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Summary. We present an algorithm for finding a Steiner tree for a connect- 
ed, undirected distance graph with a specified subset S of the set of vertices 
V. The set V - S  is traditionally denoted as Steiner vertices. The total 
distance on all edges of this Steiner tree is at most 2(1 - lfl) times that of a 
Steiner minimal tree, where l is the minimum number of leaves in any 
Steiner minimal tree for the given graph. The algorithm runs in 
O(IEI log lVI) time in the worst case, where E is the set of all edges and V 
the set of all vertices in the graph. It improves dramatically on the best 
previously known bound of O(ISI IVI2), unless the graph is very dense and 
most vertices are Steiner vertices. The essence of our algorithm is to find a 
generalized minimum spanning tree of a graph in one coherent phase as 
opposed to the previous multiple steps approach. 

1. Introduction 

Consider a connected, undirected distance graph G=(V,E,d) and a set S___ V, 
where V is the set of vertices in G, E is the set of edges in G, and d is a 
distance function which maps E into the set of nonnegative numbers. A path in 
G is a sequence of vertices v l , v2 , . . . , v  k of V, such that for all i, l < i < k ,  
(v i, vi+ I)~E is an edge of the path. For a path p, V(p) is the set of all vertices, 
and E(p) the set of all edges in p. A loop is a path vl, ..., v k with v~ = v k. The 
length of a path is the sum of the distances of its edges. A connected subgraph 
Gs=(V~,Es, ds) of G with S~_ V ~  V, Es~ {(vl,v2)[(vl,v2)6E, {V1,V2}m~ Vs} , and d, 
equals d, restricted to Es, is called a Steiner tree for G and S, if Gs does not 
contain a loop. Given a Steiner tree for G and S, G~=(V,,E,,d~), D(G~) is 
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defined as ~ ds(e ), and is called the total distance of G~. A Steiner tree Gs for 
eeEs 

G and S is called a Steiner minimal tree, if its total distance is minimal among 
all Steiner trees for G and S. This minimal distance is called Dmi,(G ). Note that 
vertices in S are required to be in any Steiner tree for G and S. On the other 
hand, vertices in V - S ,  which are traditionally called Steiner vertices, are not 
required to be in a Steiner tree, but may be used to achieve a small total 
distance. There have been confusions on whether to call the set S or the set V 
- S  Steiner vertices. In this paper we adhere to the definition used in the 

fundamental paper of Gilbert and Pollak [7]. The same terminology is used in 
a number of later papers [2, 3, 5, 11]. 

The problem of finding a Steiner minimal tree for given G and S has been 
shown to be NP-complete [8], even for a restricted class of distance functions 
[6]. Therefore, we are interested in finding a Steiner tree with total distance 
close to the total distance of a Steiner minimal tree. Algorithms have been 
proposed for this task in the literature [9, 12]. [12] presented an algorithm for 
finding a Steiner tree G' with D(G')/Dmi,(G)<2(1-1/ISI), whereas [9] described 
a procedure for finding a Steiner tree G" with D(G")/Dmin(G)<2(1- I/l), and l 
is the minimum number of leaves in any Steiner minimal tree for G and S. The 
runtime of both algorithms is proportional to ISI IVI 2. Note that I<ISI. Thus, 
the bound is expressed sharper in [9] than in [12], even though the underlying 
arguments are identical. 

We will describe an algorithm for computing a Steiner tree using the same 
strategy as in [9], hence with the same bound on its total distance, but in time 
bounded by O(IEIloglVI). This speedup is achieved by the combination of a 
process for finding shortest paths, similar to [4], with a process for construct- 
ing a minimum spanning tree (MST), similar to [10]. 

2. An Algorithm for Approximating a Steiner Minimal Tree 

Let G=(V,E,d) be a given connected, undirected distance graph, and S ~  V the 
set of vertices for which a Steiner tree is desired. Our approach is to use a 
generalized minimum spanning tree of a graph to approximate the Steiner 
minimal tree. Our algorithm is in line with Algorithm H in [9]. The major 
differences are: (a) we perform the task in one step, and (b) our time bound is 
superior in most cases. For the sake of completeness, we outline Algorithm H 
of [9] with some notations rephrased in the following: 

Algorithm H: Steiner Tree [9] 

1. Construct the complete distance graph G1 =(1/i, El,  d~), where V 1 =S  and, for 
every (vi, v~)~E~,dx(vl, Va) is equal to the distance of a shortest path from vi to 
vjin G. 
2. Find a minimum spanning tree G 2 of G1. 
3. Construct a subgraph G3 of G by replacing each edge in G 2 by its 
corresponding shortest path in G. (If there are several shortest paths, pick an 
arbitrary one.) 
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4. Find a minimum spanning tree G4 of G 3. 
5. Construct a Steiner tree G 5 from G 4 by deleting edges in G,,  if necessary, 
so that no leaves in G 5 are Steiner vertices. 

We will define and describe an algorithm for computing a generalized 
minimum spanning tree G, of a graph G and a specified set of vertices S G V in 
time O(IEIloglVI) in the next two sections. G s and G2 both span the set S. 
They differ in that G, uses edges in E directly while G 2 uses edges in E 1. Our 
algorithm constructs a Gs with the following properties: (a) during the con- 
struction of G,, G1 is not explicitly constructed; (b) G, has all the path 
information of edges of G2, as conveyed in G3; (c) G, is a tree, thus is 
equivalent to G4; (d) no leaves in G, are Steiner vertices. Therefore, we can 
conclude that G s is, in general, equivalent to G 5 in Algorithm H although there 
are instances in which they might have different total distance. The cause of 
the possible difference is that Step 4 of Algorithm H may make decisions on 
deleting edges in G 3 which result in a better or worse final Steiner tree, 
depending on occasions. The total distance of G, is at most 2(1 - 1/l) times of 
that of a Steiner minimal tree, where l is the number of leaves in a Steiner 
minimal tree. This bound is the same as that of G 5, the result of Algorithm H. 
In fact, we can substitute G~ for Tn, and D~ for D H in Theorem 1 and Theo- 
rem 2 and their proofs in 19]. This yields the following theorem. 

Theorem. For a connected, undirected distance graph G=(V, E,d), and a set of 
vertices Sc_ V, a Steiner tree Gs for G and S with total distance at most 2(1 -1 / l )  
times that of a Steiner minimal tree for G and S can be computed in 
O(IEllog[Vl)time. [] 

3. Finding a Generalized Minimum Spanning Tree of a Graph 

Using the above notion of G 1 and G2, were define the following. 

Definition. A generalized minimum spanning tree G~(Vs, Es, ds) of a given con- 
nected, undirected distance graph G=(V,,E,d) and a set of vertices S_GV, 
denoting vertices in V - S  as Steiner vertices, is a tree subgraph of G such that 
(a) there exists a minimum spanning tree G2(V2, E2, d z) of G I(V 1, E~,d~) such 
that Ve=(v i, vj)~E2: the unique path in G~ from v i to v~ is of length d2(e); (b) all 
leaves in Gs are in S. []  

In other words, G~ is the actual realization of G 2 on the graph G. It is clear 
that G s is a Steiner tree, and a good approximation of the Steiner minimal tree. 
To make our presentation simpler, we concentrate on finding the G 2 associated 
with G, in the following algorithm. After the main idea is clarified, we will then 
modify the algorithm so that Gs is computed. For  each vertex v in V, we use 
source(v) to represent a vertex in S which is closest to v and length(v) to 
represent the distance from source(v) to v. If there is a tie among points in S, 
then source(v) is picked arbitrarily. 

Following the principle of Kruskal's algorithm, we treat the vertices in S in 
the beginning as a forest of ISl separate trees and try to merge them into a 
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single tree. A priority queue Q is used to store frontier vertices of paths 
extended from the trees and possible edges to be used for linking the trees. 
Tuples in Q have the format (t,d,s) where teV, seS and d is the length of a 
path from s to t. If teS then (s, t) is a possible edge to be used in a generalized 
minimum spanning tree, otherwise ( t e V - S )  s is a possible candidate for 
source(t). The order of entries in the priority queue is determined by non- 
decreasing values of d's in the tuples. We use an algorithm in [1] to efficiently 
implement INSERT and F I N D - D E L E T E - M I N  opertions for the priority 
queue. 

An efficient U N I O N - F I N D  algorithm, for instance as described in [1], is 
used to quickly determine if two vertices in S belong to the same tree in the 
forest, and merge two trees in the forest into one tree. 

Algorithm M: Generalized Minimum Spanning Tree of a Graph 

1. For  all qeS, source(q),,-q and length(q)~-O. 
For all q~ V -  S, source(q) ~ undefined and length(q) ~ co. 

2. For  all qeS, put (r,d,q) into the priority queue Q where (q,r)eE and d 
=d((q, r)). We use an assumed order on the vertices in S to ensure putting only 
one of (r, d((r, q)), q) and (q, d((q, r)), r) into Q, if both q, reS. 

3. Partition the vertices in S into IS[ sets (trees), such that each set contains one 
vertex. 

4. While not all vertices in S are in a single set, do: 
Choose a tuple (t, d, s) with minimum d in Q and remove it from Q. 

Case 1. source(t) is undefined: source(t)~s, length(t)*-d. For  all r such that 
(t, r)eE and source(r) is undefined, put (r,d((t, r))+d, s) into Q. 

Case 2. source(t) and s are in the same set: Do nothing. 

Case 3. source(t) and s are not in the same set: 

Case 3.1. teS: Merge the two sets (trees) containing s and t into one set and 
record that there is an MST edge (which is a path in G) between s and t. 

Case 3.2. te V - S :  Put (source(t), d + length(t), s) into Q. 

Based on the correctness of Kruskal's algorithm, the only thing we need to 
establish for the correctness of Algorithm M is that each time we merge two 
trees S 1 and S 2 into one tree, they are indeed a closest pair of trees. Assume 
the contrary, i.e., there is another pair of subtrees S a and S 4 which are closer, 
and are closest among all pairs. But according to Algorithm M, the paths 
reaching out from S a and $4 should have touched each other because the two 
paths have length less than the distance between S 1 and S 2 (Case 3.2 of Step 4) 
so that a path from a vertex of S 3 to a vertex of S 4 (or vice versa) should have 
been put into the priority queue. The path should also have been retrieved 
later from the priority queue (Case 3.1 of Step 4) and used to link S3 and S 4. 
This is a contradiction. Therefore, Algorithm M constructs a correct general- 
ized minimum spanning tree. 
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Step 1 of Algorithm M can be carried out in O(IVI) time; Step2 can be 
done in O(IEI log IVI) time; Step 3 runs in O(ISI) time. Let us have a closer look 
at Step 4. Note that a tuple in Q is generated either by extending a path by an 
edge in E as in Case 1 of Step 4 or by trying to connect two vertices in S as in 
Case 3.2 of Step 4. In either case, an edge is used in the extension or con- 
nection. Furthermore, each edge can be used only once, in one of these two 
cases. Thus the total number of tuples ever generated (including those in the 
initialization process) in the algorithm is O([E[). Since each tuple is processed in 
O(log t V[) time in the priority queue operations and UNION-FIND operations, 
Step 4 can be carried out in O(IEI log lVI) time. Therefore the total time spent 
by the algorithm is O(IEI log IVI). 

Figure l a shows an example graph where vertices in S are solid dots. 
Figure 1 b shows a generalized minimum spanning tree obtained by our algo- 
rithm where arrows represent the direction of growing the edges from vertices 
in S, and lower case labels represent nodes whose source nodes have the 
corresponding upper case labels. Generalized minimum spanning tree edges are 
not explicitly represented in the graph, because we do not use them in the 
Steiner tree construction process. Dotted edges are edges that are not used in 
the resulting generalized minimum spanning tree. 

3. Remarks 

Note that we can modify Algorithm M for the generalized MST construction 
to deliver an explicit description for the path corresponding to each general- 
ized MST edge. In so doing, the modified algorithm computes G s directly. 

(1) For each vertex v in V, introduce a new attribute pred(v) which indicates its 
immediate predecessor on the path from source(v) to v. If v~S, then pred(v) is 
undefined. In Step 1 of Algorithm M, all predecessors are initialized as unde- 
fined. 

(2) Modify the format of tuples stored in Q as (t,d,s, pl,p2 ) where t, pl,p2~V, 
s~S and the interpretation of the tuples depends on whether teS or not. 
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Case 1. teS: There is an edge in E between Pl and P2 and source(pl)=s and 
source(p2)= t. d= length(p1)+ length(p2)+d((p 1, P2)). Thus (s, t) is a possible edge 
to be used in the generalized minimum spanning tree (see Fig. 2a). 

Case2. t ~ V - S :  There is an edge in E between Pl and t. The source of Pl 
has been determined to be s and d=length(pl)+d((pl,t)). Thus s is a possible 
candidate for source(t). P2 is undefined (see Fig. 2b). 

The initialization in Step 2 must also be modified accordingly. 

(3) In Step4, get a tuple (t,d,s, pl,p2 ) from Q. In Case 1, put (r,d((t,r))+d,s,t, 
undefined) into Q instead of (r,d((t,r))+d,s). In Case 3.1, record (Pl,P2) as a 
pair of header nodes for edge (s, t) in the generalized minimum spanning tree 
so that the actual path can be traced out by following the pred links of the 
header nodes to their corresponding source nodes. In Case 3.2, put (source(t), d 
+ length(t), s, p~, t) into Q instead of (source(t), d + length(t), s). 

As to the complexity of Algorithm M (also the modified algorithm), the 
time bound of O(IEI loglVI) in general is better than the O(ISI IVl 2) one in [9]. 
One way of viewing the difference is that when ISI is relatively large compared 
to logIVI, the algorithm in [9] has to perform ISl shortest-path-finding pro- 
cesses, while our algorithm calculates the necessary shortest paths simulta- 
neously with the construction of the generalized minimum spanning tree. 
Another case in which our algorithm performs better is when G is not a very 
dense graph, so that IEI is less than O(IVI2/loglVI). 

Another point of interest is that the total number of INSERT and the total 
number of F IND-DELETE-MIN priority queue operations in Algorithm M can 
both be simultaneously O([EI) even when [EI=O(IVI2). The following is an 
example. Consider graph G=(V, E,d) with S c  V, and the set of Steiner vertices 
S' = V -  S. Let 

(1) S = {s 1, s2 . . . . .  s,,}, and let 
t ! t (2) S' = {s 1, s2 . . . . .  s,}, and let 

(3) E =  {(s~,sj)l 1 <i<m, 1 <j<n}. That is, G is a complete bipartite graph, w.r.t. 
S and S'. Let d~ denote the distance of edge (s~, sj-). Let the distance be such 
that 

(4) di~<dik whenever j<k,  and 

(5) di,<dit whenever i<j, and 
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(6) dii+dk.i>dpq for all i, j, k, p, q. In  other  words, the distances in ascending 
order  are d 11, dr2, --., din, d21,.--,d2 . . . . .  , din1 . . . . .  din,. Then,  (6) is equivalent to 
saying that  

(7) dll+d21>d,~, when (4) and (5) are taken into account.  A set of  distance 
values fulfilling these condit ions is, for instance, 

(8) d~j=mn+(i-1)n+(j-1). So, recall that we consider the graph  G with 
definitions (1), (2), (3), and (8). App ly  Algor i thm M to this graph. Then  Step 2 
of  the algori thm will put  an entry (sj, dij, s~) into Q, for each 1 <i<m, 1 <j <n, 
altogether  m n =  [El entries. Before the first t ime Case 3.1 in Step 4 occurs  when 
retrieving an entry f rom Q, condi t ion (6) requires that  all entries entered by 
Step 2 have been removed  from Q. Hence, there are at least m n = IEI I N S E R T  
and F I N D - D E L E T E - M I N  operat ions  carried out  on  Q, with [El of  higher 
order  than IVl. For  re=n, e.g., IEI=O(IVI2). Thus simply trying to use alter- 
native priori ty queue techniques such as the Fibonacci  heaps to speed up the 
priori ty queue operat ions  will no t  improve the given time bound  of  
Algor i thm M. 
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