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Summary. An on-line algorithm for variable-sized bin packing with an 
asymptotical worst-case ratio of < 1.7 is given. The method is derived from 
the Harmonic Fit proposed by Lee and Lee. It is proven that, if it is allowed 
to choose any bin sizes, then with an appropriately chosen second bin size 
we can have an asymptotical worst-case ratio of 1.4, even with the same 
algorithm and two bin sizes. 

Introduction 

In variable-sized bin packing we are given a list 

L = (a l ,  a2, ..., an) 

of items (elements), each with item size s(ai) (O<s(ai)<-_ 1) and a finite collection 
of bin sizes. Our aim is to pack the items into the bins so that the sum of 
the sizes of the bins used is minimum. 

The variable-sized bin packing problem is NP-hard (Friesen and Langston 
[3]), and thus efficient heuristic algorithms which ensure near-optimal packings 
are required. Friesen and Langston [3] gave three approximation algorithms, 
with performance ratios (asymptotical worst-case ratios) of 2, 3/2 and 4/3. Unfor- 
tunately, only the first of these algorithms is on-line (which means that it packs 
the elements in the order they are given, without a knowledge of the later 
elements). Murgolo [7] presented an e-approximation scheme, which for any 
e > 0 yields an approximation algorithm with a performance ratio of 1 + e. How- 
ever, these algorithms are not on-line either. Very recently, Kinnerley and Lang- 
ston 1-4] gave fast on-line algorithms for the variable-sized bin packing. They 
devised a scheme based on a user specified factor f > 1/2, and proved that 
their strategy guarantees a worst-case bound not exceeding 1.5 +f/2. 
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angewandte Mathematik, Berne, Switzerland 
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On the other hand, in "classical" bin packing (where we have only one 
bin size) it is known that no on-line algorithm can have an asymptotical worst- 
case ratio <1.53.. .  (Brown [1]; Liang I-5]). The best o n - l i n e  algorithm to 
date is the "modified Harmonic Fi t"  given by Lee and Lee [6], which has 
a worst-case ratio of 1.63 . . . .  

A third line of research was also done by Friesen and Langston [2]. Their 
question was: what is the best bin size for a given list in the sense that the 
wasted space is minimized ? 

In this paper we give an on-line algorithm for variable-sized bin packing 
with an asymptotical worst-case ratio of < 1.7. The method is derived from 
the Harmonic Fit proposed by Lee and Lee [6]. We shall prove that, if we 
are allowed to choose any bin sizes, then with an appropriately chosen second 
bin size we can have an asymptotical worst-case ratio of 1.4, even with the 
same algorithm and two bin sizes! 

Definitions 

Let k denote the number of different bin sizes available. We assume that there 
is an inexhaustible supply of bins of each size. Let us denote the different bins 
by B1, B2 . . . . .  Bk, and their sizes by s(B1), s(B2), ..., S(Bk). Without loss of gener- 
ality we may assume that s (BO>s(BE)>. . .>S(Bk) .  We suppose further that 
the elements of 

L = ( a l ,  a 2 , ..., a.) 

and the bins are so normalized that the largest bin has a size of 1. We shall 
sometimes use the list in the form of 

L = (s(al), s(a2) . . . . .  s(a,)), 

i.e. as a list of real numbers. Let 

and let 

s ( L ) = ~ s ( a i ) ,  
i = l  

B(A, L)=  (B~, B ] . . . . .  B~) 

denote the list of bins used by a heuristic algorithm A. Let 

1 2 B( , ,  L )=  (B, ,  B , , . . . ,  B"~) 

denote the list of bins used in some optimal packing of the list L. Then 

1 

s(B(A, L))= Z s(B~) 
i = 1  
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is the total size required by algorithm A with respect to L, and 

s(B(*, L))= OPT(L) = ~ s(Bi,) 
l = 1  

is the minimum (optimal) size to pack the list L. 
We shall give our results in the following way: we shall prove that for 

a heuristic algorithm A and every list L 

s(B(A, L)) <= R. OPT(L) + C (1) 

holds. The smallest possible R will be called the asymptotic worst-case ratio 
of A, and will be denoted by R, 4. Instead of the asymptotic worst-case ratio, 
we shall sometimes say that our bound is tight. 

The Algorithm Variable Harmonic M (VHM) 

Let M >  1 be a positive integer and let Mj=[M.s(Bj)] ( j = l ,  2 . . . . .  k), where 
[x] denotes the smallest integer not less than x. We shall define our algorithm 
only for those M where M,>2 .  Let us divide the intervals (0, s(B~)] 
(j = 1, 2, ..., k) into Mj parts according to the following "harmonic partitioning": 

and 

ija = (_~ +B~), s(Bj)], j =  1, 2, ..., k; 1= 1, 2, ..., M j - 1 ,  

s(Bj)] 

For each bin size s(Bj) we define a weighting function as follows: 

Now let 

M~ s(ai) if s(ai)eli,#, 
Mj-- 1 

Wj(ai)--- s(B i) 
l if s(ai)Elj,  z, l =  1, 2, ..., M j -  1, 

if s (ai) > s (Bi). 

(2) 

W(ai)= min Wj(ai) (3) 
j = l , 2  . . . . .  k 

the weight of ai. 

Example. Let M = 4 ,  L=(0.8, 0.1, 0.6, 0.4, 0.25), and s ( B 0 =  1, s(Bz)=0.7, s(B3) 
=0.3. 
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Then M 1 =4, M 2 = 3  , M 3 = 2  , and 

11,1 =(0.5, 1]; IL2 =(1/3, 0.5];11,3=(0.25, 1/3]; I1,4. =(0,0.25]; 

I2,1 = (0.35, 0.7]; I2,2 = (7/30, 0.35]; I2, 4* = (0, 7/30]; 

13,1 =(0.15, 0.3]; 13, 4* =(0, 0.15]. 

For the weights: 

Wl(aj)= 1; W2(al)= oo ; Wa(al)= ~ ;  W(a~)=l ;  

Wx(a2)=4/30; W2(a2) = 0.15; W3(a2)=0.2; W(a2)=4/30;  

Wl(aa)= 1; W2(aa) = 0.7; Wa(a3)= ~ ;  W(al)=0.7; 

Wl(a4) =0.5; Iu (a4) = 0.7; Wa(a4)= oo; W(a4)=0.5; 

W l ( a s ) = l / 3 ;  W2 (as) = 0.35; Wa(a5) = 0.3; W(as)=0.3. [] 

j. Csirik 

The algorithm VHM works as follows: 
In the first step we assign to each element of the list a bin size: 

1. B 1 is assigned to each element at with 

W(ai) = (MI/ (M1 -- 1)) s(ai). 

These elements will be called small elements, and all others big elements. 

2. A big ai will be a Bj element i f j  is the smallest integer such that 

W (ai) = Wi(ai). 

A big element will be called an Ij, t element if it is a B~ element and belongs 
to Ij, t . 

In the second step of VHM we shall perform a Harmonic fit-type packing: 

a) All big Bj elements will be packed by Harmonic Fit into Bj bins as 
follows: we classify the Bj bins into M j -  1 categories. Each category is designated 
to pack the same type of elements. A Bj  bin designated to pack I j, t items is 
called an Ij,, bin. Clearly, each lj,~ bin has room for exactly l pieces. We use 
a Next-Fit packing in all Ij, t ( j=  1, 2 . . . .  , k; I=  1, 2, ..., M j - 1 )  bins, i.e. after 
packing I pieces into an Ig, t bin, we close this bin and open a new Ij,~ bin. 

b) All small elements will be packed in B1 bins by Next-Fit, i.e. if the next 
small element does not fit into the opened bin, then we close this bin and 
open a new one. These elements are called I z items, and these bins are called 
14. bins. 

Thus, we have at most a number of 

P = M I  + M 2 + . . . + M k - - k +  I 

series (categories) of bins, each designated to pack the same (lj.~ or 14.) type 
of items. 
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Example (continued). The weighting functions: 

w~: 

I L 
s(ai) 

1 0.5 

0.5 

0.7 

s(ai) 
1 0.7 

w3: 

I 
s(ai) 

1 

0.33 (4/3) s(ai) 

I I 
1/3 0.25 

0.35 (3/2) s(ai) 

0.35 7/30 

0.3 2 s (ai) 

I I 
0.3 0.15 

and therefore 

Interval Element Weight 

(0.7, 1] 11,1 1 
(0.5, 0.7] 12.1 0.7 
(0.35, 0.5] 11.2 0.5 
(1/3, 0.35] 12, 2 0.35 
(0.3, 1/3] 11, 3 1/3 
(9/40, 0.3] 13,1 0.3 
(0, 9/40] I # (4/3) s (a,) 

which means that in our list 

a 1 is an 11,1 piece, 
a2 is an I .  piece, 
a 3 is an 12,1 piece, 
a4 is an 11,2 piece, 
a 5 is an 13,1 piece. 

In packing of an arbitrary list into these bins we would have 7 series of bins 
(11.1,11,2, I1,3, 12,1, I2,2, 13,1 and l z  bins). [] 

The item classification can clearly be done in O(logP) time and we have at 
most P active bins, and hence the space requirement is 0(1) for fixed M. The 
running time is therefore O(n) at a space requirement of 0(I). Our algorithm 
is obviously on-line. 
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The Asymptotic Worst-Case Ratio of VH M 

Let us first recall the main result of Lee and Lee [6]. Let 

P(1)={(Yl, Y2 . . . . .  y,) t~N,y~>O, 1 ~ i< t ,  

)} and ~ yi < 1 
i=1  

be the set containing all possible partitions of any positive real numbers __< 1, 
and let 

t 

GM(1)=sup ~ WI(y~), 
P(1) i = 1  

and 
t 

G~(1)=sup ~ W(y,), 
P(D i= 1 

where W1 and W are defined in (2) and (3). It is obvious that 

6~0)< 6.,(1). 

We define the sequence ri as follows: 

r l = l ,  ri+x=ri(ri+l } for i>_l. 

Then, Theorem 1 from Lee and Lee is the following: 

Theorem 1 [6]. Let M >_> 3. For i> 1, r i < M <= ri+ 1, 

G.,(1)=,~=I 1 M [] (4) 
= ~ ~  (M_l)r~+l  

It is clear that GM(1) decreases monotonically as M ~ o0. A short computation 
gives G2(1)=2, and therefore Theorem 1 is true for M>2 ,  i > l ,  too. Lee and 
Lee proved that GM(1) is the asymptotic worst-case ratio of Harmonic Fit with 
M intervals in classical bin packing. 

This result can easily be extended to all other bin sizes. In this case, let 

P(s(Bj))={(yl, Y2,...,  Yt) t eN ,  y~>0, 1 < i<t, 

and ~ y,<=s(Bj))}, j=  2,3, .. . ,k, 
i=1  

GM(s(Bj))= sup ~" W/(y,), 
P(s(Bfl) i= 1 

GSM(s(Bj))= sup ~, W(y,). 
P(s(Bj)) i= 1 
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Here also 

G~ (s (B j)) < 6~ (s (B~)), 

and the following emerges immediately from Theorem 1. 

Corollary 1. If M~> 2, i(j)> 1, r~ti) <Mj<rio~+ 1, then 

/ ~o) 1 M i 
GM(s(Bj))=t t~= I -~t ~ (M j-D-r~o~+ ,) s(B') 

= GMj(1).s(Bj), 

where GMj is defined as in (4). [] 

Consider now an optimal packing of L that uses B ( , ,  L). Then, L can be expressed 
as the concatenation of a number of m sublists, each of which corresponds 
to the content of B~, . . . . .  B~. But then 

W(L)<= 
p= l p= l 

= ~ (GM~.(1)'s(Bn,)) 
p=l  

< GM~(1) ~ s(B~)= GM~(1).OPT(L) (5) 
p = l  

because of Corollary 1, and since GM(1) decreases monotonically as M ~ ~ .  
On the other hand, we know that in the packing by VH M, in each full 

Bf bin which contains big items, the sum of the weights W of items is s(Bf) 
and in all B ,  bins this sum is not smaller than one, i.e. >s(B,)=s(BO= 1. 
Let 

k 

Q = I +  ~ (Mi--1).s(B,), 
i=l 

which is the maximum of the sum of the sizes of the opened bins. We can 
classify the bins used by VHM into two groups: in the first are the full bins 
(for these the sum of the sizes < the sum of weights W), and in the second 
the opened ones (the maximum of the sum of the sizes of these bins is Q). 
Hence 

s(B(VHM, L))--Q < W(L), (6) 

and, rewriting (5) and (6) in the form (1), we get the following result: 
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Theorem 2. Let  M k = [ M .  S(Bk) ] > 2. I f  r~(k) < Mk < ri(k) + 1, then 

i(k) 1 M k 
gwM<= -6M . [] 

t= 1 (Mk--  1)rick)+ 1 

J. Csirik 

From (4) we obtain G6(1)= 1.7 and GT(1)= 1.694 . . . .  Thus the asymptotic worst- 
case ratio is < 1.7 if for the bins BI ,  B 2 , . . . ,  Bk we choose M so that Mk >7. 
It is easy to see that 

lim G M k = ~  1 = 1  1 1 
Mk~o I=1 rz + ~ + ~ +  . . . .  1.691 . . . .  

For  general bin sizes it is not very easy to decide whether Theorem 2 gives 
a tight bound or not, but special cases may also be interesting. For  example, 
for two bin sizes we can choose the second bin size so that the bound is tight, 
or so that it is much smaller than given in Theorem 2. To show the first, we 
consider the list defined by Lee and Lee: let M = r i + l ,  i>2.  Consider items 
of i + 2 sizes: 

a j = l / ( r j + l ) + l / c ,  l < j < i ,  

ai+ 1 = 1/ri+ 1 -- i/c, 

ai+ 2 = l/d, 

where c and d are sufficiently large integers. With this list, it was proved that 
the asymptotic worst-case bound of Harmonic Fit for classical bin packing 
is tight. It is now clear that we get the same result if we choose the second 
bin size so that s(B2)= 1/2 + 1/(2 c), because we use only BI bins in both optimal 
and Variable Harmonic algorithms. 

On the other hand, it is an interesting question as to how we can choose 
the bin sizes so that the asymptotic worst-case ratio is smaller than the one 
given in Theorem 2. 

The Best Choice of Bin Sizes 

We first assume that we have two bin sizes: s ( B 0 =  1, and we can choose s(B2) 
= x. We want to decide which x gives the smallest asymptotic worst-case ratio. 
For  this we shall give a finer estimation of GsM(S(B.O) and hence of W(L).  Because 
of GSM(S(Bi))=(GSM(s(Bi))/s(Bi)) .s(B~) and of the procedure used in (6), we shall 
focus on an estimation of GSM(S(Bi))/s(Bi). 

We shall solve this problem only for a special M. For  example, let M = 4. 
Then, 11.1 =(1/2, 1], 11.2=(1/3, 1/2], 11,3=(1/4, 1/3], I .  =(0, 1/4]. We shall or- 
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ganize a case analysis to choose the best x. For  this purpose we have to choose 
x so that the maximum of G](1) and that of G](x)/x have the lowest possible 
values. 

Case I. 3/4 < x < 1. 
Here 

w~ 
1 1/2 1/3 4/3 s(ai) 

I I I I I 
s(ai) 

1 1/2 1/3 1/4 0 

x/3 

I I I I I I 
s(ai) 

1 x x/2 x/3 x/4 0 

W 

x x/2 4/3 s (ai) 

1 1/2 1/3 x/3 

I I I I I I I I 
s(ai) 

1 x 1/2 x/2 1/3 x/3 x/4 0 

x x/2 4/3 s(ai) 

and hence we have the following intervals and elements: 

Interval Element Weight W 

(x, 1] 11,1 1 
(1/2, x] 12,1 X 
(x/2, 1/2] 11, 2 1/2 
(1/3, x/2] 12,2 x/2 
(x/3, 1/3] I1,3 1/3 
(x/4), x/3] 12,3 x/3 
(0, x/4] I ,  (small) (4/3) s(a,) 

It is now clear that we can increase the total weight of items in a bin if we 
choose an Ii, j item as small as possible, and increase the size of small elements. 
On the other hand, for I1,1, Ix,2, I1,3 and 12, a items W(ai)/s(ai)< 4/3, and hence, 
if we replace them by small elements then the total weight will increase. Accord- 
ingly, we need not take 11,1, 11,2, 11, 3 and 12,3 elements into account. The 
case analysis is given in Table 1. F rom this Table we have to choose x (3/4 < x < 1) 
so that the maximum of weights W in 1.1.-1.5. and the maximum of weights 
W/x in 1.6.-1.10. are as small as possible. That  is now in case 1.7. at x =3 /4 ,  
and has the weight W o f  13/12, and hence the asymptotic worst-case ratio can 
be arbitrarily near to (13/12)/(3/4)= 13/9 ~ 1.44... if we choose x = 3/4 + 6 where 
6 is small. 
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Table 1. The case analysis of possible partitions of P(1) and P(x) at 3/4 < x < 1 

Case Elements (partitions) Weight IV< 

Analysis of P(I)  

1.1. I2.1 +I2,2 +smal l  
1.2. I2,1 + small 
1.3. 12.2 + 12, 2 + small 
1.4. I2,2 + small 
1.5. small 

Analysis of P(x) 

1.6. I2,1 +12,2 +smal l  
1.7. I2, x + small 
1.8. I2,2 +I2,2 +smal l  
1.9. I2,2 + small 
1.10. small 

3 x/2 + (4/3)(1 -- 1/2-- 1/3) = 2/9 + 3 x/2 
x + (4/3)(1 -- 1/2) = 2/3 + x 
x +(4/3)(1 - 1/3-- 1/3)=4/9+x 
x/2 + (4/3)(1 - 1/3) = 8/9 + x/2 
4/3 

x + x/2 + (4/3)(x-- 1/2-- 1/3) = 17 x/6-10/9 
x + (4/3)(x -- 1/2) = 7 x/3 - 2/3 
x/2 + x/2 + (4/3)(x - 1/3 -- 1/3) = 7 x/3 -- 8/9 
x/2 + (4/3)(x-- 1/3)= 11 x/6--4/9 
(4/3)x 

Note: 1.6. is possible only for x > 5/6. 

Case  I I .  2/3 < x < 3/4. 

F o r  the  we igh t ing  f u n c t i o n s :  

w~ 

I 
s(ai) 

1 

I I 
s(ai) 

1 x 

W 

I 
1/2 

X 

1 x 1/2 

I I I 
s(a~) 

1 x 1/2 

1/2 1/3 4/3 s(a~) 

I I 
1/3 1/4 

x / 2  4/3 s(ai) 

I I 
x / 2  x /3  

x/2 
1/3 

II 
x/2 

1/3 

4/3 s(at) 

I 
1/4 

I 
0 

I 

0 

a n d  thus  we have  the  fo l lowing  in t e rva l s  a n d  e l em en t s :  

I n t e r v a l  E l e m e n t  W e i g h t  W 

(x, 1] I1 .1  1 
(1/2, x ]  12,1 X 
(x/2,  1/2] 11.2 1/2 
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5 2 / 3 6  ~ 

50/36 

48136 

Fig. 1. (A): 7/3-4x/3; (B) 7/6+x/3; (C): 7/3 -2/(3x); (D) 2/3 + 1/(2x) 

(1/3, x/2] I2,2 x/2 
(1/4, 1/3] 11, 3 1/3 
(0, 1/4] I .  (small) (4/3) s(ai) [] 

In  this case, 11, 3 and  I2, 2 elements have a relative weight <4 /3 ,  and  hence 
they can be replaced by small elements. We now have the cases given in Table  2. 

T a b l e  2. The case analysis of possible partitions of P(1) and P(x) at 2/3 < x ~ 3/4 

Case elements (partitions) Weight W< 

Analysis of P(1) 

2.1. I1., +small 
2.2. I2., +IL2+small 
2.3. 12., + small 
2.4. I1.2 +I,,2 +small 
2.5. I,.2 +small 
2.6. small 

Analysis of P(x) 
2.7. 12., +small 
2.8. I1,2 +small 
2.9. small 

1 + (4 /3 )  ( 1 - x )  = 7 /3  - 4 x/3 
1/2 + x + (4/3)(1 - 1/2- x/2) = 7/6 + x/3 
x + (4/3)(1 - 1/2) = 2/3 + x 
1 +(4/3)(1 -x)=7/3-4x/3 
1/2 + (4/3)(1 - x/2) = 11/6- 2 x/3 
4/3 

x + (4/3)(x - 1/2)= 7 x/3 - 2/3 
1/2 + (4/3)(x- x/2) = 2 x/3 + 1/2 
(4/3)x 

Here, 2.1. and  2.4. are the same. If  now 2/3<x<3/4 ,  then 2.3, 2.5. and 2.6. 
are smaller than  2.2.; thus, f rom the first par t  we need only 2.1. and 2.2. F o r  
the same interval, in the second part,  the relative weight in 2.9. is no t  greater  
than  in 2.8.; therefore we have to compute  here only 2.7. and 2.8. 

We  now have 4 functions in Case I I :  (A): 7 / 3 - 4 x / 3 ;  (B): 7/6+x/3; (C): 
7 / 3 - 2 / ( 3 x ) ;  (D): 2/3+1/(2x), and  for 2 / 3 < x < 3 / 4  we have to choose  that  x 

where the max ima  of  these functions are as small as possible. We can see these 
functions in Fig. I. 

The smallest values of  the max ima  are at the joint  point  of  2.1. (A) and 
2.2. (B), tha t  is at  

7/3 -- 4 x/3 = 7/6 + x/3, 
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and thus x = 7/10. This means that the asymptotic worst-case ratio is not greater 
than ( 7 -  2.8)/3 = 1.4. 

Case I lL  1/2 < x < 2/3. 

We consider lists with optimal packing of B~ bins with x + 6  and small 
elements. These bins then have a weight Wof  

1 + ( 4 / 3 ) ( 1  - x )  = 7 / 3  - 4 x/3. 

This is not smaller in (1/2, 2/3] than 13/9 = 1.44 .... and in this interval, therefore, 
the asymptotic worst-case ratio can not be smaller than 13/9. 

Case IV. x <  1/2. 

We consider now lists with optimal packing of B~ bins with 1 /2+3  and 
small elements. The total weight in these bins is then > 1 +(4/3)(1/2)= 5/3. 

We have the following proposition: 

T h e o r e m  3. Suppose there are two bin sizes (k= 2). I f  the smaller bin size is 
optimally selected, then the asymptotic worst-case ratio of Variable Harmonic 
Algorithm is not greater than 1.4. 

We note that this algorithm is very good in space, because we use only 
at most six (four B1, and two B2) bins at the same time. 

We can prove that this bound is tight. For  this purpose we shall give an 
infinite series of lists L~, L2 . . . .  such that 

and 
OPT(L~) = 10 i+  1, 

s(B(VHM(L,)) = 14 i. 

We choose the lists so that both optimal and VH M use only B 1 bins. Let 

where 

s(a,j) = 

0.7+~ i 

0.25 - fit 

5c5 i 

0 .25-6 i  

0.05 

56i 

Li = (ai 1, ai2 . . . . .  aita4o) 

if 1 < j <  10i, 

if j = 1 0 i + 4 k + l ,  

j = l O i + 4 k + 2 ,  

j = l O i + 4 k + 3 ,  

if j =  1 0 i + 4 k + 4 ,  

if j = 2 2 i + 1 2 k + l ,  

if j = 2 2 i + 1 2 k + l ,  

0 ~ k < 3 i ,  

0 ~ k < 3 i ,  

0 ~ k < 3 i ,  

0 ~ k ~ 3 i ,  

0 ~ k < i ,  

O~ k < i ,  2 ~ l ~ l l ,  

if j = 2 2 i + 1 2 ( k + l ) ,  0 < k < i ,  

and 5 6i = 1/(4 i). 
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It is clear that in the optimal packing of Li we shall have a number 10i 
of B1 bins containing elements 

0.7 + 6i, 0.25 - 6i, 0.05, 

and one B 1 bin with a number 4i of 56i elements. On the other hand, in VH M 
packing we have only B t bins, namely 10i bins containing a 0.7+6~ element, 
3 i bins containing 0.25-6~, 0.25-6~, 0.25-6~, 5 6~ elements, i bins containing 
one 0.25-6~, ten 0.05, and one 561 elements. Accordingly, our result is the 
following: 

Corollary 2. Consider variable-sized bin packing with 2 different bin sizes. Let 
s(B1) = 1, s(B2)=0.7. Then RVH M = 1.4. 

Open Problems 

Variable-sized bin packing is a relatively new field in bin packing. Thus a number 
of open questions may be asked. We concentrate here only on the "best choice" 
of bin sizes and list only some of these problems. 

a) What is the lower bound for on-line algorithms at the best choice of 
bin sizes? From the choice of bins in Corollary 2, it is clear that this bound 
is smaller than those given by Liang and Brown for classical bin packing. 

b) Give a best choice of bin sizes for two different bins from a probabilistic 
point of view, for example if the elements are independently and uniformly 
distributed random variables on (0, 1). 

c) How can these questions (and the results of this paper) be extended to 
more bin sizes? 
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