
Acta Informatica 10, 111 - 115 (1978)

�9 by Springer-Verlag 1978

Time-Space Trade-Offs in a Pebble Game

W.J. Paul* **

Fakult~it fdr Mathematik der Universit~it Bielefeld,
D-4800 Bielefeld 1, Germany (Fed. Rep.)

R. E. Tarjan***
Computer Science Department, Stanford University,
Stanford, CA 94305, USA

Summary. A certain pebble game on graphs has been studied in various
contexts as a model for the time and space requirements of computat ions
[1, 2, 3, 8]. In this note it is shown that there exists a family of directed acyclic
graphs G, and constants cl, c2, c 3 such that

(1) G, has n nodes and each node in G, has indegree at most 2.

(2) Each graph G, can be pebbled with c a l / n pebbles in n moves.

(3) Each graph G, can also be pebbled with c21/~ pebbles, c 2<c l , but
every strategy which achieves this has at least 2 c3 v~ moves.

Let S(k, n) be the set of all directed acyclic graphs with n nodes where each node
has indegree at most k. On graphs GeS(k, n) the following one person game is
considered. The game is played by putting pebbles on the nodes of G according
to the following rules:

(i) an input node (i. e., a node without a predecessor) can always be pebbled;
(ii) if all immediate predecessors of a node c have pebbles one can put a pebble

on c;
(iii) one can always remove a pebble from a node.

The goal of the game is to put a pebble on some output node (i.e., a node without
a successor) of G in such a way that the total number of pebbles which are simul-
taneously on the graph is minimized.

The game models the time and space requirements of computations in the
following sense. The nodes of G correspond to operations and the pebbles cor-
respond to storage locations. If a pebble is on a node this means that the result
of the operation to which the node corresponds is stored in some storage location.
Thus the rules have the following meaning:

* Research partially supported by DAAD (German Academic Exchange Service) Grant No,
430/402/653/5
** To whom offprint requests should be sent
*** Research partially supported by the National Science Foundation, Grant No. MCS 75-22870
and by the Office of Naval Research, Contract No. N00014-76-C-0688

0001-5903/78/0010/0111/$01.00

112 W.J. Paul and R.E. Tarjan

(i) input data are always accessible;
(ii) if all operands of an operation are known and stored somewhere, the

operation can be carried out and the result be stored in a new location;
(iii) storage locations can always be freed.

By the rules a single node can be pebbled many times. This corresponds to recom-
putation of intermediate results.

In particular the game has been used to model time and space of Turing
machines [1, 2] as well as length and storage requirements for straight line pro-
grams [8].

Known results about the pebble game include
A: Every graph G~S(k, n) can be pebbled with Ckn/log n pebbles where the

constant c k depends only on k [2].
B: There is a constant c and a family of graphs G,~S(2, n) such that for in-

finitely many n, G, cannot be pebbled with less than cn/log n pebbles [4].
For more results see [1, 3, 4, 7, 8].

By putting pebbles on the nodes of a graph G in topological order (i. e., if there
is an edge from node c to node c', then c is pebbled first) one can pebble each graph
G~S(k, n) with n pebbles and n moves. However the stragegy known to achieve
0(n/log n) pebbles on every graph uses exponential time. Thus it is a natural
question to ask if there are graphs Gn~S(k , n) such that every strategy which
achieves a minimal number of pebbles requires necessarily exponential time. This
is indeed the case.

Theorem. There exists a family of graphs G, eS(2, n), n = l , 2, ... and positive
constants c 1, c 2, c3, c 2 < c~ such that for infinitely many n

(1) G, can be pebbled with c l l /~ pebbles in n moves.
(2) G, can also be pebbled with c2l/n pebbles.
(3) Every strategy which pebbles G, using only c 21/~ pebbles has at least

2 c3v~ moves.

Thus saving only a constant fraction of the pebbles forces the time required to
grow from linear to 2 ~

Proof of the Theorem. As building blocks for the graphs G, we need certain special
graphs. A directed bipartite graph is a graph whose nodes can be partitioned into
two disjoint sets N 1, N 2 such that all edges lead from nodes in N 1 to nodes in N z.
A directed bipartite graph is an n-i/j-expander if [NI[=INaI=n (IA[denotes the
cardinality of A) and for all subsets N' of N 2 of size n/i the following holds:

[{clc~N 1 and there is an edge from c to a node in N'}I >n/j.

Lemma 1. For n large enough there exist n-8/2-expanders where the indegree
of each node in N 2 is exactly 16.

Proof With every function f: {1, ..., cn}~{1, ..., n} we associate a bipartite graph
GIsS(c, 2n) with n inputs and n outputs in the following way: The inputs and
outputs are numbered from 1 to n and if f (j)= i then there is an edge from input i
to output (j mod n). Different functions may produce the same graph. A function

Time-Space Trade-Offs in a Pebble Game 113

f i s bad if there is a set I of n/2 inputs and a set 0 of n/8 outputs such that all edges
into 0 come from I. Otherwise the funct ionf is called good. Clearly if f is good G s
is an n-8/2-expander with the desired properties.

In order to prove the existence of a good function we prove that the fraction
of bad functions to all such functions tends with growing n to zero [5, 6].

There are n c" functions f: {1 cn}~{1,...,n}. There are n/2 " n/8

ways to choose n/2 inputs I and n/8 outputs 0. For every choice o f / a n d 0 there are
(n/2) c~/8. n 7~/8 functions f such that f is bad because in Gf all edges into 0 come

(n n) (n~8)'(n/2) ~"/8"nv~"/8badfunctions.Thus from I. Hence there are at most /2 "

the fraction we want to estimate is

(n) . (n) .nTcnJsjnc
n/2 n/8 " (n/2)c"/8

: (n) . [n]/2c"/8:o(l) for c>16. []
./2 W8 U

Let E', be an n-8/2-expander as in Lemma 1. Construct E, from E'. by replacing
for every output node v the 16 incoming edges by a complete binary tree with
16 leaves, identifying v with the root of the tree and the predecessors of v with the
leaves. Obviously E,~S(2, 16n).

Let lib, a be the graph consisting of d copies of E b: El, ..., Eb a where for 2 _< i < d,
the input nodes of E~ are identified with the output nodes of E~-I. Thus
Ub,,~s(e, (15d + l)b).

The set of output nodes of E L is called the i-th level. The input nodes of E~ form
level 0 (see Fig. 1).

Lemma 2. Hb, d can be pebbled with 2b + 16 pebbles and (15d+ 1)b moves.

Proof We say level i is full if all nodes of level i have pebbles. The strategy is to fill
the levels one after another. Each level is a cut set. Thus once a new level i has been
filled all pebbles above level i can be removed. Hence at most 2b pebbles have to
be kept on two successive levels. In the process of filling level i + 1 if level i is full,
the 16 extra pebbles are used on the trees between the levels. Because all trees are
disjoint except for the leaves each node is pebbled exactly once. []

Lemma 3. Hb, n can be pebbled with 4 d + 2 pebbles.

b{i E
revel 0 d-1

Fig. 1. The graph Hb, d

114 W.J. Paul and R.E. Tarjan

Proof The depth of a node v is the number of edges in the longest path into v. In
a graph GsS(2, n) every node of depth t can be pebbled with t + 2 pebbles (this
follows easily by induction on t). Every node in Hb. d has depth at most 4d. []

The crucial point is

Lemma 4. For all i t {0,1, ..., d} and b divisible by 8 the following statement holds:
If C is any configuration of at most b/8 pebbles on Hb,d, N is any subset of level
i s.t. IN[= b/4, and M is any sequence of moves, which starts in configuration C,
never uses more than b/8 pebbles, and during the execution of this sequence of
moves each node in N has a pebble at least once, then M has at least 2 i moves.

Proof By induction on i. For i = 0 there is nothing to prove. Suppose the lemma
is true for i - 1. In configuration C at most b/8 pebbles are on the graph. Thus for
at least b/8 of the nodes v in N, no pebble is on v nor anywhere on the tree which
joins v with level i - 1 except possibly on the leaves. Let N' be a subset of these
nodes of size b/8 and let P be the set of nodes in level i - 1 which are connected to
N'. By construction of lib, d, IP[>b/2. Because none of the nodes in N' nor any node
of their trees have pebbles except for the leaves, during the execution of M each
node in P must have a pebble at some time (possibly right at the start).

Divide the strategy M into two parts Mr, M 2 at the earliest move such that
during M 1 some b/4 nodes of P have or have had pebbles and the remaining b/4
of more nodes of P have never had a pebble. For M 1 the hypothesis of the lemma
applies; thus M 1 has at least 2 i 1 moves. Because M~ leaves at most b/8 pebbles
on the graph and M 2 also never uses more than b/8 pebbles the hypothesis also
applies to M z. Hence M 2 has at least 2 i- 1 moves too and the lemma follows. []

Choose b such that 4d+2<b/8, e.g. b=32d+16. Then any strategy which
pebbles any b/4 output nodes of Hb, 4 using at most 4d +2 pebbles has at least 24
moves. Thus for at least one of these nodes v pebbling v alone with 4 d + 2 ebbles
must require 24/(b/4)>2 (1-~4 moves since b=0(d). Now n=(15d+l)b is the
number of nodes of Hb, 4. Hence d = 0 (I/n) and b = 0 (]/~) and the theorem follows. []

The above construction also yields:

Corollary. For every function f(n)=o(n/log n) there exists a family of graphs
G, eS(2, n) such that any strategy which pebbles G, using f(n) pebbles has more
than polynomially many moves.

Proof Let ~ (n)= (n/(f(n)log n)) 1/2, thus f(n)= n/(log n y2(n)). Choose G, = Hb, 4 with
b=n/(log nv(n)) and d=0(log nT(n)). []

An interesting open problem is: does these exist a family of graphs G, eS(2, n),
n = 1, 2,. . . such that pebbling the graphs G, with 0(n/log n) pebbles requires more
than polynomially many moves? As a first step toward resolving this question,
Pippenger [-7] has exhibited a family of graphs which require a non-linear number
of moves when pebbled with 0(n/log n) pebbles.

Acknowledgements. The authors thank A. Borodin for a helpful comment.

References

1. Cook, S.A.: An observation on time-storage trade off. Proceedings Fifth Annual ACM Symp.
on Theory of Computing, pp. 29-33, 1973

2. Hopcroft, J., Paul, W., Valiant, L.- On time versus space. J. Assoc. Comput. Mach. 24, 332-337 (1977)

Time-Space Trade-Offs in a Pebble Game 115

3. Paterson, M.S., Hewitt, C.E.: Comparative schematology. Record of Project MAC Conference on
Concurrent Systems and Parallel Computation, pp. 119-128, 1970

4. Paul, W., Tarjan, R.E., Celoni, J.R.: Space bounds for a game on graphs. Math. Systems Theory
10, 239-251 (1977)

5. Pinsker, M.S.: On the complexity of a concentrator. 7th International Teletraffic Congress,
Stockholm, 1973

6. Pippenger, N.: Superconcentrators. Technical Report, IBM Thomas J. Watson Research Center,
Yorktown Heights, N.Y., 1976

7. Pippenger, N.: A time-space trade off. Technical Report, IBM Thomas J. Watson Research Center,
Yorktown, Heights, N.Y., 1977

8. Sethi, R.: Complete register allocation problems. SIAM J. Comput. 4, 226-248 (1975)

Received July 5, 1977

