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Summary. Proof rules are presented for an extension of Hoare's Com- 
municating Sequential Processes. The rules deal with total correctness; all 
programs terminate in the absence of deadlock. The commands send and 
receive are treated symmetrically, simplifying the rules and allowing send to 
appear in guards. Also given are sufficient conditions for showing that a 
program is deadlock-free. An extended example illustrates the use of the 
technique. 

1. Introduction 

Two common models for parallel computation are: centralized, where all 
processes share (have access to) all variables; and distributed, where the vari- 
ables of each process are private, i.e. not accessible to other processes, and 
message passing is used to provide interaction. The centralized model has been 
well studied. Here we consider the distributed model, which corresponds to a 
system of processors, each with its own memory, and a communication net- 
work through which messages may be sent between processors. 

To properly study algorithms, one needs a notation for their description. In 
this paper we use Hoare's CSP (Communicating Sequential Processes) [10], 
which is intended for this purpose. It is derived from Dijkstra's simple pro- 
gramming notation [6]. 

The set of simple commands (assignment and skip) has been augmented by 
two communication commands, send and receive, which serve to pass infor- 
mation between processes. Message passing is synchronous and typed - the 
sender waits until the message has been received and a process specifies the 
type of message to be received. 

In addition to sequential composition (S1; Sz) , there is parallel composition, 
which syntactically specifies the commands (processes) to be executed con- 
currently and associates a name with each process. 
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The composite commands alternation and repetition have been extended to 
allow a send or receive to appear in each guard. The selection of a guard that 
includes a communication command is based on the readiness of another 
process to communicate. 

The approach presented in this paper separates the sequential proofs of 
processes, which may need assumptions about the effects of communication, 
from the satisfaction proofs, which show these assumptions to be valid. Al- 
though in this paper we only prove the correctness of systems of processes, 
isolated processes can also be handled. Satisfaction proofs place constraints on 
other processes, much as assumptions about the parameters of a procedure 
place constraints on how the procedure may be invoked. 

Section 2 contains an operational description of CSP, Sect. 3 proof rules for 
correctness in the absence of deadlock, and Sect. 4 sufficient conditions for 
proving the absence of deadlock. Section 5 illustrates the proof method with a 
program and its proof of correctness. 

This paper represents part of the Ph.D. thesis of the first author, and 
publication of this material was delayed until the thesis was completed. Simi- 
lar, independent work by Krzysztof Apt, Nissim Francez and Willem 
de Roever, done roughly at the same time, has already appeared in the litera- 
ture [1]. References [3] and [5] also deal with proving communicating 
sequential processes correct. The differences in our approach and [1] are 
discussed in Sect. 6, and the reader who has read [1] may want to turn to 
Sect. 6 before reading this paper. 

2. The Notation CSP 

In this section we present an informal, operational semantics from which the 
reader can get an intuitive grasp of the notation. 

In dealing with concurrency we will have to deal with problems of synchro- 
nization, and in doing so we will use the terms ready, blocked, and terminated. 
Execution of a ready process can continue, execution of a blocked process is 
being delayed for a communication, and execution of a terminated process is 
finished. In the description below, the terms ready and blocked are explained 
more precisely. 

2.1. Simple Commands 

skip : skip 
assignment: xl, . . . ,x , : - -  e l , . . . , e  . or 2:=- g 
send: A ! T(,2) 
receive: A? T(Y~ ) 

The first two simple commands, from Dijkstra's sequential notation, place 
no restriction on execution; a process whose next command is skip or assign- 
ment is ready and can be executed. Execution of skip does nothing. To execute 
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an assignment: determine the references represented by x l , . . . , x ,  and the 
values of e 1 . . . . .  e,, then store the values in the locations of the corresponding 
references, in left-to-right order. The notation ~ represents the vector xl . . . .  , x,. 

The communication commands send and receive have three parts: a process 
name A, a template (which for simplicity is restricted to an identifier) T and a 
parameter list (a list of variables or expressions) 2. A send command A! T(~) 
and a receive command B? T(~) form a matching pair if and only if A ! T(~) 
appears in process B, B? T(~) appears in process A, they both have the 
template T, and 2 : =  ~ is a syntactically legal multiple assignment. The template 
is a means of distinguishing different kinds of messages that are passed be- 
tween a pair of processes. If there is no need for this distinction, templates can 
be omitted. If the parameter list has length one and there is no template, the 
parentheses are omitted. If there is no information to be passed (only the type 
of message is important), the parameter list and parentheses are omitted. 

For  the rest of the paper, in order to simplify the discussion, we will use the 
notation A. T(2) to refer to a send A! T(~) or a receive A? T(,2) whenever it is 
immaterial which it is. The notation never appears in program text; it is used 
only to reduce repetition in definitions. The notation pair(r, s) stands for "r  and 
s are a matching pair". 

A matching pair is executed as follows. Suppose execution of process B is 
at a command A. T(~). If process A is not at a matching command B. T(2), 
then B is blocked and prepared to communicate. On the other hand, if A is at a 
matching command B. T(~), then both processes are ready and execution may 
proceed. Execution consists of executing the multiple assignment statement 
x. '= y (or (y: = ~, depending on which command is the send). When such execution 
occurs, the processes are said to have synchronized at the matching pair. 

2.2. Composite Commands 

sequence: 
parallel: 
alternation: 
repetition: 

St; . . . ;S .  
[A1 [IS1 II ... HA.: :S.] 
i fb i ;c l~Sl~ . . .  Db.; c . ~  S. fi 
d o b l ;  c1"-'4"$1 ~ ,.. Db.; c.-~S,  od 

Composition provides the means of forming commands from simpler ones. 
Sequence is the most familiar form of composition. (In fact, it is frequently 
called composition; we have renamed it to avoid confusion.) To execute 
S 1 ; ... ; S,, execute $1, then S 2 . . . .  , and finally S,. 

Execution of a parallel command consists of executing the component 
commands S 1 . . . .  , S, concurrently; the command is completely executed when 
all component commands are completely executed. Each command S i is called 
a process. For  purposes of communication, the processes must be named; here, 
S i is named A i. 

Alternation and repetition are formed from sets of guarded commands. A 
guarded command b; c-~S consists of a guard b; c and a command S. In the 
guard, b is a boolean expression and c is either skip or A. T(N). 
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We now explain when a guard is failed, ready or blocked. If b is false, the 
guard is failed. If b is true and c = skip, the guard is ready. If b is true and c is 
A. T(2), the guard is prepared to communicate with process A; it is ready when 
A is prepared to communicate and blocked at other times. 

Execution of an alternative command selects a guarded command with a 
ready guard and executes the sequence "c; S". If c is skip, execution is inde- 
pendent of other processes; if c is a communication command, then a matching 
communication command must be executed simultaneously. When some 
guards are blocked and none are ready, the process is blocked and must wait. If 
all guards are failed, the process aborts. 

Execution of the repetitive command is the same except that, whereas 
execution of alternation selects one guarded command and is completed, for 
repetition the selection is repeated until all guards are failed, at which time 
execution of the repetition is completed. 

The boolean true or the command skip may be omitted from guards, in 
which case the separating semicolon is omitted as well. 

2.3. Scheduling 

In sequential notations, there is the tacit assumption that a program is exe- 
cuted at some finite speed until it reaches the end or an error. This allows the 
conclusion that a program that can terminate will in fact do so. In CSP, where 
there can be more than one process, choices must sometimes be made as to 
which processes are to proceed. This is a question of scheduling. Our assump- 
tions below are based on our interest in correctness in the absence of deadlock. 
Other interests may require other assumptions. 

A system is deadlocked if some process is not terminated and no process is 
ready. Our scheduling assumption is: if any process is ready, progress must be 
made in a finite, bounded amount of time. This says that if the system is not 
deadlocked, something will happen. 

We make no assumptions about fairness; a ready process can be delayed 
arbitrarily long before it is selected to make progress. A proper study of 
fairness would have required the notion of time, and we have preferred to 
concentrate on the simpler aspects of the problem instead. Fairness is often 
required in order to avoid the possibility of individual starvation - a dynamic 
form of deadlock in which one process is forever blocked while others pro- 
gress. We have finessed this problem by requiring all processes to terminate, if 
not deadlocked, so that no process can continue indefinitely. Hence, eventually, 
all processes are either blocked or terminated, so that the only form of 
starvation is the simple, static deadlock. 

2.4. Parameterization 

When many similar processes are desired we allow the abbreviation 

I-NI~NA~: :S3 
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to represent 
b4, , :  :s,l[I ... Na,k: :S, k] 

where N = {nl, ..., nk}. In the case of repetition and alternation, 

~ieNbi; ci---4S i 
is an abbreviation for 

b.~; c. ~ S . I D  ... ~b.k; c .k~S.~.  
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2.5. An Example - Bounded Buffer 

At this point, a simple, well-known example will allow readers to check their 
understanding. Because CSP assumes synchronous message passing, a common 
complaint about it is that processes are too tightly coupled. But it is simple to 
insert a buffer process between processes, as we now show. 

Assume that two processes I and O wish to communicate through a buffer 
B. Process I sends message e to O using "B! e" and O receives a message in x 
using "B?x" .  Process B is shown in Fig. 1 for a buffer of size N > 0 .  

Declare b ( 0 : N -  1), out, count, and done. 
1) Messages are, in order, in b(i mod N), out < i < out + count. 
2) 0 < count < N. 
3) " • "  is used to denote addition modulo N. 

out, count, done:=O, 0, false; 
do -7 done/x count < N;  I? b (out �9 count) ~ count: = count + 1 
[7 count > O; 0 ! b(out) ~ out, count: -- out �9 1, count - 1 
D --qdone; I?qui t  ~ d o n e : =  true 

od; 
0 ! quit 
Fig. 1. A bounded buffer 

Process B can receive two kinds of messages: an integer, which is a 
parameter  without a template; and quit, which is a template without a parame- 
ter. B can receive if the buffer is not full ( coun t<N)  and process I has not 
indicated that no more messages are to be buffered (--q done) and can send if 
the buffer is not empty (count>O). If  the buffer is neither full nor empty, B can 
either send or receive; what it does next depends on the speeds of I and O and 
on the scheduler. B can also receive quit from I ;  having received quit, it can no 
longer receive from I. When the repetitive command terminates, B sends quit 
to O and terminates. 

2.6. Changes f rom Hoare's CSP 

There are two main differences between our notation and Hoare 's  [10]: the 
inclusion of send in guards and the removal of distributed termination. 
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Hoare allowed only receive in guards, basing his decision on efficiency 
concerns. At least in some environments [15], there is no additional overhead 
in providing conditional output and others have suggested the inclusion of 
output guards [2, 16]. 

The program in Sect. 2.5 is an example of one advantage of this addition. 
Without output guards, O would have to send a request for input to B. This 
would entail extra messages, place an unnecessary burden on the programmer, 
and change the form of process O. As is, 0 looks the same regardless of whether 
it is receiving input synchronously or from a buffer. 

Distributed termination provides the means for automatic termination of a 
loop in one process because another process has terminated. We have not 
included it because it seems to complicate the semantics. Furthermore, algo- 
rithms that use it can be difficult to modify. In particular, if the modification 
requires that the previously terminating process continue, there is no way to 
simply terminate the loop; new signals and, possibly, restructuring of the 
algorithm will be needed. Instead, we assume that all termination of loops is 
done explicitly. 1 

An earlier version of this paper [13] included distributed termination, and 
the complications in an example (given later in this paper) caused us to omit it 
from consideration. 

3. Proof Rules for Weak Correctness 

A proof of weak correctness (total correctness in the absence of deadlock) of a 
set of communicating processes consists of three parts: a sequential proof, a 
satisfaction proof, and a non-interference proof. 

The sequential proof for each process is in the style of a Hoare-logic proof 
[9]. 

While creating the sequential proof, assumptions are made about the effect 
of communication commands. A satisfaction proof shows that these assump- 
tions are valid. 

Although CSP requires that each variable be local to a process, auxiliary 
variables, which are allowed to appear in more than one process, are usually 
needed in a proof of correctness. This does not violate the distributed model 
because auxiliary variables are needed only for the proof and not for the 
execution. However, it now becomes necessary to show that execution of other 
processes cannot interfere with the validity of assertions, as described in [14]. 
The notions of synchronously altered variables and universal assertions are 
introduced to simplify proof of non-interference; in fact, with certain re- 
strictions, non-interference becomes a syntactic property of the program and its 
sequential and satisfaction proofs. 

3.1. Axioms and Rules of Inference 

The notation {P} S {Q} means that execution of S begun in a state satisfying P 
is guaranteed to terminate in a state satisfying Q, provided deadlock does not 

1 The message quit is used in the bounded buffer example for this purpose 
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occur. The notation P~ denotes conventional textual substitution: the predicate 
P with all free occurrences of the x~ simultaneously replaced by the e~, where 
is a list of distinct identifiers. 

Axioms 
skip: {P} skip {P} 
assignment: {P~} 2: = P {P} 
communication: {P} A. T(2) {Q} 

The axioms for skip and assignment are conventional. The notation P~ is 
usually used only when 9~ is a list of distinct identifiers, but in [-8] it is 
extended to allow the x~ to be array elements and records so that the assign- 
ment axiom given above holds in general. For the purposes of this article one 
may use the former view and restrict multiple assignment without loss of 
understanding. 

The communication axiom is explained as follows. Remember that 
{P} S {Q} means total correctness in the absence of deadlock and that sequen- 
tial proofs only prove facts about processes running in isolation. With only one 
process running, communication commands deadlock; thus, any predicate Q 
may be assumed to be true upon termination of a communication command 
because termination never occurs! 

The communication axiom does violate the Law of the Excluded Miracle 
[6], allowing proofs like 

{true} A? T(Yc) {false} (3.1.1) 

which implies that, after execution, false is true. Such proofs are what the Law 
of the Excluded Miracle was designed to avoid. A satisfaction proof will plug 
the hole later on. 

Inference rules 

sequence 

consequence 

alternation 

repetition 

{P I S , {Q} , {Q}Sz{R}  

{e} $1; S 2 {R} 

P=~P', {P'} S {Q'}, Q ' ~ Q  
{P} S {Q} 

P~(3i :b i )  
(Vi: {P ix bi} ci; S i {Q} 
{P} if 0~= l:,,b~; c~--,S i fi {O} 

(P /x (3 i: b~))~t >0  
(Vi:{PAbi}T:= t ; q ; S i { P  A t < T } )  

{P} do Si = 1:. bi; ci ~ Si od {P/x (V i: --7 bl) } 
where t is an integer function and T a fresh variable. 

(V i : {P/} S i {Qi}) satisfied and interference-free 
parallel {(vi: P~)} [IJ~=I:.A,: :S,] {(Vi: Q,)} 
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The inference rules for sequence and consequence are common and will not 
be discussed here. The rules for alternation and repetition are also familiar, 
except that the hypothesis corresponding to a guarded command now includes 
execution of a command in the guard. 2 The careful reader will note that the 
hypotheses for 

if bl;  cl--* S 1 [7 ... [3 b,;  c , -~  S ,  fi (3.1.2) 

are the same as the hypotheses for 

i f  b a ~ c a ; S a •... [~ b .  ~ c . ;  S .  ft .  (3 .1 .3)  

How then do (3.1.2) and (3.1.3) differ? Actually, in the absence of deadlock 
there is no difference. In the case of (3.1.3), if a correct alternative is chosen, 
command c will be executed and all is well (i.e. as it would be if this 
alternative were chosen in (3.1.2)); at worst, c cannot be executed and the 
system deadlocks. Obviously the difference is that (3.1.3) is more prone to 
deadlock. This difference is analyzed more formally in [-12]. 

It is clear that the rule for the parallel command implies that each com- 
ponent is executed, as long as the free variables of P~ and Qi are limited to the 
local variables of Ae. The necessary introduction of shared auxiliary variables 
brings the need for non-interference proofs, so that the conventional model of 
execution and the inference rule are still consistent. For a similar rule, see [-14]. 

Technically, a sequential proof consists of a list of statements (either Hoare 
triples or statements of the predicate calculus), each of which is either an 
instance of an axiom or the conclusion of an inference rule with all the 
hypotheses of that rule preceding it in the list. This form is awkward, and 
instead one usually gives an annotated  program.  In an annotated program, 
assertions are placed before and after the program (corresponding to the input- 
output specifications) and between commands of the program. An assertion 
must imply the precondition of the following command and, in turn, be 
implied by the postcondition of the preceding command. This convention 
allows us to include only one of two assertions where the rule of consequence 
is applied. 

The functions pre and pos t  are applied to commands and have as value, 
respectively, the assertion preceding and succeeding the command in the anno- 
tated program. At times we will only include the invariant of a loop once; the 
reader should consider the invariant to be the postcondition of each alter- 
native. Similarly, the postcondition of an alternative command is the postcon- 
dition of each of the alternatives and is not repeated. 

The precondition of a command that appears in a guard is the conjunction 
of the precondition of the alternation (or the invariant of the repetition) and 
the boolean part of the guard; the postcondition of the guard is the precon- 
dition of the command that is guarded. 

2 The proofs of the hypotheses may include instances of the axiom for communication commands, 
necessitating a satisfaction proof 
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As a brief example consider Fig. 2. Figure 2a is the annotated program, 
Fig. 2 is the list of Hoare triples and implications that corresponds to the 
annotated program. 

{x =a A y=b} 
t:---- X; 
{ t=aAy=b}  
x~= y; 
{t=a/~x=b} 
y : =  t 
{x=b A y=a} 

{x=aA y=b} t:= x { t=a^  y=b} 

{ t=aAy=b}  x'.= y { t = a A x = b }  

{ t=aAx=b}  y.'= t { y = a A x = b }  

(y=a /x x=b)=~(x=b A y=a) 

{ x = a A y = b } t : =  x ; x : =  y;y:= t { x = b ^ y = a }  

(a) (b) 

Fig. 2. An annotated program and corresponding proof 

3.2. Satisfaction Proof 

Consider any communication command S and its pre- and postconditions from 
a sequential proof. The communication axiom allows any postcondition be- 
cause in isolation deadlock is inevitable. Now we are concerned with combin- 
ing processes. When processes are executed concurrently, deadlock is not 
inevitable and we must show that the assertions are still satisfied. 

Suppose, then, that a matching communication pair appears in processes A 
and B, as follows: 

[B:: . . .  {P}A?T(Yc){Q}... []A::...{RIB!T(-~){S}...]. (3.2.1) 

Should these two commands communicate, the effect would be equivalent to 
x: =e. Hence, (Q/x S) is true after communication if and only if (Q ^ S)~ is true 
before. Before communication, both preconditions are true and we may assert 
(P A R). Therefore, postconditions Q and S are satisfied if and only if 

(P ^ R )~ (Q  A S)~. (3.2.2) 

The Rule of Satisfaction is that every matching pair of the form (3.2.1) must 
satisfy (3.2.2). 

This fills the gap left by our violation of the Law of the Excluded Miracle. 
Consider, for example, the use of the communication axiom that caused con- 
cern, (3.1.1). A matching send would have the form 

{R} B! T(~) {S} (3.2.3) 

and we would be obliged to prove 

(true A R)=~(false ^ S)~ (or --7 R). 
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If we can prove -7 R, then B! T(~) can never be prepared to communicate, and 
the matching pair will never be executed. (In general, if ~ ( P A R )  can be 
proved, then (3.2.2) is trivially satisfied, regardless of postconditions. This 
covers the cases where the logic of the program prevents the pair from 
communicating.) 

3.3. Auxiliary Variables 

The addition of auxiliary variables to the proof system allows assertions in 
distinct processes to refer to non-disjoint state spaces. Auxiliary variables are 
needed to relate program variables of one process to program variables of 
another. Auxiliary variables are defined by Owicki [14] for use in proofs in the 
centralized model; our definition is adapted to the distributed model. 

An auxiliary variable may affect neither the flow of control nor the value of 
any non-auxiliary variable. Hence, auxiliary variables are not necessary to the 
computation and may be omitted from the program - but not the proof. 
These conditions are ensured if the following syntactic restrictions are met. 

Auxiliary variables may appear only 

1) in assertions; 
2) in expressions being assigned to auxiliary variables; 
3) as parameters in a receive; and 
4) in expressions as parameters of a send corresponding to auxiliary 

variables in any receive that forms a matching pair. 

When a program is augmented with auxiliary variables, one can add 
assignments and extend the parameters of communication commands. Adding 
parameters to communication commands must not change the set of matching 
pairs, because a change could affect flow of control, which is not allowed. 3 

Auxiliary variables can help describe global relations; local variables, only 
approximations to them. Commonly, preconditions for communication com- 
mands will assert that a local variable equals a global auxiliary variable. When 
communication occurs, each process involved will have a local variable equal 
to the global auxiliary variable, and hence all three variables will be equal. 

Figure 3 contains the bounded buffer example of Sect. 2, augmented with 
auxiliary variables I N  and OUT. They contain the sequences of messages sent 
from process I and received by O, respectively. Process I now sends e with 
"B!(e, I N o e ) " *  and O receives x with "B?(x, OUT)" .  

out, count, done: = 0, 0, false; 
do -7 done A count < N;  I ? (b (out �9 count), IN )  

count > 0; 0 ! (b (out), 0 U To b (out)) 
1 ? quit 

od; 
0 ! quit 
Fig. 3. A bounded buffer (with auxiliary variables) 

a The set of matching pairs is determined from the program without auxiliary variables 
4 Operator "o" denotes catenation of an element to a sequence 

--~ count: = count + 1 
--*out, count: = out 0 1, count-- 1 

done: = true 
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Besides the definitions given in Fig. 1, the invariant of the loop of Fig. 3 
contains the following predicate to relate the input stream, the output stream, 
and the buffered messages: 

I N  = 0 U T o b (out) . . . . .  b (out 0 (count - 1)). 

3.4. Proof of Non-Interference 

Without auxiliary variables there is no need to prove non-interference. With 
disjoint state spaces, execution of one process cannot affect the state of, nor the 
validity of assertions about, another process (except when communication 
occurs, and the satisfaction proof takes care of this case). However, with 
auxiliary variables it is possible for execution of one process to affect assertions 
about another. 

For  each assertion P in process C it must be shown that P is invariant over 
any parallel execution. This is the non-interference property of Owicki [14]. 

Let us introduce some terminology. Command S is parallel to assertion P if 
S is contained in a process of a parallel command and P is contained in a 
different process of the same parallel command. A matching communication 
pair S and R is parallel to P if both S and R are parallel to P. Note that 
neither S nor R may appear in the same process as P. 

Every command S parallel to P must satisfy 

{P A pre(S)} S {P}. (3.4.1) 

Similarly, every matching communication pair, S:A!T(~)  and R:B? T(Yc), that 
is parallel to P must satisfy 

(P A pre(S) A pre(R))=~ P~. (3.4.2) 

A proof of non-interference, if approached mechanically, is an awesome 
task. Every assertion in every process must be compared against every com- 
mand in every other process and against every matching communication pair, 
so it takes time proportional to the product of the lengths of the processes. 
Fortunately, through judicious structuring of the program and careful selection 
of the assertions and auxiliary variables, it is possible to reduce the amount of 
work needed. The following notions of synchronously altered variables and 
universal assertions are important in designing good proofs. 

3.5. Synchronously Altered Variables 

Variable v is synchronously altered in process A if the only occurrences of v, 
outside of expressions, are in 

1) the left part of assignments in A, 
2) receives in A, and 
3) receives in a process B, from A. 
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The value of an expression that contains only variables synchronously 
altered in A cannot change except when A progresses. Hence, there is no 
interference with assertions in the proof of A, provided that these assertions 
contain only variables synchronously altered in A. 

More formally, a non-interference proof consists of proving instances of 
(3.4.1) and (3.4.2). But the definition of "parallel to" allows us to conclude that 
none of these instances will contain commands of the type described above. All 
other types of commands trivially satisfy (3.4.1) and (3.4.2) and there is no 
interference. 

In many cases, synchronously altered variables arise naturally. In the 
bounded buffer example, IN and OUT are both synchronously altered in B 
and, respectively, in I and O. Hence, assertions about IN  may be made in 
proofs about both I and B and no interference proof is needed. 

Unfortunately, it is sometimes difficult to express global relations in terms 
of synchronously altered variables. The assertion that OUT is a prefix of IN is 
fine in B, but is subject to interference in I and O. The following notion of 
universal assertions is also convenient in limiting non-interference proofs. 

3.6. Universal Assertions 

Some assertions can be shown, in the sequential and satisfaction proofs, to be 
true initially, finally, and between every pair of commands in all processes. 
Such assertions are said to be universal. 

Universal assertions are not subject to interference. Why? Consider the two 
cases of a non-interference proof. A universal assertion must hold after exe- 
cution of a command or communication, given that the precondition and the 
universal assertion hold before. But the proof of universality of the assertion 
shows that it holds afterwards. Hence the proof must exist and need not be 
shown explicitly. 

4. Requirements for Strong Correctness 

4.1. An Illustration of Proving Freedom from Deadlock 

The cooperative nature of CSP introduces a problem that does not exist in 
sequential notations. It is possible for a process to reach a point at which 
progress must wait for synchronization with another process. 

A process waits when it is blocked. In and of itself, blocking is not bad. If, 
however, all processes are blocked or terminated and at least one process is 
blocked, then no progress can be made and blocking will not end. This 
situation is known as deadlock. 

The basic idea for proving freedom from deadlock (see e.g. [14]), tailored to 
CSP, is as follows. Condider a possible deadlocked configuration: the processes 
that are ready to communicate are at commands $1 . . . .  ,S,  and all other 
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processes, P~ . . . . .  Pro, are terminated. Then the state of execution is one of the 
states represented by the predicate 

P =pre(S1) ix.../x pre(S,) ^ post(P 0 ^ . . . / x  post(P,,). 

If it can be shown that either P is false --i.e. the state is impossible to reach 
during execution -- or progress can occur in this state, then deadlock is not 
possible in this configuration. If this can be shown for each such configuration, 
then the program is free from deadlock. 

An example will clarify the idea. Consider the program 

{step = 0} 
[A: :  {step=O} B!(O, step+ 1) {step= 1} B?(x, step) {step=2} 
JIB:: {step=O} A?(z, step) {step= 1} A!(3, step+ 1) {step=2}] 

Auxiliary variable step indicates at which commands execution of the program 
is. Using 0 to indicate that a terminated process is waiting at no command, we 
enumerate the commands at which processes A and B may be waiting, along 
with the corresponding predicate pre or post: 

AO = [step = 0: {B !(0, step + 1)}] 
A1 = [step = 1 : {B?(x, step)}] 
A2 = [step = 2: O] 

BO = [step = 0: {A?(z, step)}] 
B1 = [step= 1 : {A!(3, step+ 1)}] 
B 2 =  [step=2: r 

A possible deadlock configuration is determined by joining one of the Ai with 
one of the Bj (except for A2 and B2, which together describe the termination 
state of the whole program). These configurations are: 

AO and B0: [step=O Astep 
AO and B 1 : [step = 0/x step 
AO and B2: [step=O /x step 
A1 and B0: [step= 1 ̂ s tep 
A1 and BI:  [step=l /xstep 
A1 and B2: [step= 1/xstep 
A2 and B0: [step = 2/x step 
A2 and B 1 : [step = 2 ^ step 

roin 
jom 
join 
jom 
jom 
join 
join 
join 

=0:  {B!(0, step+l) ,  A?(z, step)}] 
= 1 : {B !(0, step + 1), A !(3, step + 1)}] 
=2 :  {B!(0, step+ 1)}] 
=0 :  {B?(x, step), A?(z, step)}] 
= 1: {B?(x, step), A!(3, step + 1)}] 
=2 :  {B?(x, step)}] 
= 0: {A?(z, step)}] 
= 1: {A!(3, step+ 1)}] 

Any configuration with a predicate of the form step=i/x step =j for i # j  can 
never be reached, for the predicate is equivalent to false. Each of the other 
configurations contains a matching communication pair, so that communi- 
cation can occur. Hence, the program is free from the possibility of deadlock. 

In proving freedom from deadlock, it is sufficient to argue as follows. 
Consider the three states at which A may be waiting or terminated, as given by 
A0, A1 and A2. For  A0, show that pre(AO) is enough to conclude that B is at 
the matching communication B0; for A1, show that pre(A1) is enough to 
conclude that B is at the matching communication B1; for A2 show that B is 
also terminated. 
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4.2. A Sufficient Condition for Freedom from Deadlock 

We have just given the general concept for proving the absence of deadlock. 
All that remains is to formally define the configurations of a program, based 
on the structure of the program, and what it means for a configuration to be 
deadlock-free. 

A configuration K of command S corresponds to a possible waiting state of 
S: a state in which each process currently in execution may be either blocked 
or terminated and at least one process is not terminated. Formally, a con- 
figuration K consists of a pair 

[condition (K): commands(K)] 

The condition must hold if the processes of S are waiting in this configuration. 
Each element of the set commands(K) is a guarded command b ~ c ,  which 
indicates that c may be executed in order to make progress provided b is true. 

We now define the set of configurations C(S) for a program S and its proof, 
based on the structure of S. Note carefully that the set of configurations 
depends on the proof  of the program and not just the program. 

Simple commands cannot block, and hence there are no configurations to 
indicate possible waiting states: 

C("skip")= C("~ :=  e " ) = 0  

When a process is waiting at a command A.T(YO, pre("A.T(~)") is true. Under 
any condition, execution can continue as soon as the matching communicat ion 
command is ready: 

C("A.T(,2)") = {[_pre("A.T('2)"): {true ~ "A.T(2)"}]} 

It is assumed that we can tell to which process a variable or command 
belongs; this is necessary when determining matching pairs later on. 

A waiting state of S 1 ; S 2 is either a waiting state of $1 or a waiting state of 

$2: 
C("S 1 ; S2")= C(S1) k.) C(82) 

Execution of an alternative command  if ~i=l:.bi; ci--*Sifi can be waiting for a 
communication (or skip) c i7- if the corresponding guard bi is true. It can also 
be waiting in one of the subcommands S~: 

C("if ~i= l:nbi; ci--+ Sifil") 

= {[pre("if...fi'): •i= l:,{bl ~ ci}]} w (ui= 1:, C(Si)) 

As with the alternative command,  execution of a loop can be blocked 
wating for a communication at a guard. The condition in this case is the 
invariant of the loop. An extra guarded command - ~ B B ~ s k i p  is included in 
the guarded commands of the configuration because progress can be made 
when all the guards are false (the loop terminates). 5 Execution can also be 
blocked in one of the subcommands S i. 

5 BB=(~i: bi) 
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To handle distributed termination in the proof system, some changes would 
be necessary. 

C("do r]i=l:nbl; ci---~ Siod" ) 
= { [inv("do... od"): {--1 B B  ~ skip} ~ (u  i = 1:. {bi ~ q})] } 

u(u~= ~:. C(S~)) 

Finally, we have to define C(S) for a parallel command S 
= [A~: ;S i ]l... II A,: :S,]. The set of configurations for the parallel command S is, 
in an informal sense, the set of all combinations of configurations of its 
subprocesses --  with the combination of all the terminating configurations 
removed. (Refer back to the example of section 4.1). For example, suppose 
process S1 has two waiting configurations [-QI: { b l ~ c l } ]  and [Q2: 
{b2~c2}]  and a terminating configuration [TI :  0]. Suppose process $2 has 1 
waiting configuration [R: {d~e}]  and a terminating configuration [T2: 0]. 
Then the parallel command [S1 II $2] has the waiting configurations 

[Q1AR:  { b l ~ c l ,  d ~ e } ] ,  
[Q1 A T2: {bl -ocl}] ,  
[Q2AR:  { b 2 ~ c 2 ,  d-oe}] ,  
[Q2A T: {b2-o c2}], and 
[T 1AR:  {d~e}].  

The terminating configuration for a process S u written [post(Si): 0], defines the 
state in which S~ has terminated and is waiting for the other processes to 
terminate. It is not in C(S~) and will have to be taken care of specially. 

To define the configurations for the parallel command, we first define the 
join(SC), the "join" of a set of configurations S C: 

join(S C)= [ A K~sc condition(K): UK~sc commands(K)]. 

For S = [ A I :  :S llt...JrA.: :S,] we then have 

C(S) = {join( {ai, /E l :n})[ aiE( C(Si) u {[post(Sl) :O]} )} 
- {[( A i= l:,p~ 

We now have defined the set of configurations for any command (or program). 
For a program S to be deadlock free, for each configuration K of C(S) it must 
be shown that K is either impossible to reach or that progress can be made in 
it. That is, either the condition of K is false, or K contains a guarded 
command b ~ s k i p  for which b is true, or K contains two guarded commands 
b l u r  and b2-- .s  for which bl and b2 are true and r and s are a matching 
communication pair. This is formalized in the following predicate D L F :  

D LF(K)  =-7 condition (K) v 
(~(b ~ skip)Ecommands(K): b) v 
(3(b 1 ~ r, b 2--+ s)Ecommands(K): b 1 A b2 A pair(r, s)) 
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5. An Example  - Finding the M i n i m u m  of a Set 

5.1. The Program 

Process B should receive from process A the minimum of the set {ai]i~l :N}. 
Define process A to be the parallel execution of N processes Least(i), i t  ! :N, as 
shown in Fig. 4. 

A: : I-Hi= l:NLeast(i)] 

Least (i): : integer my rain, their_rain, my_size, their_size; 
my_rain, my_size:= al, 1; 

do Dj=l:N^~,jO<my_size<N; Least (j)! (my_rain, my_size) 
---, my_size: = 0 
D j= l:N ̂ l ,10<my_size < N ; Least(j)? (their_rain, their_size) 
--*my_rain, my_size: = rain(my_rain, their rain), my s i z e  + their_size 

od; 
if my_s ize=O~ skip 
I] my s i z e = N ~ B I  my_min 
fi 

Fig. 4. Least 

Initially, each process Least(i) is responsible for the value a i. As execution 
progresses, Least(i) is responsible for the minimum of a set of values, the 
number of values in this set being my _size. Least(i) tries to relieve itself of this 
responsibility by sending the minimum of the set, together with the size of the 
set, to another process Least(]) (say). If successful, the set of values for which 
Least(i) is responsible becomes empty, Least(i) terminates, and Least(j) becomes 
responsible for the minimum of the union of its own set and Least(O's. Exe- 
cution continues until N - 1  processes have become not responsible and one 
process is responsible for the minimum of the set of all values. This process 
then gives complete responsibility to B by sending B the minimum value. 

To prevent deadlock, which would occur if all executing processes refused 
to receive, each process must agree to take on additional responsibility. Least(i) 
must continue to send or receive until it has become responsible for either the 
null set or a set of size N. In the second case, the minimum value that Least(i) 
has received is the minimum of all the ai, and it sends this value to process B. 

This explanation gives the flavor of the processes, but does not really 
provide sufficient information for answering questions about termination, 
deadlock or even partial correctness. 

5.2. Sequential Proof 

First we give a formalization of the ad hoc description of Least. Given the 
formal description, it is fairly straightforward to see that Least is weakly 
correct. The annotated program is given in Fig. 5. 
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{(V i: 1 <_ i <- N:  set i = {i})/x set o = 0} 
[B ; ;{M(0, 0, Seto) } 

if fi ~= I:N Least(i)? (m, Seto, seti) ~ skip fi 
{M(m, N, seto) } 

]]A: : [HI= l:N{seti = {i}} Least(i) {M(O, O, seti)}] ] 

{(Vi: set i = {i})} 
Least(i): : 

{seti= {i}} 
my rain, my size:= a~,l; 

{M(my rain, my size, seti) } 
do I7 j= ~:N ̂  ~.jO < my s i z e  < N;  Least(j) ! (my rain ,  my s i z e ,  set~ w set j, 0) 

{ M (my_min, O, seti) } 
m y s i z e : =  0 

[q [3j= I :N^ i . jO<my  s i z e < N ;  Least(j)? (their rain, their s i z e ,  set~, set j) 
{M(min(my rain, their rain),  my_size  + their_size, set~)} 
my rain, my s i z e :  = rain(my rain, their rain), my s i z e  + their s i z e  

od; 
{M(my rain, my_size,  seti)/x (my s i z e  = 0 v my s i z e  = N)} 

if my s i z e  = 0 ~ skip {M(my rain, O, seti) } 
1~ my s i z e  = N ~ {M(my rain, N,  seti) } 

B!(my rain, seti, 0) 
{M(my rain, O, seti) } 

fi 
{M(my rain ,  O, seti) } 

Fig. 5. Least (annotated) 

To remove concerns about  repetit ions in the set {ai}, we deal with sets over 
the range I :N,  corresponding to the elements ai ,a2 ,  . . . ,a  N. For  each process 
Least(i) define auxiliary variable set~ as the indices of the values for which it is 
responsible. Therefore,  my_min  is the min imum and my_size  the size of set~. 
When Least(i) no longer has responsibility, set~=O and my_size=O.  Further-  
more,  let auxiliary variable set o contain the set for which process B is re- 
sponsible. 

M(my_min ,  my_size,  seti) is an invariant  of the loop of each process, where 
M is defined by 

M(mn,  sz, S)r = ISI A (S = 0 v m n =  min a j)) 
jES 

(5.2.1) 

Predicate U N I O N ,  given in (5.2.2), expresses the fundamental  proper ty  that 
exactly one process is responsible for each a i - i . e .  Seto ,Se t l , . . . , se t  N form a 
part i t ion of the integers I :N.  It is universally true: initially, finally, and 
between any pair of commands  in all processes. U N I O N  will not be repeated 
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at each assertion. 

UNION: (Wi=o:NSeti)=l:N A(Vi, j:O<i<j<N:setic~sets=O) (5.2.2) 

The variant function t used to prove termination is (Ni:seti#O). 6 It is non- 
negative, non-increasing, and decreases with each message sent. 

5.3. Satisfaction Proof 

To prove satisfaction, we must show that (3.2.2) holds for each matching pair 
of the form (3.2.1). Examination of the program reveals two classes of match- 
ing pairs: 

L j: Least(i) ! (my _min, my s i ze ,  set i w set s, O) occurring in Least(j), 
Li: Least(j)? (their rain, their_size, seti, sets) occurring in Least(i) 

and 

B!(my rain, set i, 0) occurring in Least(i), 

Least(i)?(m, Seto, seti) occurring in B. 

Considering the first pair, Lj and Li, and priming local variables of Least(j) 
to distinguish them from those of Least(i), we must show that 

their rain, their_size, seti, setj 
(pre(Lj) ix pre(Li)) =~ (post(Lj) /x post(Li)) 

my_rain', my_size', seg wsets, 0 

where 

pre(Lj) = 0 < my s i ze '  < N/x M(my rain', my size ' ,  set j)/x UNION 
pre(Li) = 0 < my s i z e  < N/x M(my rain, my s i ze ,  seti)/x UNION 
post(Lj) = M(my_min', O, set j)/x UNION 
post(Li)= M(min(my rain, their rain), my s i z e  + their s i ze ,  seti) /x UNION 

This straightforward exercise is left to the reader. 
For  the second matching pair, looking at the annotated proof  in Fig. 5 we 

see that satisfaction holds if 

(M(O, O, Seto)/x M(my min, N, seti) A UNION) 

(M(m, N, Seto)/x M(my min, O, seti)/x UNION) m, Seto, set i 
my min, seti,O 

which obviously holds. 

5.4. Non-Interference Proof 

The auxiliary variables in the proof  are: set o . . . .  , set N. Variable set i (for i e l  :N) 
is altered in two types of communications: in the receiving guards of process 

6 An expression of the form (Ni: P(i)) denotes the number of values i for which P(i) is true 
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Least(i) and in the guards of Least(]) that receive from Least(i). Thus set i is 
synchronously altered in Least(i). Variable set o is only altered in a receive in B 
and so is synchronously altered in B. The only auxiliary variable referred to in 
assertions in Least(i) (except for the universal assertion UNION) is seti; hence, 
assertions in this proof  refer only to synchronously altered variables and there 
is no interference. 

5.5. Proof of Freedom from Deadlock 

We must show that in all "waiting states" either the state cannot be en- 
countered during execution or at least one process may make progress. We 
classify possible waiting states into as few cases as possible, in order to keep 
case analysis to a minimum. 

Case 1. process Least(i) is prepared to communicate with another process Least(]) 
in the main loop of Least(i). In this case, we have O<my size<N. From 
UNION and the fact that auxiliary variable set o for process B has size 0 or N, 
we note that local variable my _size of some other process Least(j) also satisfies 
O<my_size<N. The annotated proof  assures us that process Least(j) can only 
be in the same position: prepared to communicate with another process in the 
main loop. Since both processes can send and receive, both processes are ready 
and progress can be made. 

Case 2. process Least(i) is prepared to communicate by sending a message to 
process B. In this case, my size=N. Because of the universal assertion 
UNION, we have set o = 0. The assertions in B's annotated proof  assure us that B 
must be waiting to receive the message from Least(i) and, since these two 
communication commands match, both processes are ready and progress can 
occur. 

Case 3. process B is prepared to receive from Least(i). This means that set o =~). 
Therefore, by assertion UNION, set i is nonempty for at least one process 
Least(i). Hence, Least(i) has not terminated. If it is waiting, it is waiting in the 
main loop to communicate with some Least(j) or it is waiting to send to B, 
cases that have already been shown to be deadlock free. 

We have investigated each waiting state of Least(i) and each waiting state 
of B and shown that, indeed, these states are free from deadlock. This ends the 
proof  of absence from deadlock. The fact that only three cases are needed with 
this program lends some credence to the practicality of the method. 

6. Discussion 

We have shown how to extend a proof  method for sequential programs to 
encompass communication. The satisfaction proof  formalizes the intuitive argu- 
ment that says that communicat ion is distributed assignment. 
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The system presented views communication as a means to an end; that is, 
processes are sequential programs with communication providing external in- 
formation. In other proof systems the sequence of messages produced is the 
purpose of the process; sequential programs provide a means of controlling the 
communications. 

Proof systems that are based on the history of communication introduce 
variables that record each send and receive. Rather than include this in our 
proof rules we allow auxiliary variables, which can be used to record as much 
or as little history as is needed. 

Unlike the repetitive command described in [11], our repetitive command 
does not allow termination to occur because other processes are terminated. 
Instead, termination only occurs when all boolean guards are false. This 
makes the termination conditions explicit and simplifies both the proof rule 
and the implementation. The sufficient condition for absence of deadlock 
would also be more complicated if distributed termination were included. See 
Levin [13] for a rule that handles distributed termination. 

Further research needs to be done regarding deadlock and starvation. The 
suggested approach to deadlock requires too much in the way of case analysis, 
a common source of error. The problem of starvation is ignored; instead, all 
processes are required to terminate. The problem of dealing with non-terminat- 
ing processes is an area for future research. 

While preparing this paper, we learned of similar research being done by 
Apt, Francez, and de Roever [1]. Their system treats partial instead of total 
correctness, although the change to the latter is slight. [1] deals with distribut- 
ed termination; this paper does not. [1] contains the same axioms for send and 
receive, although our motivation for these axioms may be more appealing. 

A property of cooperation in [1] corresponds to our property of satisfac- 
tion. Cooperation is different in that it is derived from the forward assignment 
rule and that a global invariant is used to relate auxiliary variables, rather than 
allowing shared references to auxiliary variables. This global invariant is then 
used to eliminate matching communication pairs that cannot synchronize. The 
idea to extend matching communication pairs to allow assignments to auxilia- 
ry variables during communication, as a means for reducing the work involved 
in proving non-interference, was not present in their work. Instead they allow 
sections of code to be considered atomic; this is the means for changing local 
variables synchronously in the processes. 

Initially, we had separate axioms for send and receive. The receive axiom 
had the form it does now; there was no relation between the pre- and 
postconditions. This was in recognition of the command's ability to change the 
value of its parameter in a way not determined by the command itself. The 
send axiom was the same as that for skip; after all, sending a message should 
not affect the state of the sender. 

After a time, we found that the send axiom was not strong enough, and, 
realizing that in terms of weak correctness one should be able to assert 
anything after a send executing in isolation, we changed it. We also liked the 
simplicity of one axiom for communication. We observed that in Hoare's 
formal model [11] there is no real difference between send and receive. In his 
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model there is only synchronization, where receive is an abbreviation for a 
(possibly infinite) set of alternatives, the choice of which is determined by 
synchronization and determines the value received. This recognizes that syn- 
chronization provides an information flow into a sending process. This obser- 
vation strengthened our opinion that the send axiom we now have is the 
correct one. 

A paper by P. Cousot and S. Cousot [5] also deals with a proof system for 
communicating sequential processes. It is, however, even more formal than this 
paper, and we have difficulty understanding it. 

Mention should be made of reference [4] by K. Chandy and J. Misra, 
which presents a new approach to proving CSP programs correct. The ap- 
proach is noteworthy in at least two respects; it does not require the pro- 
grammer to find auxiliary variables the way ours and [1] does, and it is 
designed to handle processes in isolation. Externally, a process is described in 
terms of input/output sequences. These sequences contain the information that 
would be recorded in auxiliary variables in our system. Using these external 
specifications, systems of processes can be combined. In combining processes, 
some communications become hidden, invisible to processes outside the sys- 
tem; the combination of processes yields internal specifications that may be 
simplified to yield external specifications. 
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