3 The work of this author was partially supported by the National Science Foundation under
Grants MCS 8342682 and ECS 8340031. This work was performed while this author was a
summer visitor at the IBM T.J. Watson Research Center. Current address: MCC CAD 9430
Research Blod., Austin, TX 78759, USA
4 On leave from: Institut f'tir Angewandte Informatik und Formale Beschreibungsverfahren,
Universit~it Karlsruhe, Postfach 6380, D-7500 Karlsruhe, Federal Republic of Germany

224 Y.F. Wu et al.

defined as ~ ds(e), and is called the total distance of G~. A Steiner tree Gs for
eeEs

G and S is called a Steiner minimal tree, if its total distance is minimal among
all Steiner trees for G and S. This minimal distance is called Dmi,(G). Note that
vertices in S are required to be in any Steiner tree for G and S. On the other
hand, vertices in V - S , which are traditionally called Steiner vertices, are not
required to be in a Steiner tree, but may be used to achieve a small total
distance. There have been confusions on whether to call the set S or the set V
- S Steiner vertices. In this paper we adhere to the definition used in the

fundamental paper of Gilbert and Pollak [7]. The same terminology is used in
a number of later papers [2, 3, 5, 11].

The problem of finding a Steiner minimal tree for given G and S has been
shown to be NP-complete [8], even for a restricted class of distance functions
[6]. Therefore, we are interested in finding a Steiner tree with total distance
close to the total distance of a Steiner minimal tree. Algorithms have been
proposed for this task in the literature [9, 12]. [12] presented an algorithm for
finding a Steiner tree G' with D(G')/Dmi,(G)<2(1-1/ISI), whereas [9] described
a procedure for finding a Steiner tree G" with D(G")/Dmin(G)<2(1- I/l), and l
is the minimum number of leaves in any Steiner minimal tree for G and S. The
runtime of both algorithms is proportional to ISI IVI 2. Note that I<ISI. Thus,
the bound is expressed sharper in [9] than in [12], even though the underlying
arguments are identical.

We will describe an algorithm for computing a Steiner tree using the same
strategy as in [9], hence with the same bound on its total distance, but in time
bounded by O(IEIloglVI). This speedup is achieved by the combination of a
process for finding shortest paths, similar to [4], with a process for construct-
ing a minimum spanning tree (MST), similar to [10].

2. An Algorithm for Approximating a Steiner Minimal Tree

Let G=(V,E,d) be a given connected, undirected distance graph, and S ~ V the
set of vertices for which a Steiner tree is desired. Our approach is to use a
generalized minimum spanning tree of a graph to approximate the Steiner
minimal tree. Our algorithm is in line with Algorithm H in [9]. The major
differences are: (a) we perform the task in one step, and (b) our time bound is
superior in most cases. For the sake of completeness, we outline Algorithm H
of [9] with some notations rephrased in the following:

Algorithm H: Steiner Tree [9]

1. Construct the complete distance graph G1 =(1/i, El, d~), where V 1 =S and, for
every (vi, v~)~E~,dx(vl, Va) is equal to the distance of a shortest path from vi to
vjin G.
2. Find a minimum spanning tree G 2 of G1.
3. Construct a subgraph G3 of G by replacing each edge in G 2 by its
corresponding shortest path in G. (If there are several shortest paths, pick an
arbitrary one.)

A Faster Approximation Algorithm for the Steiner Problem in Graphs 225

4. Find a minimum spanning tree G4 of G 3.
5. Construct a Steiner tree G 5 from G 4 by deleting edges in G,, if necessary,
so that no leaves in G 5 are Steiner vertices.

We will define and describe an algorithm for computing a generalized
minimum spanning tree G, of a graph G and a specified set of vertices S G V in
time O(IEIloglVI) in the next two sections. G s and G2 both span the set S.
They differ in that G, uses edges in E directly while G 2 uses edges in E 1. Our
algorithm constructs a Gs with the following properties: (a) during the con-
struction of G,, G1 is not explicitly constructed; (b) G, has all the path
information of edges of G2, as conveyed in G3; (c) G, is a tree, thus is
equivalent to G4; (d) no leaves in G, are Steiner vertices. Therefore, we can
conclude that G s is, in general, equivalent to G 5 in Algorithm H although there
are instances in which they might have different total distance. The cause of
the possible difference is that Step 4 of Algorithm H may make decisions on
deleting edges in G 3 which result in a better or worse final Steiner tree,
depending on occasions. The total distance of G, is at most 2(1 - 1/l) times of
that of a Steiner minimal tree, where l is the number of leaves in a Steiner
minimal tree. This bound is the same as that of G 5, the result of Algorithm H.
In fact, we can substitute G~ for Tn, and D~ for D H in Theorem 1 and Theo-
rem 2 and their proofs in 19]. This yields the following theorem.

Theorem. For a connected, undirected distance graph G=(V, E,d), and a set of
vertices Sc_ V, a Steiner tree Gs for G and S with total distance at most 2(1 -1 / l)
times that of a Steiner minimal tree for G and S can be computed in
O(IEllog[Vl)time. []

3. Finding a Generalized Minimum Spanning Tree of a Graph

Using the above notion of G 1 and G2, were define the following.

Definition. A generalized minimum spanning tree G~(Vs, Es, ds) of a given con-
nected, undirected distance graph G=(V,,E,d) and a set of vertices S_GV,
denoting vertices in V - S as Steiner vertices, is a tree subgraph of G such that
(a) there exists a minimum spanning tree G2(V2, E2, d z) of G I(V 1, E~,d~) such
that Ve=(v i, vj)~E2: the unique path in G~ from v i to v~ is of length d2(e); (b) all
leaves in Gs are in S. []

In other words, G~ is the actual realization of G 2 on the graph G. It is clear
that G s is a Steiner tree, and a good approximation of the Steiner minimal tree.
To make our presentation simpler, we concentrate on finding the G 2 associated
with G, in the following algorithm. After the main idea is clarified, we will then
modify the algorithm so that Gs is computed. For each vertex v in V, we use
source(v) to represent a vertex in S which is closest to v and length(v) to
represent the distance from source(v) to v. If there is a tie among points in S,
then source(v) is picked arbitrarily.

Following the principle of Kruskal's algorithm, we treat the vertices in S in
the beginning as a forest of ISl separate trees and try to merge them into a

226 Y.F. Wu et al.

single tree. A priority queue Q is used to store frontier vertices of paths
extended from the trees and possible edges to be used for linking the trees.
Tuples in Q have the format (t,d,s) where teV, seS and d is the length of a
path from s to t. If teS then (s, t) is a possible edge to be used in a generalized
minimum spanning tree, otherwise (t e V - S) s is a possible candidate for
source(t). The order of entries in the priority queue is determined by non-
decreasing values of d's in the tuples. We use an algorithm in [1] to efficiently
implement INSERT and F I N D - D E L E T E - M I N opertions for the priority
queue.

An efficient U N I O N - F I N D algorithm, for instance as described in [1], is
used to quickly determine if two vertices in S belong to the same tree in the
forest, and merge two trees in the forest into one tree.

Algorithm M: Generalized Minimum Spanning Tree of a Graph

1. For all qeS, source(q),,-q and length(q)~-O.
For all q~ V - S, source(q) ~ undefined and length(q) ~ co.

2. For all qeS, put (r,d,q) into the priority queue Q where (q,r)eE and d
=d((q, r)). We use an assumed order on the vertices in S to ensure putting only
one of (r, d((r, q)), q) and (q, d((q, r)), r) into Q, if both q, reS.

3. Partition the vertices in S into IS[sets (trees), such that each set contains one
vertex.

4. While not all vertices in S are in a single set, do:
Choose a tuple (t, d, s) with minimum d in Q and remove it from Q.

Case 1. source(t) is undefined: source(t)~s, length(t)*-d. For all r such that
(t, r)eE and source(r) is undefined, put (r,d((t, r))+d, s) into Q.

Case 2. source(t) and s are in the same set: Do nothing.

Case 3. source(t) and s are not in the same set:

Case 3.1. teS: Merge the two sets (trees) containing s and t into one set and
record that there is an MST edge (which is a path in G) between s and t.

Case 3.2. te V - S : Put (source(t), d + length(t), s) into Q.

Based on the correctness of Kruskal's algorithm, the only thing we need to
establish for the correctness of Algorithm M is that each time we merge two
trees S 1 and S 2 into one tree, they are indeed a closest pair of trees. Assume
the contrary, i.e., there is another pair of subtrees S a and S 4 which are closer,
and are closest among all pairs. But according to Algorithm M, the paths
reaching out from S a and $4 should have touched each other because the two
paths have length less than the distance between S 1 and S 2 (Case 3.2 of Step 4)
so that a path from a vertex of S 3 to a vertex of S 4 (or vice versa) should have
been put into the priority queue. The path should also have been retrieved
later from the priority queue (Case 3.1 of Step 4) and used to link S3 and S 4.
This is a contradiction. Therefore, Algorithm M constructs a correct general-
ized minimum spanning tree.

A Faster Approximation Algorithm for the Steiner Problem in Graphs

//0-•• 3 0 C

B 2 I d o.=.

A ?" ,~,/ D A
E I

I b

�9 I

H H
I w a

Fig. 1. An example

227

Step 1 of Algorithm M can be carried out in O(IVI) time; Step2 can be
done in O(IEI log IVI) time; Step 3 runs in O(ISI) time. Let us have a closer look
at Step 4. Note that a tuple in Q is generated either by extending a path by an
edge in E as in Case 1 of Step 4 or by trying to connect two vertices in S as in
Case 3.2 of Step 4. In either case, an edge is used in the extension or con-
nection. Furthermore, each edge can be used only once, in one of these two
cases. Thus the total number of tuples ever generated (including those in the
initialization process) in the algorithm is O([E[). Since each tuple is processed in
O(log t V[) time in the priority queue operations and UNION-FIND operations,
Step 4 can be carried out in O(IEI log lVI) time. Therefore the total time spent
by the algorithm is O(IEI log IVI).

Figure l a shows an example graph where vertices in S are solid dots.
Figure 1 b shows a generalized minimum spanning tree obtained by our algo-
rithm where arrows represent the direction of growing the edges from vertices
in S, and lower case labels represent nodes whose source nodes have the
corresponding upper case labels. Generalized minimum spanning tree edges are
not explicitly represented in the graph, because we do not use them in the
Steiner tree construction process. Dotted edges are edges that are not used in
the resulting generalized minimum spanning tree.

3. Remarks

Note that we can modify Algorithm M for the generalized MST construction
to deliver an explicit description for the path corresponding to each general-
ized MST edge. In so doing, the modified algorithm computes G s directly.

(1) For each vertex v in V, introduce a new attribute pred(v) which indicates its
immediate predecessor on the path from source(v) to v. If v~S, then pred(v) is
undefined. In Step 1 of Algorithm M, all predecessors are initialized as unde-
fined.

(2) Modify the format of tuples stored in Q as (t,d,s, pl,p2) where t, pl,p2~V,
s~S and the interpretation of the tuples depends on whether teS or not.

228 Y.F. Wu et al.

s Pl P2 t

O- .t, ,-O

s Pl t
Fig. 2. Interpretations of a tuple in Q

Case 1. teS: There is an edge in E between Pl and P2 and source(pl)=s and
source(p2)= t. d= length(p1)+ length(p2)+d((p 1, P2)). Thus (s, t) is a possible edge
to be used in the generalized minimum spanning tree (see Fig. 2a).

Case2. t ~ V - S : There is an edge in E between Pl and t. The source of Pl
has been determined to be s and d=length(pl)+d((pl,t)). Thus s is a possible
candidate for source(t). P2 is undefined (see Fig. 2b).

The initialization in Step 2 must also be modified accordingly.

(3) In Step4, get a tuple (t,d,s, pl,p2) from Q. In Case 1, put (r,d((t,r))+d,s,t,
undefined) into Q instead of (r,d((t,r))+d,s). In Case 3.1, record (Pl,P2) as a
pair of header nodes for edge (s, t) in the generalized minimum spanning tree
so that the actual path can be traced out by following the pred links of the
header nodes to their corresponding source nodes. In Case 3.2, put (source(t), d
+ length(t), s, p~, t) into Q instead of (source(t), d + length(t), s).

As to the complexity of Algorithm M (also the modified algorithm), the
time bound of O(IEI loglVI) in general is better than the O(ISI IVl 2) one in [9].
One way of viewing the difference is that when ISI is relatively large compared
to logIVI, the algorithm in [9] has to perform ISl shortest-path-finding pro-
cesses, while our algorithm calculates the necessary shortest paths simulta-
neously with the construction of the generalized minimum spanning tree.
Another case in which our algorithm performs better is when G is not a very
dense graph, so that IEI is less than O(IVI2/loglVI).

Another point of interest is that the total number of INSERT and the total
number of F IND-DELETE-MIN priority queue operations in Algorithm M can
both be simultaneously O([EI) even when [EI=O(IVI2). The following is an
example. Consider graph G=(V, E,d) with S c V, and the set of Steiner vertices
S' = V - S. Let

(1) S = {s 1, s2 s,,}, and let
t ! t (2) S' = {s 1, s2 s,}, and let

(3) E = {(s~,sj)l 1 <i<m, 1 <j<n}. That is, G is a complete bipartite graph, w.r.t.
S and S'. Let d~ denote the distance of edge (s~, sj-). Let the distance be such
that

(4) di~<dik whenever j<k, and

(5) di,<dit whenever i<j, and

A Faster Approximation Algorithm for the Steiner Problem in Graphs 229

(6) dii+dk.i>dpq for all i, j, k, p, q. In other words, the distances in ascending
order are d 11, dr2, --., din, d21,.--,d2 , din1 din,. Then, (6) is equivalent to
saying that

(7) dll+d21>d,~, when (4) and (5) are taken into account. A set of distance
values fulfilling these condit ions is, for instance,

(8) d~j=mn+(i-1)n+(j-1). So, recall that we consider the graph G with
definitions (1), (2), (3), and (8). App ly Algor i thm M to this graph. Then Step 2
of the algori thm will put an entry (sj, dij, s~) into Q, for each 1 <i<m, 1 <j <n,
altogether m n = [El entries. Before the first t ime Case 3.1 in Step 4 occurs when
retrieving an entry f rom Q, condi t ion (6) requires that all entries entered by
Step 2 have been removed from Q. Hence, there are at least m n = IEI I N S E R T
and F I N D - D E L E T E - M I N operat ions carried out on Q, with [El of higher
order than IVl. For re=n, e.g., IEI=O(IVI2). Thus simply trying to use alter-
native priori ty queue techniques such as the Fibonacci heaps to speed up the
priori ty queue operat ions will no t improve the given time bound of
Algor i thm M.

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms.
Reading: Addison-Wesley 1974

2. Aneja, Y.P.: An Integer Linear Programming Approach to the Steiner Problem in Graphs.
Networks 10, 167 (1980)

3. Beasley, J.E.: An Algorithm for the Steiner Problem in Graphs. Networks, 14, 148 (1984)
4. Dijkstra, E.W.: A note on two problems in connection with graphs. Numer. Math. 1, 269-271

(1959)
5. Du, D.Z., Yao, E.Y., Hwang, F.K.: A short proof of a result of Pollak on Steiner minimal

trees. J. Comb. Theory, Ser. A, 32, 396 (1982)
6. Garey, M.R., Graham, R.L., Johnson, D.S.: Some NP-complete Geometric Problems. 8 'h

Annual ACM Symposium on Theory of Computing, pp. 10-22, 1976
7. Gilbert, E.N., Pollak, H.U.: Steiner Minimal Trees. SIAM J. Appl. Math. 16, 1 (1968)
8. Karp, R.M.: Reducibility among Combinatorial Problems. In: Complexity of Computer Com-

putations, pp. 85-103. New York: Plenum Press 1972
9. Kou, L., Markowsky, G., Berman, L.: A Fast Algorithm for Steiner Trees. Acta Inf. 15, 141-

145 (1981)
10. Kruskal, J.B., Jr.: On the shortest spanning subtree of a graph and the traveling salesman

problem. Proc. Am. Math. Sor 7, 48-50 (1956)
11. Pollak, H.U.: Some remarks on the Steiner Problem. J. Comb. Theory, Ser. A, 24, 278 (1982)
12. Takahashi, H., Matsuyama, A.: An Approximate Solution for the Steiner Problem in Graphs.

Math..lap. 24, 573-577 (1980)

Received September 25, 1984/September 14, 1985

