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Summary. Recently, A.C. Shaw introduced a new class of expressions called 
flow expressions, and conjectured that the formal descriptive power of flow 
expressions lies somewhat below context-sensitive grammers. In this paper, 
we give a negative answer for his conjecture, that is, we show that all 
recursively enumerable languages may be denoted by flow expressions. 

1. Introduction 

Recently, A.C. Shaw [4] introduced a new class of expressions, called flow 
expressions, which are extended regular expressions to describe concurrencies, 
synchronization and cyclic activities. Flow languages are defined as languages 
which are denoted by flow expressions under the restrictions imposed by the 
lock and wait/signal symbols. The lock symbols handle critical sections and the 
wait/signal symbols provide a simple synchronization mechanism. As similar 
non-procedural description languages based on regular expressions, path ex- 
pressions [-1] and event expressions [3] are known. Path expressions are used 
to describe the synchronization and coordination among processes. Event 
expressions are strongly related to flow expressions, that is, only one difference 
between them is the synchronization mechanism. 

It is known that any recursively enumerable language is described by some 
event expression [3]. But as for flow expressions, A.C. Shaw conjectured that 
the formal descriptive power of flow expressions (excluding the cyclic operator) 
lies somewhat below context-sensitive grammers and is incomparable with 
(neither above nor below) context-free grammars. In this paper, however, we 
give a negative answer to his conjecture. That is, every recursively enumerable 
language is shown to be a flow language. Since the converse trivially holds, the 
classes of recursively enumerable languages and flow languages coincide. Since 
the flow languages are defined as the smallest family of languages containing 
some very basic ones and closed under a few basic operations, a new character- 
ization of recursively enumerable languages is obtained. 
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2. Definitions 

In this section, the definitions of flow expressions and flow languages are 
presented. In [4], a cyclic operator oo is introduced, but the following dis- 
cussion can be done without it. This exclusion of the cyclic operator leads to 
somewhat simpler discussion because the operator produces infinite strings. 

Let 2;* denote the set of all finite strings composed of symbols of 2; 
including the empty string 2 whose length is zero. For / 7 c s  let h n be the 
homomorphism from 2;* to /7* such that hu(a)=a for a~/7 and hn(a)=2 for 
ar For a set/7,  let [/7[ denote the number of elements in/7.  

Let 2; be a finite set of atomic symbols, F={ 1  [ , ] 1 ,2 [ ,  ]2 . . . . . .  [ ,  It} be a 
finite set of lock symbols, and (2={a1,e)l ,a2,o)  2 . . . . .  ad, OOd} be a finite set of 
wait/signal symbols, where 2;c~F=2;c~f2=Fc~f2={ }1. (In examples where 
c = 1, we drop the subscripts on symbols in F.) 

Definition 1. Flow expressions are constructed by the following rules 2. 

(1) Each ae2;wf2, 2, and q5 are flow expressions. 
(2) If S and S' are flow expressions, then (S), SS', S+S', S*, SQS'  and S | 

are flow expressions. 
(3) If S is a flow expression and k[,  ]k is a pair of lock symbols in F, then 

k[S]k is a flow expression. 

We define S i and S ~ as follows: 

(1) S~ 
(2) S i = s i - I s  for i>0.  
(3) S e ~  
(4) Se~=S ei l O S f o r i > O .  

Definition 2. The language L(S), which imposes no interpretation on the lock 
and wait/signal symbols, is defined as follows: 

(1) / , (4)= { }. 
(2) /,(2)= {2}. 
(3) L(a) = {a} for a~2;uFuf2. 
(4) L((s))= L(s). 
(5) L(SS') = {x y[x~L(s) and yEL(s')}. 
(6) L(S + S')= {xlx~L(s) or x~L(s')}. 

(7) L(s*)= 0 L(s~) �9 
i = 0  A t 

(8) L(SOS') = {x 1 yl xz y2... Xk YklXl x2... Xk~L(S) and Ya Y2... yawL( S )}- 

(9) L(S•)= 0 L(S~ �9 
i= O  

Definition 3. Flow expressions Ssig,a I and Slock are defined as follows: 

Ssigna l  : (0-1 (-01 + 0 " 1 ) ' O ( 0 "  2 O9 2 --~-0-2)* O . . .  O(0"dfl)d-l-0"d)*. 

S,o~=(l[ ]l)*o(~r 39"o...o(~[ ]3*. 

1 The empty set is denoted by { } 
2 In [4], operator w is used instead of operator + 
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Definition 4. The language L(S), which is called the flow language defined by S, 
is obtained from L(S) by applying the restrictions imposed by the lock and 
wait/signal symbols as follows: 

L ( S )  = {x 1 x 2 . . .  XklZ = x 1 Y l  x 2  Y2 "" Xk Yk sL(s), xies Yie(f2wF) *, 

and Yl Y2...  ykeL(Slock(3Ssig,a~)}, that is, 

L(S) = {hx(z)lzeL(s ), hr2(z)eL(Ssig,,,) and hr(z)eL(Slock)}. 

Though the lock symbols can be simulated with the wait/signal symbols, we 
use them for simplicity and readability. 

Example 1. Let Sl=(ab)  e, where S={a ,b}  and F = f 2 = {  }. Then L(S1) 
= {w[ the number of a's is greater than or equal to the number of b's in all 
prefixes of w, and equal in w}. 

Example 2. Let S2=((ab)ec) *, where X={a,b ,c}  and F = f 2 = {  }. Then L(S2) 
= {w 1 c w z c. . .  w k c[wieL(S1) for 1 < i<  k}, where $1 is defined in Example 1. 

Example 3. Let Se =(([0.1] [092])*([0"3] [(D4])*)QD([o)I a 0.2] [(~ b 0.4]) e, where S 
={a,b}, F = { [ ,  ]} and 0={0.1 , 091 , a 2, 092, 0.3, e93, 0.4, 094}. Then, L(SE) 
= {a" b"ln > 0}. 

This can be seen as follows: The string surrounded with lock symbols [ and 
] is treated as atomic or indivisible. Therefore, it is sufficient to consider the 
subset {we{[09aa0.z],[093b0.4]}*lw contains equal numbers of [091a0.z]'S 
and [e9 3 b 0.4]'s} of L(([09 1 a 0.2] [093 b a4])e). The regular expression 
([0.1] [092])*([0.3] [094])* denotes the set of strings with any numbers of re- 
peated ([0.1] [092]) followed by any numbers of repeated ([0.3] [094]). L(SE) 
denotes the set made by shuffling two sets L(([0.1] [092])*([0.3] [094])*) and 
/-,(([091 a0.2] [c03b0.4])| L(SE) is a set of strings of the form h~(z) such that z 
fulfills the lock and wait/signal restrictions and z is in L(SE). These restrictions 
allow only strings of the form ([0.1] [091 a0.2] [09z])"([0.3] [093b0.4] [094])". Thus, 
t(Se) = {a" b"ln > 0}. 

The following proof will employ essentially the same technique as this 
example. 

3. Proof of the Theorem 

In this section, we give the proof of the following theorem. 

Theorem. The f low languages equal the recursively enumerable languages. 

It is trivial that the flow languages are the recursively enumerable lan- 
guages. Therefore, we show that the recursively enumerable languages are the 
flow languages, that is, every recursively enumerable language is denoted by 
some flow expressions. To show this, we consider a deterministic two-counter 
automaton (abbreviated as 2ca) with one, one-way read-only input tape. It is 
known that a 2c a can simulate a Turing machine, that is, recursively enumer- 
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able languages can be recognized by 2ca's [2]. Without loss of generality, we 
have the following definitions and assumptions on 2c aK. 

(1) The set of states is denoted by 17. 
(2) The two counters are denoted by c 1 and c 2. 
(3) The set of input symbols is denoted by A. 
(4) K starts from the initial state s o and halts when and only when it goes 

to the final state sf.  
(5) In states s o and s I, the contents of cl and c 2 are to be zero. 
(6) For simplicity, only four types of operations defined below are consid- 

ered to be used. This does not lose any generality, because any other operation 
can be simulated by using these operations. 

(I) If the current state is s i, then add one to counter c~ and go to state sj. 
This operation is denoted by (+ ,  si, s j, l). Let P be the set of these operations. 

(II) If the current state is s~ and the content of counter c t is not equal to 
zero, then subtract one from counter c t and go to state sj. This operation is 
denoted by ( - ,  s~, s j, l). Let M be the set of these operations. 

(III) If the current state is s i and the content of counter ct is equal to zero, 
then go to state sj. This operation is denoted by (= ,  sg, s j, l). Let Z be the set of 
these operations. 

(IV) If the current state is si and the input head scans the input symbol a, 
then move the input head one cell to the right and go to state sj. This 
operation is denoted by (*, s~, s j, a). Let R be the set of these operations. 

(7) In state sl, if some operation in M is possible with counter l, then 
another operation in Z is also possible with counter l, and vice versa. 

(8) The last operation is in Z for both counters. 

A configuration of the 2 c a K  is represented by <S, k l , k2 ,w)  where s is the 
current state of K, k x and k 2 are the current contents of counters c a and c 2 of 
K, respectively, and w is the input tape which is still to be scanned. The initial 
and final configurations are <So,0,0,w ) and <s f ,0 ,0 ,2 ) ,  respectively. An ex- 
pression <s, k l , k z ,wW'>~r  <s',k'l,k'2,w' > or <s, k l , k z , w W ' > ~ < s ' , k ' l , k ' 2 , w '  > 
if K is known will denote that the 2 c a K  will reach the configuration 

' k' w'\ through an operation sequence e starting from the configuration <s',kl, 2, / 
<s, kl, k2, w w'> and scanning the portion w of the input tape. Let Lo(K ) be the 
set of input tapes w such that <s o,0, 0, w) l ~ <sy, 0,0, 2> for some ~. 

Now we shall show the method of constructing flow expressions which 
correspond to 2c a's. 

Definition 5. Given a 2caK ,  the flow expressions S~ and S O are constructed as 
follows: 

(1) Let Z = A ,  F = { [ ,  ]}, and I2=f2nwf2 c where On={tri, ogilsi~l] } and 

~"~c= {O'lpj, (.Otpj, almj, (.Oiraj , O'lzj, ~olzj I 1 <1<2,  1 < j < 2 } .  

(2) For  each operation P /= (+ ,  sq,sr, l )sP in K, let 

Sp=[c%] [G~p~] [coz,2] l-~,] ( l ~ i ~ l e l ) .  
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(3) For each operation M i = ( - s q , s , ,  l )~M in K, let 

SM,=Fcoq] [0-1ml] [colm2]l-o-r] (I_-<i___<IMI). 

(4) For each operation Z i = ( = , s q , s ,  l )~Z in K, let 

Szi=FO)q'] Eo-lzl] F~ Eo-r] ( l < i < l Z l ) .  

(5) For each operation Ri=(*,Sq,Sr, a)~R in K (a~A), let 

SR =[COq] [a] [0.,] (I<i<IRI) .  

(6) Let 

S 0 : ((F(,Olp I 0"1p2] FO)lm 1 0"lm2])~['(Dlzl 0"1z2])* 

@(([CO2pl 0-2p2] EC~ i o'2m2])@Eco2zl 0-2~2])*" 

(7) Let 

S r = [ 0 . o ]  (Svl + Sp 2 +. . .  + Svl,, I + SM, + SM2 +. . .  + Sul,,, I + Sz 1 + Sz~ +. . .  + Szlz I 

"-[- SR, -I- SR2 "-~- .. .  .-[- SR[RI)*Eo) f" ] C) S 0 . 

In the method of constructing S K, we use the technique used in Example 3 
to compare to the numbers of a's and b's. That is, o.lv~, c01p2, 0.l,~, co1,2, co,v1, 
o.lp =, colin I and o.lm 2 in S r correspond to 0-1, ~ 0-3, co4, co~, 0-2, (-03 and o. 4 in 
Example 3, respectively. By using this technique, the property that the number 
of operations in P is always greater than or equal to that in M and always 
exactly equal before the operations in Z for a counter c t in the 2 c a K  is 
embedded in flow expression S K. Furthermore, lock symbols [ and ] are used to 
forbid any strings to be shuffled between co m and ~lt2 in S o for l--1 or 2 and 
t = p  or m or z. Our goal is to show that L ( S r ) = L o ( K  ). 

For simplicity, we use the notation 0-, co and 8 to denote [0.], [co] and [a], 
respectively. 

Definition 6. For a finite operation sequence ct in the 2caK,  definef(c 0 and g(e) 
recursively as follows: 

(1) If c~=2, then 
/(cQ= g(cO = 2. 

(2) If ct=P/e' and P i = ( + , s q , s . l ) e P ,  then 

f (~) = coq o,tv 1 c~tp 2 6rf  (~' ) and 

g( , )  = CO q Olp 1 [colpl 0"1v2] @v2 a, g(c(). 

(3) If ~ =Mi~ '  and M i = ( - ,  sq, s,, l )6M, then 

f(~) = coq 0-l,.1 C~1m2 a , f (~ ' )  and 

g (00 = coq 0-1m i Ecolm 10"lm2] (DimE ~e g (0(). 

(4) If ~ = Z  i ~' and Z I = ( = ,  Sq, s,, l )eZ,  then 

f(~) = o3q o.lz 1 cot~2 o., f (~') and 

g(c 0 =eSq t71z 1Ecolzl 0"l::2"] (DlzZ ff, g(oc'). 
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(5) If  e = R , a '  and Ri=(*,sq, s~,a)eR, then 

f (a) = CSq ~8~f (c~') and 

g(e) = COq aa, g(c(). 

L e m m a  1. Let Sk(S i, k~, k2, c~)--- (61pl 031p:) k' (aZp~ e52p2)k2 a~f(c~) cS:GSo. I f  

( s i , k l , k 2 , w ) ~ ( s : , O , O ,  2), then 

Z =(~1p l  [-(/)1 p 1 0"1p2] 0~1p2) kl (82pl [-(D2p i 0"2p2] (/~2p2) k2 ffi g(o~) (Df~L(Sk(Si, kl ,  k2, ~)) 

and w = h~(z)~L(Sk(S i, k~, k2,00). 

Proof We prove  this l e m m a  by induct ion on n where n is the length of c~. 
Consider  the case of  n = 0 .  Since i = f  k l = k z = O  and c~=2, that  is, 
(ss ,  O,O, 2 ) ~ - ( s f ,  O,O, 2) ~, Z=asCO f and Sk(sf ,  O,O, 2 ) .=6 f (~ fQ)S  O. Since  
2eL(So), z--- fff (.of~L(Sk(Sf, 0, 0, 2)). Since 2~L(SsignalQ)Slock), 2 
= hz(z)eL(Sk(S:, O, O, 2)). Therefore  this l e m m a  is true for n =0 .  

Suppose  that  this l e m m a  is true for n = l - 1  and consider the case of  n = I. 
Let  (si, k'l,k'z,W')lm-(sj, k l ,k2,  w) l~- (s : ,  O, O, 2) where c(=tc~ and ~ are two 
opera t ion  sequences of  length l and l - 1 ,  respectively�9 Assume that  

Z = ( ~ l p  i [(Dlp 1 O'1 p2] 601 p2)kl(82pl ['O)2p i 0"2p2] O~2p2) k2 8jg(o~) ~feL(S~(s~, kl ,  k2, cx)) 

and w =h~(z)eL(Sk(S j, kl, k 2, 00) by the induct ion hypothesis.  Therefore  

w = hz(z) = hz(8 j g(~) ~.r) and hm, r(8 j g(~) ~f)EL(Ssigna IQ) Sio~k ). 

In this proof,  let C(kl,k2) denote  

((~1 pl [-(Dlp I Glp2] ('Olp2)kl(82p1 [(D2pl 0"2p2] (D2p2) k2" 

There  are four cases with respect  to the type of opera t ion  t. The discussions 
below are done for the counter  c 1, but  they hold for the counter  c 2. 

(1) If  t is in P, that  is, t=(+,s~,sj,1),  then k ' l = k l - 1 ,  k z = k  2 and w'=w. 
Let 

z' = C(k'l, k'2) 8 i g(o() c~ f = C(k I - 1, k2) 8, g(e') eSf = C(k 1 - 1, k2) 6, g(t) g(c 0 ~S f 

=(81~1 [~01p i al.2] 051p9 ~'- 1(0~p1[~%~1 "2.23 ~52.2) k2 
" ai(Di~lpl[(Dlp 1 ff lp2] Cblp2 8jg(a)(bf. 

By the fact that  z e L(Sk(Sj, kl ,  k2, 00) and the definition , A , , , of  So, z ~L(Sk(s,,kl, k2, a )). 
Since w'=wThs(6jg(a)c~:) and he~r(ffjg(~)C~:)eL(Ssig.alQ)Slock ), hz(z')=w' 
and he,,r(Z')eL(S~ig.a 1 02) Slo~k). Therefore  w' = hz(z')eL(Sg(si, k'l, k'2, o()). 

(2) If  t is in M, that  is, t = ( - , s i , s j , 1  ), then k ' l - - - k l + l ,  k'2=k 2 and w'=w. 
Let 

z' = C(k' 1, k'2) ~, g(c() aS: = C(k I + 1, k2) 8, g( , ' )  05: = C(k 1 + 1, k2) 8, g(t) g(e) 05: 

= ( ~ l p l  [031p I 0"1 p2] 0~1 p2) kl+ l(ff2pl [O-)2p 1 ff2p2] (J~2p2) k2 

�9 O'i 6t~i 81ml [(Dlm i 0"1m2] (/~1m2 8jg(O0 (~f" 
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By the fact that  zeL(Sk(S~,kl,kz,,)) and the definition ' ~ ' ' ' of  S o, z ~ L( Sk(Si, kl , k2, o~ )). 
Since w'=w=hz(~jg(~)chy) and h~r(~jg(~)~y)~L(Ssignal(DSlor ), hs(z')=w' 
and hr~r(Z')~L(S~igna ~ (~) Slock ). Therefore  w' = hs(z')~L(Sk(Si, k'~, k' 2, ~')). 

(3) I f t  is in Z, that is, t=(=,s i ,  sj,1), then k'~ =kx =0,  k'E=k 2 and w'=w. Let 

z' = C(k'~, k'2) ~ g(a') tSf = C(0, k2) ff~ g(c() ~bf = C(0, k2) ff~ g(t) g(c 0 ~ f  

= (ff2pl [-CO2pl 0"2p2] (J~2p2) k20"i (J)i fflzl ['CO lzl O'lz2] (D1z2 ~j g(~) 05f. 

By the fact that  z~L(Sk(Sj, 0, kz, ~)) and the definition of So, z'~L(Sk(S~, 0, k2, 0()). 
Since w ' = w = h s ( 6 j g ( ~ ) c ~ )  and ha~r(~jg(oO~f)c=L(SsignalQ)Slo~k), hs(z')=w' and 
h~r(Z')6L(Ssigna~@Slo~k ). Therefore  w ' =  hz(z')6L(Sk(Si, O, k'2, 0:')). 

(4) I f t  is in R, that is, t=(*,s~,sj, a), then k '~=kl ,k2=k 2 and w'=aw. Let 

Z ' =  C(k ' l ,  k2) ~i g((~') (~ f = C (k~, k2) ~i g(~') (D f = C (kl ,  k2) ffi g(t) g(~) (/~f 

=(lfflpl [COlpl O'lp23 O)lp2) kl ((72pl [CO2pl 0"2p23 O)2p2) k2 (7i O~i ~ ~j g(00 O~f. 

By the fact that  zeL(Sk(sy, k~,k2, cO) and f ( t ) = ~ a o j ,  ' ^ z eL(Sk(Si, kl, k'2, ~')). 
Since w =hz(6  ~ g (c 0 eTy) and ha~r(6 ~ g(a) o3y)ffL(Ssigna lQ)Slock), hr(z'  ) = a w = w' and 
howF(Z')ffL(SsignalQ)Stock ). Therefore  w ' =  hs(z')eL(Sk(Si, k'~, k 2, a')). (Q.E.D.) 

L e m m a  2. I f  w~Lo(K), then w~L(S~). 

Proof If weLo(K), then there is a finite operat ion sequence a such that  

(so, O,O,w)P~-K (si,  O,O, 2). By L e m m a  1, Z=8og(CO~hs~L(Sk(So, O,O,a)) and 

w=hz(z)~L(Sk(S o, 0, 0, ,)). Since f(,)~L((Sp, +Sp2+  ... +Sp..~ +SM, +SM2+ ... 
+sM,~, +s~, +s~2 + ... +Sz,z, +sR, +sR~+ ... + s~,,,)*), L(s~(so, o, o, ~))==L(s,,). 
Therefore  z~L(SK) and w=hs(z)~L(SK). (Q.E.D.) 

L e m m a  3. I f  w~L(SK), then w6Lo(K ). 

Proof (1) If w~L(SK), then there exists at least one string z~L(sK) such that  
hz(z)=w and hs~r(z)~L(S~ignai@Slo~k), and there exists an operat ion sequence 
such that  z~L(8of(~)~I(Z)So) by the definition of S~. Since h~,~(z)~L(Ss~gna~,S~, ) 
where S~gna L nH is a flow expression Ss~g,a ~ on O n, that is, 

Ssignal,.Qr/= (0"0 0-)0 -}- 0"0)* Q)(O" 1 O) 1 "q-0"1)* C)(O" 2 (.02 -{- 0"2)* 

Q)'"  Q) (~ 2 C~ 2 + alnl-  2)* Q) (o's COs + O's)*, 

by the definitions of f (~)  and S O , h~H(z ) should be of the form 
Oocooal, coil ai2co~2...az, co~, olco ~ for some i l, iz, ..., i t. Therefore,  a is a par- 
tially valid opera t ion sequence of K with a state sequence s o si, S~z... si~ s I. Here, 
'part ial ly valid '  means that the sequence ~ is possible or valid with respect to 
finite-state par t  of K but  not  necessarily possible if the counters are considered. 
The next step is to show that  the operat ion sequence ~ is valid, that  is, its 
counter  operat ions do not  contain any inconsistency. 
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(2) By the definition of S o, for any string z ' (42)  in L(So) satisfying the lock 
conditions, hr~ac,(Z' ) should be in the set 

L((([~o,,, %23 ~' Q [~o,~ ~3" ' ) [~o~ ~ 3  ([~%, %~3"~| ~..~3"~)[~o~, ~,~3 

for some u~, Uz, ..., Ur, where Qc~ : {tIlpj, O')Ipj, 61mj' (Dlmj' ~Tlzj, 
Ohz~ll=<j<2}~t2 c. It should be noted that there are equal numbers of 
[COlplalp2] and [O~lmaalmZ] in the prefix preceding any [COlz 1 alz2]. This is 
necessary to ensure that if K executes an operation Z~ in Z for the counter c~, 
then the contents of the counter c~ is always zero. Now, since h~r(Z)sL(S,~n,~ 
OSloc% ), by the fact above and the definition off(~),  hr~a~,(z ) should be in the 

Ur ~Ur . set L(((p~'Qm~')zz(p~Qm~)zl...(p~ Q I)Zt)QS~o~k) for some ul,u2,., u~, 
where Pl, mt and z z stand for [a~p~] [ohp 1 alp2] [O)lp2] , [O'lml] [(Dim 1 tTlm2] [(Dlm2] 
and [atoll [Ohz 1 at~2] [Ohz2] , respectively. 

(3) Since z~L(6of(~)(~yQSo) by (1), let z'eL(6of(~)cof) such that z=z'Q)z" 
and z"~L(So). Then z'~L(~o(Se, +Sp~ + ... +Sp~,~ +SM, +S~t= + ... +SM~M s +Sz, 
+ Sz= +. . .  + Sz~  + SR, + SR~ +. . .  + SR~)* aSy). Now Sp~, S~t~ and Szj containing 
a~p~, aim ~ and aaz~ (or a~p~, O'2m~, tTZzl) respectively; by (2) and the definition 
of So, the number of Se~(l<j<lPI) is equal to that of SM~(I<j<IMI ) in every 
prefix z'" of z' ending with Sz,(1 <j__< [ZI); the number of Sp,(1 <j< IPI) is equal 
to or greater than that of SM~(I<j<IMD in every prefix of z'"; and the last 
symbol of z' is in Z. This implies that in the sequence ~, (i) the number of 
operations in P for the counter c t is equal to that of operations in M for the 
counter c~ in every prefix ct' ending with an operation in Z for the counter ct, 
(ii) in every prefix of ~', the number of operations in P is equal to or greater 
than that of operations in M, and (iii) in the last configuration, the contents of 
both counters are to be zero. That is, all operations for counters are valid. 

(4) By (1) and (3), c~ is a valid operation sequence of K such that 
<So, 0, 0, h~(z))~-<sy, O, O, 2). Therefore w =hs(z)~Lo(K). (Q.E.D.) 

It follows from Lemmas 2 and 3 that L(Sr)=Lo(K). That is, for any 2caK, 
there is a flow expression S K such that L(St)=Lo(K). Therefore the proof of 
Theorem is completed. 

4. Conclusion 

In this paper, we have shown that the flow languages equal the recursively 
enumerable languages. Therefore A.C. Shaw's conjecture is resolved negatively. 
As the result of this fact, almost every decision problem for flow expressions 
such as the emptiness problem, the equivalence problem and the membership 
problem is undecidable in general. This answers the decidability problems 
posed by A.C. Shaw and shows that many questions of practical interest (e.g., 
deadlock, starvation, verification and correctness) are undecidable for flow 
expressions. Furthermore, the class of flow languages is closed under almost 
every operation except for complementation. 
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