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Summary. A certain pebble game on graphs has been studied in various 
contexts as a model for the time and space requirements of computat ions 
[1, 2, 3, 8]. In this note it is shown that there exists a family of directed acyclic 
graphs G, and constants cl, c2, c 3 such that 

(1) G, has n nodes and each node in G, has indegree at most 2. 

(2) Each graph G, can be pebbled with c a l / n  pebbles in n moves. 

(3) Each graph G, can also be pebbled with c21/~ pebbles, c 2<c l ,  but 
every strategy which achieves this has at least 2 c3 v~ moves. 

Let S(k, n) be the set of all directed acyclic graphs with n nodes where each node 
has indegree at most k. On graphs GeS(k, n) the following one person game is 
considered. The game is played by putting pebbles on the nodes of G according 
to the following rules: 

(i) an input node (i. e., a node without a predecessor) can always be pebbled; 
(ii) if all immediate predecessors of a node c have pebbles one can put a pebble 

on c; 
(iii) one can always remove a pebble from a node. 

The goal of the game is to put a pebble on some output node (i.e., a node without 
a successor) of G in such a way that the total number  of pebbles which are simul- 
taneously on the graph is minimized. 

The game models the time and space requirements of computations in the 
following sense. The nodes of G correspond to operations and the pebbles cor- 
respond to storage locations. If a pebble is on a node this means that the result 
of the operation to which the node corresponds is stored in some storage location. 
Thus the rules have the following meaning: 
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(i) input data are always accessible; 
(ii) if all operands of an operation are known and stored somewhere, the 

operation can be carried out and the result be stored in a new location; 
(iii) storage locations can always be freed. 

By the rules a single node can be pebbled many times. This corresponds to recom- 
putation of intermediate results. 

In particular the game has been used to model time and space of Turing 
machines [1, 2] as well as length and storage requirements for straight line pro- 
grams [8]. 

Known results about the pebble game include 
A: Every graph G~S(k, n) can be pebbled with Ckn/log n pebbles where the 

constant c k depends only on k [2]. 
B: There is a constant c and a family of graphs G,~S(2, n) such that for in- 

finitely many n, G, cannot be pebbled with less than cn/log n pebbles [4]. 
For more results see [1, 3, 4, 7, 8]. 

By putting pebbles on the nodes of a graph G in topological order (i. e., if there 
is an edge from node c to node c', then c is pebbled first) one can pebble each graph 
G~S(k, n) with n pebbles and n moves. However the stragegy known to achieve 
0(n/log n) pebbles on every graph uses exponential time. Thus it is a natural 
question to ask if there are graphs Gn~S(k , n) such that every strategy which 
achieves a minimal number of pebbles requires necessarily exponential time. This 
is indeed the case. 

Theorem. There exists a family of graphs G, eS(2, n), n = l ,  2, ... and positive 
constants c 1, c 2, c3, c 2 < c~ such that for infinitely many n 

(1) G, can be pebbled with c l l /~  pebbles in n moves. 
(2) G, can also be pebbled with c2l/n pebbles. 
(3) Every strategy which pebbles G, using only c 21/~ pebbles has at least 

2 c3v~ moves. 

Thus saving only a constant fraction of the pebbles forces the time required to 
grow from linear to 2 ~ 

Proof of the Theorem. As building blocks for the graphs G, we need certain special 
graphs. A directed bipartite graph is a graph whose nodes can be partitioned into 
two disjoint sets N 1, N 2 such that all edges lead from nodes in N 1 to nodes in N z. 
A directed bipartite graph is an n-i/j-expander if [NI[=INaI=n (IA[ denotes the 
cardinality of A) and for all subsets N' of N 2 of size n/i the following holds: 

[{clc~N 1 and there is an edge from c to a node in N'}I >n/j. 

Lemma 1. For n large enough there exist n-8/2-expanders where the indegree 
of each node in N 2 is exactly 16. 

Proof With every function f: {1, ..., cn}~{1, ..., n} we associate a bipartite graph 
GIsS(c, 2n) with n inputs and n outputs in the following way: The inputs and 
outputs are numbered from 1 to n and if f ( j )= i then there is an edge from input i 
to output (j mod n). Different functions may produce the same graph. A function 
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f i s  bad if there is a set I of n/2 inputs and a set 0 of n/8 outputs such that all edges 
into 0 come from I. Otherwise the funct ionf is  called good. Clearly if f is good G s 
is an n-8/2-expander with the desired properties. 

In order to prove the existence of a good function we prove that the fraction 
of bad functions to all such functions tends with growing n to zero [5, 6]. 

There are n c" functions f:  {1 . . . . .  cn}~{1,...,n}. There are n/2 " n/8 

ways to choose n/2 inputs I and n/8 outputs 0. For every choice o f / a n d  0 there are 
(n/2) c~/8. n 7~/8 functions f such that f is bad because in Gf all edges into 0 come 

(n n ) (n~8)'(n/2) ~"/8"nv~"/8badfunctions.Thus from I. Hence there are at most /2 " 

the fraction we want to estimate is 

(n ) . (n )  .nTcnJsjnc  
n/2 n/8 " (n/2)c"/8 

: ( n ) . [ n  ]/2c"/8:o(l) for c>16.  [] 
./2 W8 U 

Let E', be an n-8/2-expander as in Lemma 1. Construct E, from E'. by replacing 
for every output node v the 16 incoming edges by a complete binary tree with 
16 leaves, identifying v with the root of the tree and the predecessors of v with the 
leaves. Obviously E,~S(2, 16n). 

Let lib, a be the graph consisting of d copies of E b: El, ..., Eb a where for 2 _< i < d, 
the input nodes of E~ are identified with the output nodes of E~-I. Thus 
Ub,,~s(e, (15d + l)b). 

The set of output nodes of E L is called the i-th level. The input nodes of E~ form 
level 0 (see Fig. 1). 

Lemma 2. Hb, d can be pebbled with 2b + 16 pebbles and (15d+ 1)b moves. 

Proof We say level i is full if all nodes of level i have pebbles. The strategy is to fill 
the levels one after another. Each level is a cut set. Thus once a new level i has been 
filled all pebbles above level i can be removed. Hence at most 2b pebbles have to 
be kept on two successive levels. In the process of filling level i + 1 if level i is full, 
the 16 extra pebbles are used on the trees between the levels. Because all trees are 
disjoint except for the leaves each node is pebbled exactly once. []  

Lemma 3. Hb, n can be pebbled with 4 d + 2  pebbles. 

b{i E 
revel 0 d-1 

Fig. 1. The graph Hb, d 
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Proof The depth of a node v is the number of edges in the longest path into v. In 
a graph GsS(2, n) every node of depth t can be pebbled with t + 2  pebbles (this 
follows easily by induction on t). Every node in Hb. d has depth at most 4d. []  

The crucial point is 

Lemma 4. For all i t  {0,1, ..., d} and b divisible by 8 the following statement holds: 
If C is any configuration of at most b/8 pebbles on Hb,d, N is any subset of level 
i s.t. IN[ = b/4, and M is any sequence of moves, which starts in configuration C, 
never uses more than b/8 pebbles, and during the execution of this sequence of 
moves each node in N has a pebble at least once, then M has at least 2 i moves. 

Proof By induction on i. For i = 0  there is nothing to prove. Suppose the lemma 
is true for i -  1. In configuration C at most b/8 pebbles are on the graph. Thus for 
at least b/8 of the nodes v in N, no pebble is on v nor anywhere on the tree which 
joins v with level i -  1 except possibly on the leaves. Let N' be a subset of these 
nodes of size b/8 and let P be the set of nodes in level i - 1 which are connected to 
N'. By construction of lib, d, IP[ >b/2. Because none of the nodes in N' nor any node 
of their trees have pebbles except for the leaves, during the execution of M each 
node in P must have a pebble at some time (possibly right at the start). 

Divide the strategy M into two parts Mr, M 2 at the earliest move such that 
during M 1 some b/4 nodes of P have or have had pebbles and the remaining b/4 
of more nodes of P have never had a pebble. For M 1 the hypothesis of the lemma 
applies; thus M 1 has at least 2 i 1 moves. Because M~ leaves at most b/8 pebbles 
on the graph and M 2 also never uses more than b/8 pebbles the hypothesis also 
applies to M z. Hence M 2 has at least 2 i- 1 moves too and the lemma follows. [] 

Choose b such that 4d+2<b/8, e.g. b=32d+16. Then any strategy which 
pebbles any b/4 output nodes of Hb, 4 using at most 4d +2  pebbles has at least 24 
moves. Thus for at least one of these nodes v pebbling v alone with 4 d + 2  ebbles 
must require 24/(b/4)>2 (1-~4 moves since b=0(d). Now n=(15d+l)b is the 
number of nodes of Hb, 4. Hence d = 0 (I/n) and b = 0 (]/~) and the theorem follows. []  

The above construction also yields: 

Corollary. For every function f(n)=o(n/log n) there exists a family of graphs 
G, eS(2, n) such that any strategy which pebbles G, using f(n) pebbles has more 
than polynomially many moves. 

Proof Let ~ (n)= (n/(f(n)log n)) 1/2, thus f(n)= n/(log n y2(n)). Choose G, = Hb, 4 with 
b=n/(log nv(n)) and d=0( log  nT(n)). [] 

An interesting open problem is: does these exist a family of graphs G, eS(2, n), 
n = 1, 2,. . .  such that pebbling the graphs G, with 0(n/log n) pebbles requires more 
than polynomially many moves? As a first step toward resolving this question, 
Pippenger [-7] has exhibited a family of graphs which require a non-linear number 
of moves when pebbled with 0(n/log n) pebbles. 
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