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Summary. We consider a class of optimization problems of hierarchical-tree 
clustering and prove that these problems are NP-hard. The sequence of 
polynomial reductions and/or transformations used in our proof is based 
on relatively laborious graph-theoretical constructions and starts in the 
NP-complete problem of 3-dimensional matching. Using our main result 
we establish the NP-completeness of a problem of the best approximation 
of a symmetric relation on a finite set by an equivalence relation, thus 
answering in the negative a question proposed implicitly by C.T. Zahn. 

I. Introduction and Statement of the Main Result 

Within the last twenty years an enormous number of strategies for cluster 
analysis have been proposed [-3, 6, 8, 15]. Though the main emphasis in these 
efforts has been concentrated on the creation or application of clustering 
techniques, relatively little attention has been paid to the study of com- 
putational complexity of clustering algorithms. Because of wide range of appli- 
cations of cluster analysis [1, 13] there are many variations of problem for- 
mulation. Generally we can consider two types of goals: 

(i) Nonhierarchical clustering where the goal is to partition a given finite set 
of objects into nonempty clusters (the number of clusters can be specified 
beforehand), those objects in the same cluster being considered as close or 
similar and those in different clusters as distant or dissimilar. The "quality" of 
this clustering is usually expressed by a real objective function defined on the 
family of all partitions of the set of objects. 

(ii) Hierarchical clustering (hierarchical-tree clustering) where the goal is to 
construct a sequence of nested nonhierarchical clusterings which form a so 
called hierarchical tree and which have to be optimal with respect to a 
criterion [7, 9]. 

The problems of nonhierarchical clustering were studied partially from the 
point of view of computational complexity, see e.g. [-2, 5]. On the other hand, 
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to our  knowledge, no comparable  results concerning the complexity of hier- 
archical clustering have been published. Our main aim is to present a result in 
this respect. For  the terminology concerning the computa t iona l  complexi ty 
(NP-theory)  used in this paper  see [4]. 

Let  us review and formalize the main concept  of hierarchical clustering in 
which lies our  main interest, cf. e.g. [10]. Throughou t  this paper, n will denote  
an integer, n > 3 ,  f2={eol,  eo 2 . . . . .  co,} an n-element set, and D=(dl, ) a sym- 
metric real n • n-matrix such that 

d i , j>0  if i+ j ,  and d~,~=0 if i = j  (i,j~{1,2,...,n}). 

Elements of f2 are called objects (these are to be clustered), and D is called 
a dissimilarity matrix. Within our  context  we interpret  a "small"  value of d~.j 
as a close relationship between objects ~o~ and 09 i. 

A hierarchical tree T over f2 is defined as a finite sequence of pairs T 
= ((P1, tO, (P2,12), ..., (Po, lq)) where 

(i) P~,P2 . . . . .  Pq are parti t ions j of  f2; 

(ii) 11, l 2 . . . .  , lq are integers, 

O=ll <12<...<lq; 

(iii) Pk is proper  refinement of Pk+ I (1 <=k<q- 1); 

(iv) Pt ={{COx}, {~~ . . . . .  {e),}} and Pq ={f2}. 

The integer q is called the height of T and number  1 k, the k-th level of 
par t i t ion Pk in T. It follows that 2 < q < n. 

Let  ~I(f2) be the set of all hierarchical  trees T over f2 and 92q(12), where 
2 < q < n, the set of all hierarchical trees over f2, having the height q; if f2 is 
evident from the context  we shall write N and OAq instead of 92(f2) and 9.Iq(I2), 
respectively. 

Fur ther  we define the function u ( T ) :  f2xf2--*N o (N o is the set of all 
nonnegat ive integers), corresponding to a given hierarchical  tree 

as follows: 

T =  ((P1,/,), (*02,/2) . . . . .  (Pq, lq))eg.I((2), 

d f  �9 

u ( T )  (co i, o9) = mln {/k [ there exis ts M e Pk 

(1 ~ k 5 q) such that  {~oi, ~oj} c M}. 

Remarks:  1) Func t ion  u ( T )  is an ul trametric  on ~2 (cf. [10]). F r o m  the point  
of view of graph theory, a hierarchical tree can be interpreted as a rooted  tree. 
As the rooted tree is an upper  semilattice we can interpret  u(T)(o)~,co) as the 
level I k assigned to the least upper  bound of elements ~o~ and ~oj. In Fig. 1 we 
give the graphical representat ion of the hierarchical tree 

T ' =  ((P~', l'1), (P~, 12), (P3', l~), (P~, l~,)), 

1 i.e. finite disjoint decompositions into nonempty classes 
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where 

7 ..................... ~ }  

5 .................. , 

Fig. 1 

(P~', 1'1)= ({{a}, {b}, {c}, {d}},0) 

(P~, 12)= ({{a, b}, {c}, {dI}, 3) 

(P~, l ; ) =  ({{a, b}, {c, d}},  5) 

(P~, l;,) = ({{a, b, c, d}},  7). 

The ultrametric u(T ' )  corresponding to T' is given in the underlying tableau: 

u(T ' )  a b c d 

a 0 3 7 7 

b 3 0 7 7 
c 7 7 0 5 
d 7 7 5 0 // 
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F(T+)=min{F(T)IT~9.1q}. // 

For the evaluation of hierarchical clustering we use the objective function 
F: 9 . I ~ +  (the set of all nonnegative reals), defined as follows (cf. [-9]): 

F(T) af ~ Idi , j -u(T)(~, ,~~ 
l<i<j<n 

Using F we introduce the following optimization problems: Problem H[C 
(hierarchical clustering): 

INSTANCE: Set of objects ~2 and dissimilarity matrix D of the size n x n, 
where n = card(f2); 

PROBLEM: Determine a hierarchical tree T.eg.l such that 

F(T.)---min{F(T)ITeg.I}. // 

Problem HICq (q=2, 3 ....  ): 

I N S T A N  CE: Set of objects (2 and dissimilarity matrix D of the size n x n, 
where n = card(Q); 

PROBLEM: Determine a hierarchical tree T+ egAq such that 
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It is evident that problem HIC 2 has a polynomial time complexity. Our 
main result can be summarized as follows: 

Theorem. Problems HIC and HICq for q>=3 are NP-hard. This result was 
presented at C O M P S T A T  1984 (Prague), cf. 1-12]. [] 

II. Proof of the Main Result 

We shall obtain the proof of our theorem by proving several lemmas. 

Lemma 1. For an arbitrary integer q > 2 we have H I Cq oc H I Cq+ r 

Proof. We apply the well-known method of local replacement, see e.g. [-4]. To 
each instance (Q,D) of HICq let us assign an instance (O',D') of HICq+ 1 as 
follows: 

~'  ~ Q  u {co.+ 1} ={col, co 2, ---, % ,  % +  1}, 

where co,+ 1 is a 'new' object (joined to O), 

where 

and 

D'=(d;,),  (l < i , j < n +  l), 

d' Nd for 1<i,  j<_n, i , j  - -  - - i , j  = - -  

t d f . ,  df 2, , < . ,  ', < d~,.+~=a.+l,i=n tq+max{d~, fll=z,r = n } ) + l ,  ( l < i , j < n ) ,  

d'.+ 1,.+ 1 ~0.  

(Let us observe that the d'i,j are computable from d~,j in polynomial time.) 
Now, the following equivalence is easily verified: 

! T' = ((P~', l'~), (P~, I'2) . . . . .  (pq,, lrq), (eqr+ 1, lq+ 1)) 

is a solution of HICq+ 1 if and only if 

df . . e ,  . . . .  1 t T = ( (  l~{(Dn+ 1}, 0), (P2~k{(,0n+ 1}, 12) . . . . .  (Pq ~{(Dn+ 1}, q)) 

belongs to 9.Iq(t?) and it is a solution of HlCq. [] 

By virtue of Lemma 1 it is sufficient to prove the NP-hardness of HIC 3. In 
fact, we shall obtain a slightly stronger result. A dissimilarity matrix D=(di, ) 
will be called binary if each off-diagonal element of D equals either 1 or 2, 
(di,~e{1,2 } if i# j ) .  Let bHIC and bHICq denote the 'binary restrictions' of HIC 
and H lCq, respectively, i.e. the computational problems defined in the precisely 
same way as HIe  and HlCq respectively, except that the instance D is a binary 
matrix. It follows immediately that 

bHICocHIC and bHICocHICq for q_>_2. (1) 

Lemma 2. It  holds that bHlC3ocbHlC. 
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Proof. It is sufficient to prove the following assertion: If T is a solution of 
bHIC then T ~ O ~ 2 t ~ 3  . Let us assume on the contrary, that  there exists a 
solution 

T -  ((P1, ll), (P2, 12) . . . . .  (Pr, lr)) 

of bHIC with the property r > 3 .  Then it is easy to show that for the hierarchi- 
cal tree 

T* = ((P1,0), (P2,12), (P~, 12 + 1))e 9-I3 
we have 

u(T*)(e~i,e~j)=u(T)(~i, t~j)  if u(T)(~oi, e~)<=l (2) 

and ~ u ( T )  (~ol, ~oj) otherwise, (3) 

max(2, u ( T * )  (~i, oi)) < u ( T )  (~i, ~j) (4) 

for some pair ( ~ i , e ~ j ) ~  x O. 
Combining (2), (3) and (4) we obtain F(T*)<F(T) ,  which completes the 

proof. [] 

In the next lemma we investigate the levels of a hierarchical tree solving 
bHIC3. 

L e m m a  3. I f  T =  ((P1,0), (P2,12), (P3,13))~9-13 is a solution of bHIC 3 then 12 = 1 and 
13 =2.  

Proof. It is sufficient to prove that  for each 

T =  ((P1,0), (P2,12), (P3,13))~ 9"~3 

with the property 13 > 3 there exists 

T ' =  ((P~', 0), (P~, l'2), (P~,/;))~ ~I 3 
such that 

l'3<I a and F(T')<F(T) .  (5) 

Indeed, let us consider following two cases for (0, l a, 13): 

(~) 13>3 or (12,13)=(1,3); (fl) (12,13)=(2,3). 

In the (~) case we can put evidently P/ = Pj (j = I, 2, 3), 12=min(2,12) and l'a 
= 1 3 - 1 .  

In the (fl) case we put l~ = 1, l' a = 2 and 

= {{~o~, ~ } ,  {%}, {~o~} . . . . .  {%}}. 

Since I~ < 13 we have to verify inequality F(T')< F(T). Indeed, 

F(T' )=(Id~,2-11-1d1,2-21)+ ~, Id~,j-2l 
l<=i<j<=n 

i.e. 
F(T') < 1 + card {(i,j) l 1 < i <j  < n, di, j = 1 }. (6) 
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On the other hand, let P2 = {11,12 . . . . .  Ir}, hence 2 < r  < n - 1 .  Then we have 

i.e. 

F ( T ) =  ~ Z Id,,j-21+ Z Z Z Idi,j-31 
p= 1 { i , j }c lp  l < p ' < p " < r  i~lt,, jEIo,, 

= ~ 2 ]di,j-2]+ 2 2 2 ]di,j-2] 
p= 1 { i , j }c I  o l < p ' < p " < r  ie l  o, j~Ip,,  

+ E E E (Id,,~-3l-ldij-2l) 
l <-p'<p" <r i~lp, j~Io,,  

= ~ I di j -2[+ ~ card(Ip,)card(Ip,,), 
1 <i<j<-n l<-p'<p"<=r 

F(T)> card {(i,j)[1 < i <j <n, dij= 1} + ( n -  1). (7) 

Combining (6) and (7) we obtain (5) (since n>3). This completes the 
proof. [] 

In the next lemma, problem bHIC3 is restated using the following termi- 
nology. For an arbitrary partition {I1, I2,---, I,} of f2 let us set ip = card(Ip) and 

jo=card{{i,j}C_Ip[di,j=l} ( p = l , 2  . . . . .  r). 

Lemma 4. Problem bH [C 3 can be stated equivalently as follows: Find a partition 
{I1,I 2 .... ,I,} of ~ such that 

is minimum. 

p~l ip . 

Proof For every hierarchical tree 

T= ((P~, 0), ({I,, I2, ..., Ir} , 1), ({f2}, 2))~ 9A 3 
we have 

F (T)=  ~ Z ]di,j-l[ + Z Z Z di i -2 l  
p = l  { i , j }c lp  l = < p ' < p " < r  ie l  o, j~lp, ,  

i = - jp  +card{{i,j} di,j=l } -  ~Jo 
,=l  2 p = l  

r 

card,,/,,< ,,+ Z ((1) 

which concludes the proof. [] 

For proving the NP-hardness of bHIC3 we shall use the following decision 
problem: Problem EC3 (exact cover by ordered 3-tuples): 
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Fig. 2 
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INSTANCE: 1) finite set X with card(X)=3m for some positive integer 
m; 

2) finite indexed family 

)a (~=((X=,I'Xe,2'Xa, 3) e = l  

of ordered 3-tuples of elements of X with the property that 
each element of X occurs at least in one 3-tuple of cg, i.e. 

~_) {Xcql,Xe, 2, Xo~,3 } = x ;  
e = l  

QUERY: Decide whether c# contains a subfamily cg, such that each 
element of X occurs in exactly one 3-tuple of c#,. //  

cg, is called an exact cover for X. 

Lemma 5. Problem E C 3 is NP-complete, (cf. [11]). [] 

Our next aim is to reduce polynomially EC3 to bHIC 3. For this aim we 
assign to each instance (X, Cg) of EC3 an instance (Q,D) of bHIC3. First, let us 
put 

n~ 3m + 9card(Cg)= 3m + 9a (8) 
and 

~2~Xw {y,,~,~lee{1,2 . . . . .  a};fi,7s{1,2,3}}, (9) 

where y,,~,~ are 9.a 'new' objects joined to X. (It is appropriate to index these 
objects by the triple subscripts.) 

The dissimilarity matrix D will be introduced using certain graphs (we 
consider in this paper finite undirected graphs without loops and parallel 
edges). For each ~ { 1 , 2  . . . . .  a} let us consider the graph G,=(V,,E,), see Fig. 2, 
where 

(i) The vertex-set is: 

af x~ 3} ~ {y~,p,~l 1 ~/3, 7 ~ 3} ; V~= {X~,l,X~.2, . 
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(ii) The edge-set is (edges are defined as 2-element subsets of the vertex-set): 

E~ d=f {{x~,,, y~,,,~} I 1 < / 3 < 3 , 7 =  1,2} 

w { {Y,,a,3, Y~,a,,3} I 1 </3 4:/3' < 3} 

w{{y~,,~,2,y~,,~,~}ll < /3<3 ,7=l ,3}  

w {{y~,p,1, Y~,a,,r} I 1 </3<3, 7=2,3 and (/3-/3'= 1) v (/3'-/~) = 2}. 

Using graphs G~ we introduce the graph G ~(f2, E), where 

E =  ~)E~. 
~t= 1 

The dissimilarity matrix D=(di,j) will be now defined as follows: We 
consider an arbitrary fixed numbering e)~,o) 2 . . . . .  co. of elements of f2 and put 

d~,j =0 if i=j ,  (10) 

d i , j= l  if i # j  and {coi,~oj}eE, (11) 

d~,j = 2 otherwise. (12) 

In the sequel, we shall use some additional graph-theoretical definitions and 
notations: The term subgraph will denote an induced subgraph; the subgraph 
of G induced by an nonempty subset I ~ f 2  will be denoted by G(I). A 
subgraph of G with 3 vertices and 3 edges will be called a triangle. 

Let E =  {(W,, H,)} be a finite set of triangles; W, is the vertex-set and H, is 
the edge-set of the triangle (W,. H,). E will be called a vertex-partition of the 
graph G into triangles if U ~ = f2 and U H~_ E. 

Lemma 6. A solution of  EC3 exists if and only if there exists a vertex-partition 
of G into triangles. 

Proof. Let rg, be an exact cover for X with respect to EC 3. Let E be defined as 
the minimum, with respect to the cardinality, set of triangles such that the 
following two conditions are fulfilled ( ~  {1, 2 .. . .  , card(rg)}): 

(i) If (x~, t, x~, 2, x~, 3)~cg ' then 

G( {Y~,l,3, Y~,2,3, Ya,3,3} ~E 
and 

G({x,,~,Y~,p,I,Y,,p,2})EE 
for all /3=1,2,3.  

(ii) If (X,,a,X,,2,x,,3)ecg-cg ' then 

G({Y~,.a',l,Yr v ( f l - f l ' )=2 ,1<f l ,  fl' <3} �9 

The set E contains 4 m + 3 ( a - m ) = m + 3 a  triangles, and it is easy to see that E 
is a vertex-partition of G. 

Conversely, given a vertex-partition E of G into triangles we define ~ '  as 
the family of all (x~,,~,x~,,E,X~,,3)~cg such that 

G({Y~,l,3, Y~,2,3, Y~,3,3} )~E" 
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It is left to the reader to show that cg, is an exact cover in the sense of problem 
EC3 with respect to the instance (X, Cg). (Observe that if E contains a "central" 
triangle 

G({Y~,l,3, Y~,2,3, Y~.3,3}) 

then it contains also 3 triangles 

G({x~,a,y~,r where fie{I,2,3}. 

This completes the proof. [] 

For ie{1,2 . . . .  ,card(O)} let mj(i) denote the maximum number of edges in a 
subgraph G(I) with card(l)= i. 

Lemma 7. It holds that 
mj(i)<2i--3, i>=l. 

Proof. Let us consider an arbitrary I c O  with card(l)=/.  Let i~ denote the 
number of all edges in the subgraph G(V~nI), where ee{1,2 . . . . .  a} and let A 
denote the set of all ~ with the property (V~\X)c~I,t=O. Since each graph G~ is 
a block of graph G (cf. e.g. [14], p. 529) we have 

"j(i) = max { ~ i, 1I c O, card (I) = i}. (13) 
0tEA 

Examining the graph G, (cf. Fig. 2) one can easily verify the following values of 
mj(i) in G,: 

mj(1) =0, mj(2) =1, mj(3)=3, mj(4)=4, mj(5) =6, 

mj(6) = 8, mj(7) = 10, mj(8) = 12, mj(9)= 15, mj(10)= 17, 

Hence 

" j ( l l )  = 19, "j(12) = 21. 

i~<="~(card(V~c~I)<2card(V~nI)-3/card(A), aeA. (14) 

Altogether (13) and (14) yield 

mj(i)<=2.card(I)-3=2i-3, i>=l. 

The proof is concluded. [] 

Lemma 8. Let O .  Ic_O, /=card(l) ,  and let j be the number of all edges in G(I). 
Then 

Moreover 

if and only if i= 3 and G(I) is a triangle. 
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Proof Obviously it holds that 

Thus by applying Lemma 7 the inequality (15) follows. Moreover if G(I) is a 
triangle then 

Conversely, if 

then it follows from the definition of G and from Lemma 7 that i = j = 3  and 
G(I) is a triangle. [] 

Now, let the instance (~,D) for bHIC3 be defined by (8)-(12). For  each 
partition {I~,I 2 . . . . .  It} of f2 let us set 

r 

7J({I~,12 . . . .  ,1,})~ 2 ( ( i ~  ] 
p=a \ \ 2 1  l '  

where ip, Jo (P = 1,2 . . . . .  r) are defined as in Lemma 4. It is easily observed that 
Jo equals the number of all edges in the graph G(Io). 

Lemma 9. Let {I~,I 2 . . . . .  It} be a partition of  f2. Then 

7J({I ~, 12 . . . . .  I,}) > - 3 (m + 3 card (cg)). (16) 
Moreover, 

T({I1, I2,--., I t})= - 3 (m + 3 card (cg)) (17) 

if and only if  G(lp) is a triangle for each pe{1,2 .. . .  ,r}, i.e. 

{G(Io)lp=l ,2 . . . . .  r} 

is a vertex-partition of  G into triangles. (Recall that m= 1/3 card(X).) 

Proof Let tls denote the number of all pc{ l ,2 ,  . . . ,r} with card(Io)=s. Then 

S = I  

On the other hand 

Thus we have 

~s.qs=card(Q)=3(m+3card(~)). 
S = I  

7J({I1 . . . . .  Ir})=T({I~ . . . . .  I ,})+ s ' t l s -3 (m+a)  
S = I  

((;t 3(~ 3card( )) 



NP-Hard Problems in Hierarchical-Tree Clustering 321 

The inequality (16) now follows immediately from Lemma7.  Moreover, if 
{G(Ip)lp=l,2 . . . .  ,r} is a vertex-partition of G into triangles then (17) clearly 
holds. 

Conversely, let us assume that (17) holds. Then, using Lemma 7 we see 
successively that 

(j) r/s=0 for s+3 ,  

(jj) r/3 = m + 3 card(OK), 

(jjj) for each pe{1,2 . . . . .  r} the subgraph G(Io) is a triangle. 
The proof is completed. [] 

Lemma 10. It holds EC3ocbHIC3 . 

Proof It is sufficient to see that given a solution of bHIC3 for the instance 
(f2,D), defined by (8)-(12), we obtain the answer to EC3 using a polynomially 
bounded algorithm. Indeed, solving bl"llC3 we obtain a partition {I1,I2,. . . ,Ir} 
of f2 such that ~u({Ii,I 2 . . . . .  I,}) is minimum. Now, by virtue of Lem m a9  and 
Lemma 6 we have 

tit ({11,12 . . . . .  It}) = - 3 (m + 3 card (cd)) 

if and only if there exists a vertex-partition of G into triangles i.e. if and only if 
there exists an exact cover by ordered 3-tuples with respect to EC3 for the 
instance (X, (d). This completes the proof. [] 

The proof of the announced result (Theorem): The NP-hardness of HICq 
for q > 3  follows from (1), Lemma 1, Lemma 5 and Lemma 10. The NP-hard- 
ness of HIC follows from (1), Lemma 2, Lemma 5 and Lemma 10. 

III. Best Approximation of Symmetric Relation by an Equivalence 

In [16] the following optimization problem is proposed: Given a finite non- 
empty set Z and a symmetric relation s ~ Z x Z we are asked to determine an 
equivalence relation e_~ Z x Z minimizing the objective function 

e~--~card(s Ae), 

where sAe=(s\e)u(e\s) is the symmetric difference of the relations s, e 
(considered as subsets of Z x Z). I.C. Lerman observed in [13] the importance 
of this problem in the hierarchical clustering. 

By an immediate application of Lemma 10 we prove that the underlying 
decision computational problem is NP-complete: Problem $ A E (best approxi- 
mation of a symmetric relation by an equivalence relation): 

I N STA N CE: A finite set Z = {z 1, z 2 . . . . .  Zm}, symmetric relation s ~ Z x Z 
and a positive integer k; 

QUERY: Decide whether there exists an equivalence relation e~Z 
x Z such that 

card(s Ae)< k. 
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To prove this assertion we observe that problem S A E  is evidently in NP, 
and exhibit the polynomial transformation 

~HlC3oc S/kE, (18) 

where ~HIC a is the following decision version of b HIC3: 

INSTANCE: 

QUERY: 

(f2,D,k'), where D is binary and k' is a positive integer; 

Decide whether there exists Yeg.13(f2 ) such that 

F ( T ) =  ~ Idi,~-u(T)(coi, coj)l<k'. // 
l <i<j<n 

(It follows immediately from Lemma 10 that ~I-ilC 3 is NP-hard.) 
To prove (18) we assign to an instance (fLD, k') of ~HIC 3 the instance 

(Z,s,k) of S/kE, where 

Z ~ f 2  and zj=~oj ( j = l , 2  . . . . .  m); 

df s = {(zi, zj)~Z • Z ldi,j <= 1 } ; 

k~2k ' .  

T~--,e(Ts~3(f2)) 

Now observe that mapping 

defined by 

e = {(zi, z ) ~ Z  • Zlu(T)(ogi, 09) < 1}, 

maps bijectively 9~3(f2 ) onto the set of all equivalences on Z (see the proof of 
Lemma 4), and preserves the equality 

card (e/ks) = card (e\s) + card (s\e) = 2 F (T). 
Thus 

card(e/ks)<k if and only if F(T)<k' ,  

which completes the proof. 
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