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Summary. Most algorithms in relational database theory use a set of 
functional dependencies as their input. The efficiency of the algorithms 
depends on the size of the set. The notions of a minimum set (with as few 
dependencies as possible) and an optimum set (which is as short as possible) 
were introduced by Maier. He showed that while a minimum cover for a 
given set of dependencies can be found in polynomial time, obtaining an 
optimum cover is an NP-complete problem. Here the relationship of these 
covers is explored further. It is shown that the length of a minimum set (i) 
cannot be bounded by a linear function on the length of an optimum cover, 
and (ii) is bounded by the square of the length of an optimum cover. It is 
also shown that the NP-completeness of the optimization problem is some- 
what surprisingly caused solely by the difficulty of optimizing a single class 
of dependencies having equivalent left sides, not by the globality of the 
optimality condition. This result has some practical significance, since the 
equivalence classes appearing in practice are short. The problem of optimiz- 
ing an equivalence class is studied and left and right sides of a dependency 
are shown to behave differently. A new representation for equivalence 
classes based on this observation is suggested. The optimization of single 
dependencies is shown to be NP-complete, and a method to produce good 
approximations is given. 

1. Introduction 

In the relational database model [6, 7], data dependencies are used to express 
integrity constraints for the relations that can exist as an instantiation of a 
relation scheme. Functional dependencies are the most common form of data 
dependencies. Informally, if a functional dependency X --* Y holds in a relation 
scheme R, it indicates the following constraint on an acceptable relation r: 
whenever there are two tuples in r that agree on the X-attributes, they also 
agree on the Y-attributes. 

* This work was supported by the Academy of Finland 
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A typical example of the use of functional dependencies is the schema 
design problem. Suppose we have the attributes AUTHOR,  ADDRESS, 
BOOK and PUBLISHER with the functional dependencies 
A U T H O R  ~ ADDRESS and A U T H O R  BOOK ~ PUBLISHER. If the data is 
stored using a single schema (AUTHOR, ADDRESS, BOOK, PUBLISHER),  
the author's address is repeated for each book that he/she has published. This 
is clearly a waste of space, since the dependency A U T H O R  ~ ADDRESS tells 
that the address does not depend on the book. A better idea is to use two 
schemas: (AUTHOR,  ADDRESS) and (AUTHOR,  BOOK, PUBLISHER),  
and to store the data in the corresponding two relations. 

A popular method of designing the database schema is the so-called syn- 
thesizing algorithm [4, 5, 10]. If 

F= {Xi~  Y~ll <=i<=n} 

is the set of functional dependencies, the database schema produced by this 
method is 

{Xi Yii[l <i<=n}. 

These relation schemes preserve all dependencies and are in third normal form. 
If a key of the attribute set is added to the database schema, the relation 
schemes have a lossless join [-1], another design goal. 

The set of functional dependencies representing the integrity constraints 
is not unique. New dependencies can be derived from a given set F using 
inference rules and axioms. The set of all dependencies that can be derived 
from F is called the closure of F and is denoted by F § There are in general 
many sets of functional dependencies G such that G § = F  +. Any such set could 
as well be used to represent the same set of integrity constraints. We say that 
G is a cover of F and vice versa. 

Let [FI denote the number of dependencies in F, and NF[I the number of 
attributes appearing in F (with repetitions counted). A set of dependencies F is 
minimum, if IF[__<IG [ for any cover G of F. Furthermore, F is optimum 1, if 
[]F[[__< ][G[[. The synthesizing algorithm is a prime example of why we are 
interested in finding small covers for a given set of dependencies: using a 
minimum cover minimizes the number of relations that need to be stored, and 
an optimum cover minimizes the amount of storage required for storing the 
relations in third normal form (at least if the domains of attributes are not 
considered). 

In the synthesizing algorithm the cover affects the quality of the output. In 
many situations only the efficiency of the algorithm depends on the size of the 
cover. For example, computing the closure X § of a set X of attributes can be 
done in time O([]F[]) [2]; finding a lossless join decomposition into Boyce- 
Codd normal form takes time O([R[ 3. [IF[I), where [RI is the number of at- 
tributes in R [14]; maintaining the integrity constraints depends linearly on 
[]FH; and so on. 

Thus there are good reasons for trying to minimize a set of functional 
dependencies before using it in database design algorithms, as long as the 

The term optimal is used in [13] 
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minimization can be done efficiently. The first result on the complexity issue 
was not encouraging: Bernstein [-3] showed that for a given set F, it is an NP- 
complete problem to find a minimum set G such that Gc_F and G + = F  +. 

A fundamental study of the properties of minimum covers was carried out 
by Maier [13]. He showed that Bernstein's complexity result is caused by the 
requirement Gc_F. If this requirement is dropped, a minimum dependency set 
G such that G + = F  + can be found in time O(IFI. HFII) (an alternative proof can 
be found in [-9] and an alternative algorithm in [-8]). Moreover, Maier showed 
that although an optimum cover is always minimum, the problem of finding an 
optimum cover is NP-complete. 

This is an unfortunate result: the suggested synthesizing algorithm produces 
a better result for an optimum cover. Likewise, the efficiency of most design 
algorithms depends on IIFII, not on [FI. Thus optimum covers are more 
desirable than minimum. In this paper we explore the relationship of these 
concepts further. 

We first study in Sect. 3 how close to optimum covers we can get by using 
minimum (actually LR-minimum) covers. Unfortunately, it turns out that the 
ratio IIFII/I]GIb, where F is minimum and G its optimum cover, cannot be 
bounded by any constant. Thus minimum covers can be arbitrarily poor 
approximations of optimum covers in the worst case. We also establish an 
upper bound for []FIN: [IF[[ _-< []G][ 2. 

It is therefore desirable to search for better approximations of optimum 
covers. Our purpose is to isolate the source of NP-completeness of the optimi- 
zation problem and to study practical methods that take us closer to optimum 
covers. In Sect.4 we prove our main result: the dependencies can be grouped 
into equivalence classes with equivalent left sides so that the classes can be 
optimized independently in an arbitrary order. 

The next natural step towards achieving optimum covers would be to show 
that within an equivalence class the dependencies can be optimized one at a 
time. In Sect. 5 we show that this indeed holds for the left sides of the 
dependencies, but not for the right sides. We further show that while there 
exist transformations of an equivalence class which make the optimization 
possible one dependency at a time, no transformation can avoid producing at 
least one dependency which is about as long as the original equivalence class. 
These observations suggest a new representation for equivalence classes, in 
which the class can easily be optimized componentwise. 

In Sect. 6 we consider the problem of optimizing a single dependency, 
i.e. given a set F and a dependency X ~ Y  in F, finding the shortest de- 
pendency X' ~ Y' such that ( ( F -  {X--* Y})w {X '~  Y'})+ = F  +. This problem is 
easily seen to be NP-complete by reduction from the key of cardinality k 
problem [12]. We give a method for partial optimization of one dependency 
and investigate its effect on the optimum cover problem. 

We begin by a review of notation and previous results. However, we 
assume that the reader is familiar with the basic concepts of relational data- 
base theory (e.g. El5]). 
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2. Background 

As usual, capital letters from the end of the alphabet denote attribute sets, and 
capital letters from the beginning of the alphabet denote single attributes. 
Concatenation is used for union. 

Let F be a given set of functional dependencies (FDs). We will use X - ~  Y 
to denote the fact that X ~ Y e F  +, i.e. X ~ Y e F  or X --, Y can be deduced from 
F using Armstrong's axioms. When F is understood, the subscript F will be 
dropped. 

Two sets of FDs F and G are equivalent if F + = G + ;  this will also be 
denoted by F - G .  Two attribute sets X and Y are equivalent under F, written 
X ~ Y, if X ~ - ,  Y and Y~-~ X. This concept induces a partition of the set F 
into equivalence classes on the basis of equivalent left sides: we will denote by 
Ev(X ) the set of dependencies in F whose left side is equivalent with X. 

A set M is said to be minimal, if there does not exist an equivalent set N 
properly contained in M. Furthermore, a set M is minimum, if there does not 
exist an equivalent set N such that ]NI < IMI. These notions apply to attribute 
sets as well as to dependency sets. In particular, a minimal dependency set is 
also called nonredundant. Obviously, every minimum set is minimal, but the 
converse does not hold. 

Our interest is in comparing various equivalent dependency sets. Therefore 
we will introduce some further classes of such sets. 

(a) A minimum set of FDs F is L-minimum, if for every X ~ Y in F there 
exists no X' properly contained in X such that X ' ~  Y. 

(b) An L-minimum set F is LR-minimum, if for every X ~ Y in F we have 
( ( F - { X  ~ Y})w {X ~ Y'})+ 4:F + for every Y' properly contained in Y 

(c) A set of FDs F is optimum, if there does not exist an equivalent set G 
with fewer attribute symbols (with repetitions counted). 

Obviously, the left sides of the dependencies in these classes are minimal. 
The following result relating dependencies of equivalent sets was established 

by Bernstein. 

Proposition 1. Let F and G be equivalent minimal sets of FDs and let Z ~ W~G. 
Then there exists a FD X --* Y in F such that X ~-~ Z. 

Proof [3], Lemma 5.8. [] 

A useful concept in proving properties of a set F of FDs is the F-based 
derivation dag (DDAG) introduced by Maier [13]. Suppose we want to show 
that X ~  Y; the DDAG for X ~  Y can be constructed as follows. For each 
A e X ,  include a node labeled with A into the DDAG. If Z--* C W ~ F  and for 
each B ~ Z  there already exists a node vn labeled with B in the DDAG, then a 
node v c labeled with C can be added to the D D A G  together with the arcs 
v 8--* v c. If eventually every attribute of Y labels some node of the DDAG,  the 
D D A G  represents a derivation for X ~  Y. Figure 1 is an example of one 
possible F-based D D A G  for B C S ~ G I  when F = { C S - - * A C M ,  BC-- .AD,  
A C M ~ D A G ,  DAG--*G1}. The basic property of DDAGs is that there exists 
an F-based D D A G  for X ~ Y  if and only if X--*Y~F +. The use set of a 
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Fig. 1. 

DDAG H, denoted by U(H), is the set of dependencies of F used in construct- 
ing H. The following elegant proposition of Maier states a useful property of 
DDAGs. 

Proposition 2. I f  X ~ Y is in U(H) for some F-based DDAG H of V ~  Z, then 
v - ~  x. 

Proof [13], Lemma2. [] 

Another useful concept based on derivation dags is that of direct de- 
termination. Let F be a set of FDs and let X ~  Y. We say that X directly 

determines Y, denoted by X-~v Y, if there exists an F-based DDAG H for 

X-~ Y such that U(H)c~EF(X)=~). This property is independent of the choice 
of the cover for F: 

Proposition 3. X @ Y if and only if X-~ Y for every cover G for F. 

Proof [13], Corollary to Lemma4. [] 

Bernstein's result (Proposition 1) shows that when two equivalent sets of 
dependencies are partitioned on the basis of equivalent left sides, both par- 
titions have the same number of equivalence classes. Using direct determi- 
nation, it is possible to prove the following important result: 

Proposition4. Let F and G be equivalent minimum sets of dependencies. Then 
lEe(X)[ = ]E6(X)[ for every X. 

Proof [13], Theorem 1. [] 

Thus the corresponding equivalence classes have the same number of de- 
pendencies. Moreover, the following holds for the left sides of the dependen- 
cies. 

Proposition5. Let F and G be equivalent minimum sets of dependencies and let 
X---, Y~F. There exists a unique Z ~ W~G such that X---~ Z and Z---~ X. 

Proof [13], p. 670. [] 

Finally, the following property can be shown for optimum sets of functional 
dependencies: 

Proposition 6. An optimum set of FDs is LR-minimum. 

Proof [13], Corollary to Theorem2. [] 
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3. Size Bounds 

Theorem 1. For all c>O there exists an LR-minimum dependency set F and an 
optimum cover G of F such that 

I/FII _>c. 
IIGII - 

Proof. Let c > 0 be given. Consider the following set 

Fv={B1B2.. .Bv~E, 

E-'-~ B 1 B2. . .Bp,  

A1 B1 B2...Bv-~ C1, 

A2B ~ B 2 ...Bp-* C 2, 

AvB 1 B2. . .Bv~ Cp}. 

F v is clearly LR-minimum. Let G'p be the set 

G'v= {B 1Bz. . .Bp~E, 

E ~ B 1 B 2 . . . B  v, 

A I E ~ C I ,  

A 2 E ~  C2, 

A v E ~ Cv}. 

Clearly Fp=G'p, and for the opt imum cover G v of Fp we have tla'pll >_-IIa~ll (in 
fact  ap = G'p). 

We have 

and 

]lFpqL =pZ+4p+2 

I/%1I =5p+2. 
Thus 

tlFpll > tlFp/I _Pz+4p+2>F'Z+4p+2>P>c ' 
Ilapll = Na'pll 5 p + 2  = 7p = - 

provided p > max {1, 7c}. [] 

This result answers a question posed by Maier: the use of LR-minimum 
covers as approximations for opt imum covers can produce arbitrarily bad 
approximations. However, the next theorem shows that the size of an LR- 
minimum cover is less than or equal to the square of the size of an equivalent 
opt imum cover. 
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Theorem2. Let F be an LR-minimum dependency set and G an optimum cover 
for F. Then 

NFI[< 
(1~)2 =1' 

Proof. Let m F be the length of the longest dependency  X - ~  Y in F. As G is a 
cover  for F, X--} Y~G +. Therefore  there exists a G-based D D A G  H represent-  
ing a der ivat ion for X -~ Y; let U(H) be its use set. 

As F is L R - m i n i m u m  and X - }  Y~F, neither X nor  Y contain unnecessary 
attr ibutes.  Thus  for each A ~ X  there is a dependency  U--} V in U(H) such that  
A~U, and for each B e Y  there is a dependency  U'-}V'  in U(H) such that  
Be V'. Thus  

m~=lXl+lYI <= Z (IUI+IVI)<-IIGII �9 
U~V~U(H) 

As F is min imum,  we have by Proposi t ion  6 IF[ = [G[. Also 

I[FII _-<mF" IFI. 

Combin ing  these inequalities we get 

I]FII <ms'[El< mv. IG[ <mv.lG]_l" [] 
(IJGll)2-- (IJGll) 2 : (max  {IG[,m~}) z =mF.IGI 

4. Equivalence Classes and Optimum Covers 

Definition. Let F and G be equivalent  m i n i m u m  sets of FDs  and let 

F = F I • . . . w F  . 

G=G 1 u . . . u G ,  

be the par t i t ions  of  F and G on the basis of  equivalent  left sides. Suppose  F~ 
= Ev(Xi) and Gi=EG(Zi) for all i =  1, . . . ,  n. 

The  par t i t ions  {F1, . . . ,F,} and {G 1 . . . . .  G,} are matching, if Xi ~ ,  Zi for all i 
= 1, .. . ,  n. The  par t i t ion {F 1 . . . . .  F,} is ascending, if X~--k~ X2 implies j < i. 

These concepts  are independent  of the choice of the sets X~. Note  that  if 
{F 1 . . . .  ,F,} and {G 1 . . . . .  G,} are match ing  part i t ions and {F 1 . . . .  ,F,} is ascend- 
ing, then {Ga, . . . ,  G,} is also ascending. 

In the sequel we will use the te rm "pa r t i t i on"  to mean  par t i t ion on the 
basis of  equivalent  left sides. 

Lemma 1. Every minimal set has an ascending partition. 

Proof Let 

F = F 1 u . . . w F  . 

be a minimal  set of  FDs  and suppose F i = EF(Xi) for all i = 1 . . . . .  n. 
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Define 

F _<Fj 

iff X j -  V, X i. Then < is a partial order; reflexivity and transitivity are clear, 
and if antisymmetry failed, we would have Xi ~V' Xj for i,t=j. Thus < can be 
extended to a total order. Renumber the sets F~ so that 

FI <=F2 <=...<F.. 

Then {F 1 . . . . .  F,} is an ascending partition. [] 

Lemma 2. Let F and G be equivalent minimum sets and suppose that 

and 

F = F ~ . . . u F .  

G=Gl  w. . .  ~ G  n 

are matching ascending partitions. Then 

Gi c__(Fl w. . .  w Fi) + 

for all i = 1,... ,  n. 

Proof. Let Z ~ W ~ G  i. As F - G ,  there exists an F-based D D A G  H for Z ~ W .  
If the use set U(H) of H contains a dependency X--.Y~F~, then Z - ~ X  by 
Proposition 2. 

Let Fi=Ev(Yi); then Z *~, Y~, as the partitions are matching. Thus we have 
Y / ~  X, and since F is ascending and X-~  Y~F~, we must have j <  i. Therefore 

and thus 

v ( n )  =_ (Vl ~ ... ~ F~)+ 

Z~W~(Flw. . .uF3 +. [] 

The proof  of L e m m a 2  shows in fact that no F-derivation of a dependency 
Z ~ W in G i can use dependencies from the sets F/+ 1, . . . ,F, .  Let X ~ Y be the 
unique dependency of F given by Proposition 5 such that Z �9 ~ X and X "~ Z. 
Then X ~  Y~F~, and the dependency Z ~ X  can be derived without using F~. 
Combining these results for the class G1 we get that for all Z--*W~Ga there 
exists X --, Y such that Z ~ X and the derivation of this dependency 

(i) does not use Fl, 
(ii) cannot use Fz, . . . ,F, .  

Thus X ~ Z  can be derived without using any dependencies, i.e. Z c_X. By 
symmetry, X c Z  and so X = Z .  Therefore F~ and Ga have exactly same left 
sides; this holds for any equivalence class whose left sides do not determine the 
left side of any member of any other class. 

We shall next prove a theorem showing that partitioning a dependency set 
on the basis of equivalent left sides yields a natural grouping of dependencies. 



Minimum and Optimum Covers for Functional Dependencies 151 

Theorem 3. Let  F and G be equivalent minimum sets o f  FDs and let 

F=F,v...uF,, 

G = G 1 u . . . ~ G  , 

be matching partitions. For all i = 1, .. . ,  n 

((G - G,)uF~) + = G +. 

Proof  By L e m m a l  we may assume without loss of generality that the par- 
titions are ascending. 

If i=1,  then as 

((G - -  G 1 )  u F1) + _~ (G w F) + ~ (G + ~ F +)+ = G + + = G +, 

and as 

G = ( G - G 1 ) ~ G  1, 

only the inclusion 

GI ~_((G-G1)uF1)  + 

has to be proven. But Lemma 2 states 

G 1 ~ F1 + , 

and thus the claim holds. 
Let i>  1 and suppose the theorem is true for all F, G and j with j < i. This 

induction hypothesis means that one can replace an equivalence class with 
number less than i in an ascending partition by the corresponding class of an 
equivalent minimum set without altering the closure. (Note that this change 
also yields a minimum set.) 

Applying the induction hypothesis repeatedly gives that the covers 

H o = G 1 u . , . w G  ., 

H I = F I ~ G z u . . , u G  ., 

Hi_ 1 =F~ u ... u F~_ I u G i ~  ... w G ,  

all have the same closure, namely G +. Let 

HI=F1 ~ ... w Fi wGi+ 1 w ... wG,. 

Applying Lemma 2 to F and G yields 

Gi ~_(Fl W.. .  wFi) +. 

Therefore 

and thus 

G i ~_ ( ( H i _  1 - G , )  u Fi) + = H + ,  

G+ =H+_ I~_H I+ ~_(F UG)+ =G + , 

so the closure of H i is also G +. 
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Using the induction assumption again gives the same closure G + for the 
sets 

K i = F  l w. . .  w F i_ l wFiwGi+ l u . . .  wG. ,  

K i _  a = F 1 u . . .  w Fi_ 2 u G i _  l w F i w G i +  l w . . .  w G  . ,  

= (Hi - F i -  1) u G i_ 1, 

KI =Fl u G z  u . . .  wGi_l  u FiuGi+ I u . . . u G , ,  

K o = G l u G z u . . . u G  i lwF iuGi+lw . . .~gG, .  

But 

K o = (O - Gi) u F i 

is the set for which the result was wanted. []  

Theorem 3 shows that a set of functional dependencies can be seen as being 
constructed from sets of dependencies with equivalent left sides. This motivates 
the following definition. 

Definition. Let 

F = F I U . . . u F  . 

be a minimum set of FDs partitioned on the basis of equivalent left sides. The 
set F~ is an optimum equivalence class, if for all sets of FDs H with 

( ( F -  F~) u H) + = F  + 

we have IIHI[ > I[~ll. 
Proposition 6 implies that an opt imum equivalence class is also a minimum 

equivalence class. 

Theorem 4. A minimum cover is optimum if and only if all its equivalence classes 
are optimum. 

Proof. 1 ~ Only if. Suppose F is a set of FDs with a non-opt imum class F/, i.e. 
for some H with IIHII < IIF~II we have 

Then 

and F is not optimum. 
2 ~ If. Let 

((F-F~)w H) + = F  § 

ll(F-F~) u H[I < [IF[I 

F=Fxu...uF. 

be a minimum set with opt imum equivalence classes. If F is not optimum, there 
exists 

G = G l u . . . u G  n 

(partitioned matchingly with F) such that ]lGII < lIFll. For  some i, IIGill < IIF~ll. 
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But by Theorem 3 
((F - Fi) w Gi) + = F +, 

contradicting the optimality of the class F i. []  

Maier showed that finding an optimum cover is an NP-complete problem. 
A minimum cover can easily be partitioned in polynomial time, and Theorem 4 
shows that an optimum cover can be found by finding (a polynomial number 
of) optimum equivalence classes. Thus we have the following result. 

Corollary. (i) Finding an optimum equivalence class is an NP-complete problem. 
(ii) I f  the sizes of  the equivalence classes are bounded by a constant, an optimum 
cover can be found in polynomial time. 

This result has some practical significance, as equivalence classes seldom 
contain more than a few entries. 

Theorem3 also explains the usefulness of equivalence classes in dealing 
with functional dependencies: it shows that a set of FDs can be seen as built 
from separate equivalence classes. Thus it is not surprising that e.g. in I l l ]  
equivalence classes are the starting point in constructing an improved third 
normal form decomposition. 

5. Optimization of an Equivalence Class 

The previous section showed that a minimum cover can be optimized one 
equivalence class at a time, and thus finding an optimum equivalence class is 
an NP-complete problem. A natural step forward would be to show that an 
equivalence class can be optimized a dependency at a time. For LR-minimum 
covers this does not hold, as the following simple example shows. 

Let 

F =  {A--* BC, 

B--* AD, 

C D ~ E ,  

E ~  CD} 

and 

G= {A-* BE, 

B -*A ,  

CD --* E, 

E--* CD}. 

F and G are clearly equivalent. The equivalence class 

EF(A ) = {A --* BC, B ~ AD} 
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cannot be optimized by looking at only one dependency at a time: to reach the 
optimum cover 

{A ~ BE, B--* A} 

one has to study the whole class. 
In this example the difficulties were caused by the optimization of right 

sides. This is no accident: left sides are easier to optimize. Proposition5 
guarantees that the left sides of an equivalence class of a minimum set and the 
matching class of an optimum cover correspond to each other in a simple 
fashion, i.e. the sides directly determine each other. No similar result holds for 
right sides, as the previous example shows (BC and BE are not equivalent). 

Definition. A minimum dependency set F has optimum left sides, if for all 
minimum covers G of F we have 

Y, Ixl_- < Y, Izl. 
X~ Y~F Z-~ WeG 

Theorem 5. An optimum cover has optimum left sides. 

Proof Let F be an optimum cover and suppose that some minimum cover G 
of F has shorter left sides than F. Let 

f = {X~ ~ Y~li= l , . . . ,n}  

G= {Z , - ,  W~li= I, ...,n}. 

By Proposition 5 we may assume that Zi- -~  Xi and X~--~ Z~ for all i=  1 . . . . .  n. 
Let k be an index such that []Zkt [ < ][Xkl[. Consider the cover 

F' = (F - {X k --* Yk}) W {Z k --* Yk}" 

By definition of direct determination F' is equivalent to F. But []F'lb< [IFI[, 
which contradicts the optimality of F. [] 

Proposition5 implies thus according to Theorem5 that local analysis is 
sufficient for achieving optimum left sides: for each dependency X ~ Y find the 
shortest X' such that X' ", X and X---~ X', and substitute X' for X. This 
method gives a dependency set having the same left sides as some optimum 
cover, but finding X' is an NP-complete task (see Sect. 6). However, the size of 
X is usually considerably smaller than the size of the whole class, so an 
exponential algorithm can be practical for finding optimum left sides. 

On the other hand, local analysis does not suffice for right sides of an 
equivalence class. Consider the class 

H = { A 1 - - ) . A 2 X 1 ,  

A2--~ A3 X2 ,  

A._ I  ~ A . X , _ I ,  
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and suppose the single attributes A i do not appear elsewhere in the de- 
pendency set. The optimum equivalence class for H is 

{A 1 --*A 2 Y, 

Az---~ A3, 

An_ i ---~ An, 

A,~A1},  

where Y is the minimum key of X 1 X 2 . . . X  .. Therefore one has to consider the 
whole equivalence class at the same time; a similar saving in the size of the 
instance as in the case of left sides is not possible. (Since optimization of one 
right side is an NP-complete problem (Sect. 6), and finding an optimum equiva- 
lence class is in NP,  we know that there is a way to optimize an equivalence 
class using a polynomial number of optimizations of a right side. The above 
example shows that this method cannot avoid considering almost all attributes 
in the class.) 

This phenomenon suggests that a collection of dependencies is not a na- 
tural representation for an equivalence class, as it imposes arbitrary con- 
nections of right-hand attributes with particular left sides. 

An equivalence class could instead be expressed as a pair (A, Y), where A 
is the collection of equivalent attribute sets (the left sides of the class) and Y is 
the set of other attributes determined by these sets. Transformation from the 
usual representation to this form is easy: for the class {Xi ~ Y~Ii= 1, ...,n} use 
the pair 

({Xi[ i= l, . . . ,n} ,  Yi W.. .  w Yn). 

Note that this transformation does not increase the size of the representation. 
An equivalence class in the form (A, Y) is easy to optimize componentwise: 
first optimize each X~A and then find the shortest Y' with 

( U A ) u Y ~ Y '  and ( U A ) u Y ' - , Y .  

The inverse transform, from the pair representation to the usual one, may 
increase the size needed for the dependencies. However, there is no need for 
this transformation, as existing algorithms can be written to use the pair 
representation for equivalence classes. For example, Beeri and Bernstein's [2] 
algorithm for calculating the closure of an attribute set X remains almost 
unchanged. Instead of checking whether there exists a dependency Z--, W 
whose left side is included in the subset of X § already obtained, one looks for 
a left side of an equivalence class satisfying this condition. All the attributes 
occurring in the equivalence class are then added to the closure, instead of just 
W. 

Using the (A, Y)-form for an equivalence class seems to correspond quite 
closely to the way in which actual functional dependencies are intuitively 
written; one usually has quite clear view of equivalent attribute sets and 
attributes determined by them. 
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6. Optimization of One Dependency 

Consider the following two problems: given a minimum set F of FDs with a 
distinguished dependency X ~  Y and a positive integer k, does there exist a 
dependency X' ~ Y' with IX'l -<_ k (IY'I < k) such that 

(F-  {X ~ Y})u {X' --* Y'} - F ?  

These problems will be called left side of cardinality k problem and right side 
of cardinality k problem, respectively. 

These problems can easily be seen to be NP-complete by using the key of 
cardinality k problem [12] : given a set G of FDs and a positive integer k, does 
there exist a key of length less than or equal to k for the set U of all attributes 
occurring in G? 

Note first that G can be assumed to be minimum, as minimum covers can 
be found in polynomial time and as the existence of a key depends only on the 
closure of the set. This restricted version of the key of cardinality k problem is 
reduced to the left (right) side of cardinality k problem simply by taking an 
attribute A not in U and considering the set 

G ~ { U ~ A }  

(6 u {A-~ U}). 

U has a key of cardinality less than or equal to k if and only if the left side of 
U ~ A (the right side of A--+ U) can be optimized to length less than or equal 
to k. 

Thus the left (right) side of cardinality k problem is NP-hard. It is in NP, 
as the left (right) side can be guessed and the equivalence condition tested in 
polynomial time. 

Although optimization of a side of a dependency is an NP-complete task, 
there seems to be a useful approximation method based on equivalence classes. 
The idea is to use only the shortest element of any equivalence class EF(X ) 
outside the set of dependencies needed for the formation of EF(X ) (i.e. those 
FDs needed to derive the equivalences among left sides of dependencies in 
Ev(X)). For example, in the set F v occurring in the proof of Theorem 1 this 
method would substitute E for B 1 ...Bp everywhere except in the dependencies 
E ~ B  1 ...Bp and B 1 ...Bp--.E. Thus Fp would be transformed to Gp. 

This method corresponds to the common way of using attributes like 
EMPLOYEE_NUMBER,  which are artificial one-attribute keys for certain 
entity sets. In a dependency set describing a payroll application we might 
encounter dependencies 

EMPLOYEE_NUMBER--* E N A M E  E_ADDRESS X 

E_NAME E ADDRESS-- '  E M P L O Y E E N U M B E R ,  

where X is the set of other attributes connected to an employee. Outside this 
equivalence class only the attribute E M P L O Y E E N U M B E R  is used, not the 
pair E N A M E  E A D D R E S S .  
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Returning to the approximation theme, using this method even in com- 
bination with LR-minimality does not improve the situation from Theorem 1: 
the approximations can be arbitrarily bad. For consider first the set 

F = {Ba A - ~  C 1 C2, 

C i C2- -*BIA ,  

B 2 A ~ C 3 C 4, 

C 3 C4--rBzA, 

D C  1 C 2 C 3 C4 ~ E } .  

F is LR-minimum and it cannot be shortened by substituting shorter sides 
from an equivalence class. However, F is not optimum, as the dependency 
D C  1 C2C3C4- -+E could be replaced by D A B 1 B 2 ~ E .  This example can be 
inflated to produce arbitrarily bad examples by denoting 

Hp = {B 1 A 1"" Av ~ C1,1--- Ci,p+ 1, 
Z 

Bp+ 1 A t ' "  A p ~  Cv+ i, 1"" Cv+ 1,p+ 1, 

C1,  1 , "  C l , p +  1 -*B1 A1 ""Aw 

Cv+ 1,1"" Cv+ 1,p+ i -~ Bv+ 1 AI ' "Av} ,  

Fv=Hp~{D1 C1,1... Cl,v+l C2,1.. .Cv+I,1. . .Cv+I,p+I-*E1, 

D v C1,  1 . . .  C l , p +  1 C2 ,  1 . . .  C p + l ,  1 . . .  Cp+l,p+ 1 --).Ep}, 

Gp--Hv u {D1 A1 " 'ApB1 ..'By+ 1 - * E l ,  

DvA 1 . . .AvB 1 ...B;+ 1 -* Ev}" 

The set F v is LR-minimal and it cannot be shortened by substituting shorter 
sides from an equivalence class. Clearly Fp =-Gp. We still have 

IIFp[] =pa +6p2 + 11 p+4,  

IlGpll = 6 p 2 + l l p +  4. 

and thus 

lim (lIf, ll/llG~ll)= ~ .  
p~oo 

The technique of inflating an example to produce arbitrarily bad approxi- 
mations used above and in the proof of Theorem 1 seems to apply to other 
approximation methods as well. We conjecture that there does not exist a 
polynomial time approximation algorithm for optimum covers which does not 
produce arbitrarily bad approximations. 
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7. Conclusions 

The relat ionship of m i n i m u m  and op t imum  covers for a set of funct ional  
dependencies has been studied. We have shown that L R - m i n i m u m  covers can 
produce arbi trar i ly bad approximat ions  for op t i mum covers. The source of 
NP-comple teness  of the op t imum cover problem was shown to be the opt imi-  
zat ion of a single equivalence class. Analysis  of this p roblem revealed a 
difference between the behavior  of left and  right sides of a dependency,  and we 
suggested a new representat ion for equivalence classes (and thus for sets of 
FDs). 

These results have shown that f inding op t i mum covers is not  intractable  in 
practice. They also throw more  light to the impor tance  of equivalence classes 
in the theory of funct ional  dependencies. 
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