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Summary. The covariances of  relatives arising under  
selfing from a general outbred base popula t ion  in link- 
age equi l ibr ium and without  epistasis given by Cocker- 
ham (1983) are expressed in an al ternative form which 
is an extension of  the t reatment  by Mather  and Jinks 
(1982) of  the more restricted popula t ion  descended 
from a single Fi family. Whereas  no more than two 
quadrat ic  components  are required to describe any 
covariance in the case of  F~ descendants,  this more 
general case calls for a total of  four, three of  which are 
needed for any par t icular  covariance. The est imation 
of  covariances and their  use for the predict ion of  selec- 
tion response is described for breeding programs ini- 
t iated by one or more cycles of  intermating among a 
number  of  parental  lines, as advocated by Hansel 
(1964) and Jensen (1970). It is pointed out that the 
homozygous lines descended from such a popula t ion  
will have up to twice as much variance as those from 
an F1 between a randomly chosen pair  from the same 
populat ion of  parents. The selection method is espe- 
cially recommended for undeveloped species in which 
the parental  lines are not well character ized and large 
selection responses are needed. 
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comparisons among the descendants of  part icular crosses, 
selection between the crosses depending either on the 
choice of  pairs of  parents according to their  known 
agricultural merits and deficiences, or on the assess- 
ment  of  their Ffs .  Such a system reduces the potential  
of  the program by subdivis ion of  the gene pool, as the 
part icular  pair  of  alleles avai lable  at any locus is deter- 
mined at the outset by the choice of  parents. 

The inclusion of a larger number of parental lines has been 
advocated (Hanson 1959; Hansel 1964; Jensen 1970) as a 
means of increasing the variability available in the segregating 
generations during selfing. 

The analysis of the variation arising among the descen- 
dants of a single F l family for the purpose of predicting the 
response to selection in particular generations (Gates et al. 
1957) or the distribution of the final inbred lines Oinks and 
Perkins 1972; Snape and Riggs 1975; Jinks and Pooni 1976) is 
based on a genetical model which assumes no more than two 
alleles at a locus and is therefore inappropriate for the analysis 
of the generations descended from the more complex parentage 
considered above. The model used by Weir and Cockerham 
(1977) carries no assumptions about allele numbers or frequen- 
cies and is completely general with respect to additive and 
dominance effects as well as breeding systems, but leads to 
cumbersome expressions when applied to selfing series 
(Cockerham 1983). 

This paper  introduces a model  which is in many 
respects a combinat ion  of  the two described above and 
develops formulae for the covariances of  relatives and 
expected selection response for the generations of  
selfing ini t iated from an outbred base populat ion.  

Introduction 

Selection programs in self-poll inating species common-  
ly concentrate a large propor t ion  of  their  resources on 
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The two models 

The terms included in the model used by Cockerham (1983) 
are expressed as deviations from the mean of an outbred base 
population, such that the single-locus genotype with alleles i 
and j is 

~i A- ~j -{- 6ij , 
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where the ct terms are the additive effects of alleles in the 
population and 6ij is the dominance effect of the ijth combina- 
tion. All effects are defined as least squares parameters in a 
random mating population. Mather and Jinks' (1982) model, 
on the other hand, uses two parameters to describe the three 
genotypes possible with two alleles, putting 2 d equal to the 
difference between the homozygotes and h equal to the devia- 
tion of the heterozygote from the homozygote mean, so that 
the effects are contrasts among genotypes without reference to 
any population. 

The quadratic functions which arise from the two models 
are given in Table 1. When there are two equally frequent 
alleles, D R = 2 a~ = ~'~ d 2 = D, H R = 4 a~ = ~2 h 2 = H, and 
f = D 1 = D~ = 0. For the two-allele model, there are evident 
equivalences between the two sets of functions, and, apart from 
illuminating the relationships between models based on out- 
bred and inbred reference populations, this suggests that the 
components DR, HR and f could be redefined in a form suffi- 
ciently general to accommodate multiple alleles. Apart from 
the direct equivalence evident between H R and 4a 2, the fol- 
lowing definitions are made: 

a 2  = Z a2 + 4 Dl + D:~ = 4 ~2 ~., pi o{2 + 4 ~_~ ~2 pi oq 6i i 
i i 

+ Z Z = E Z (2 + 
i i 

aMn= 2 Di + D'~ = 2 E Z pi oq aii + ,~ ,~ pi 6?i 
i i 

= E E Pi ( 2 ~ i +  6ii) 6ii 
i 

where summation is over loci and alleles. Like D R, a~ is the 
variance of homozygotes but defined for a population with an 
arbitrary number of alleles. The covariance of homozygous 
genotypes with the homozygous dominance deviations of the 
same allele, aM~, is an extension of Mather and Jinks' f 
(1982). 

C o v a r i a n c e s  o f  r e l a t i v e s  

Weir  and Cockerham (1977) gave a general expression 
for a covariance between relatives which uses various 

identity by descent measures,  and this covariance can 
be expressed in terms of  the new components  following 
a simple rearrangement  of  these coefficients. However,  
for the present purpose  the covariance of  relatives 
under selfing which was given by Cockerham (1983) 
will be translated directly. In the absence of  epistasis 
and linkage, the covariance o f  members  of  the gth and 
g'th generations of  selfing from an outbred  (zeroth 
generat ion)  popula t ion  in l inkage equil ibr ium, and 
whose last common ancestor occurred in the tth 
generation, is 

�9 Ctgg, = (1 + Ft) a 2 +  ( F g +  Fg,+ 2Ft )  DI 

[ ( F g -  Ft) ( F g ' -  Ft) ] 
+ F ,+  

(1 - F g )  (1 - Fg , )  
+ (a B + Ft H*) 

(1 - Ft) 

,{ = ~ -  (1 + Ft) a 2 + (Fg + F g , -  2) O'MH 

( 1 -  Fg) ( 1 -  Fg,) [D~ + 2 a ~ +  2FtH*]}  
-~ (1 - Ft) 

where F denotes an inbreeding coefficient, F n being 
that of  the n t h  generation, F . =  1 - ( 1 / 2 ) " ,  and with 
t-< g and t _-< g'. Here g _-< g', and the variances for a 
single generation are given when g' = g. 

The first outcome of  this new system is that  the 
original five components  are reduced to four, since 
D~' and 2 a 2 have the same coefficient and can be com- 

bined. For  future convenience, the defini t ion 

Table 1. Quadratic functions for the two models a 

Description General case Two-allele case 

a~ Additive variance of outbreds 2 • Z Pi ~{2 2 Z P (1 - p) [d + h (1 - 2 p)]2 
i 

a~} Dominance variance of outbreds ~ ~ Pi Pj 52j 4 ~ p2 (1 - p)2 h 2 
i 

D1 Covariance of additive and ~ ~ Pi 0{i ~ii -- 2 ~ p (1 - p) [d + h (1 - 2 p)] (1 - 2 p) h 
homozygous dominance effects i 

D~' Variance of homozygous ~ ~ Pi ~2i -- E ( E  Pi ~i i) 2 4 ~ p (1 -- p) (1 -- 2 p)2 h 2 
dominance effects i i 

H* Squared inbreeding effects ~ ( ~  Pi 6ii) 2 4 ~ p2 (1 -- p)2 h 2 
summed over loci i 

DR Homozygote variance - 4 ~', p (1 - p) d 2 

HR Dominance variance - 16 ~ p2 (1 - p)2 h 2 

f Covariance of homozygote and - - 8 ~ p (1 - p) (1 - 2 p) dh 
homozygous dominance effects 

a Summation is over loci for the two-allele model, and over both loci and alleles (at frequencies Pi) for the general case 



is made. This covariance can therefore be expressed in 
the more explicit form 

Ctgg,= [1 -  (�89 I 0 - 2  [(�89 n t_ (�89 11 0-MH 

+ (-',)g+g'-'+' 0-~ + [(�89 (�89 n * .  

Subdivision of total covariances 

The above notation can be extended to allow a sub- 
division of the covariances arising from the hierarchy 
of families generated by the selfing scheme, as was 
done by Homer (1952). The component of covariance 
for families in the gth and g'th generations with a com- 
mon ancestor in the tth but belonging to a subpopula- 
tion descended from a common ancestor in the k th  
generation will be written as Cktgg,. It should be noted 
that this alters the sequence of indexing used by 
Homer (1952), Gates (1954) and Gates et al. (1957) but 
has the merit that now k < t _-< g _-< g'. Following Gates 
(1954), the hierarchical nature of these covariances 
implies that 

Cktgg,= C tgg , -  Ckgg, 

for any values of k < t. Cktgg, can also be regarded as 
the covariance among families bulk-selfed from the t th  
to the g thand g'th generations belonging to subpopula- 
tions originating from distinct members of the kth_~. 
Further, Cktgg, is a component of covariance in the 
hierarchical analysis of covariance, and when g = g' it 
is a component of variance in the analysis of variance. 
Putting k = t - 1  gives the complete hierarchical 
breakdown of the covariance of individuals in the gth 
and g ' th  generations into the components arising be- 
tween families in the t th  generation within families in 
the t -  I th" 

C t g g ' :  C0gg'{- Z C j - l j gg ' ,  
j=l  

in which the first term is already a component of 
covariance, as any covariance for t < 0 involves no 
common ancestor and is zero. Then, for t = 0, 

C0gg ' = (1) {0.2 ..~ (Fg + F g , -  2) 0-MH 

+ (1 -- Fg) (1 Fg,) 2 
- -  0-H~ , 

and for t > 0 

Ct_ l tgg ,=  (/)  (Ft_  Ft_l ) 

" {a~4 4 (1 -- Fg) (1 - Fg,) H' l}  
Ut) -d  t0-  + 2 . 

These can be reduced to 

Cogg , :  (/) 0.2 _ [(�89 ~_ (/)g'+l] 0-MH q- (/)g+g'+l 0-2 

and 

(l~g+g'-t+2 [,,r2 4- 2H*].  Ct_l tgg ,=  (/)t+l 0 - 2 +  "~" t~n - -  
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It may be noted at this point that for a single F 2 family, 
there are two equally frequent alleles, so that 
D~ = 0"MH = 0, H* = 0 .2 = H/4, a 2 = D, and the above 
expressions reduce to 

C0gg , :  ( /)  D + (�89 H = Wl Fg+2g,+2 

C t - l t g g ' :  (1)t+ I D + (1)g+g'-t+2 H = Wt+ 1Fg+2g'+2 

in the notation of Mather and Jinks (1982). 
The main features which distinguish the general 

formulae from those appropriate to a single F2 are that 
all covariances involve three instead of just two com- 
ponents, and that the 0-MH term in covariances with 
t = 0 is replaced by a term in H* when t > 0. This can- 
cellation of the covariance of additive and dominance 
effects was also noted by Gates etal. (1957) for a 
model with two alleles per locus. It occurs because 
these covariances relate back to single individuals in 
the base population or later generations and are there- 
fore free from the effects of unequal allele frequency, 
but H* is involved because there is additional varia- 
tion due to the random distribution of pairs of identi- 
cal alleles. 

Although it was noted that H* and a~ are equal 
when there are just two alleles, this need not apply 
otherwise because there is then more than one hetero- 
zygous genotype at a locus. As an example, consider 
the case when the heterozygotes and homozygotes vary 
so as to generate a large 0-~, but H* is small because 
some heterozygotes have an advantage over the respec- 
tive homozygotes and others a disadvantage. In general, 
either of the two components may be the larger. When 
just the components of covariance for t > 0 are con- 
sidered, then [0-2 + 2H*] can be regarded as a single 
component because there are only two alleles within a 
pedigree, but in general, the terms have to be kept 
distinct. It may also be noted that, with two alleles, 
0-~ + 2 H* = D+ + 2 0-2 + 2 H* = 4 ~ p ( 1 -  p) h 2, which 
is a function used by Gates et al. (1957) and by Mather 
and Jinks (1982). 

Kempthorne (1957) derived some covariances under 
selfing in a similar form to those used here by the 
direct method of expressing a random genotypic value 
in each generation as the mean value of the homo- 
zygotes to which it would give rise under continued 
selfing and a deviation which represents the consequent 
inbreeding depression. Covariances were then obtained 
by expansion of the product of these compounds. 

Selection response 

The response of the mean of the g ' th  generation to 
selection among large families selfed as bulks from the 
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t t h t o  the gth generation is given by 

dtgg,  = i Ctgg,/0.tgg = i C tgg , / (Ctgg-b-  0"2) 1/2 

where i is the s tandardized selection differential ,  O-tgg is 
the phenotypic s tandard deviat ion of  these selection 
units, and 0.2 is the appropr ia te  error variance. When 
t = g, selection is among individuals;  more commonly,  
t = g - 1 or g - 2 for families of  sibs or grand-sibs,  and 
the difference is even greater when bulk selfing is 
employed over several generations. 

If selection is confined to individuals  or families 
descended from a common individual  in the k t h  gen- 
eration, then Ctgg, and Ctgg in the above are replaced 
by Cktgg, and Cktgg , respectively. In this case, 

C k t g g , =  [ ( . ~ ) k + l _  (7)1 l+ l ]  0.2 

+[1 - (7)1 t - k  ] Q-'(l~g+g'-t+ I [0.2 + 2 H , ]  . 

A case of  special interest is for k = 0 when selection 
is among the descendants of  a single outbred indi- 
vidual,  as such an individual  is equivalent to an F 1 
between a random pair  of  parents. This is the most 
commonly used base popula t ion  for selection programs 
in self-pollinating species. The responses of  the final 
homozygous lines when selection is among descendants 
of  an outbred popula t ion  created by intercrossing a 
large number  of  parental  lines and from a single 
random F I depend on the covariances Ctg~c and 
C0tg  ~ ,  respectively: 

C t g ~ = [ l  ; t+l 0 .2_ t l~g+I  -- (~) ] ,,~: O'MH 

and 

Cotg~> = ( � 8 9  (�89 cr 2" 

If selection is deferred until homozygosity,  usually 
preceded by several generations of  single-seed descent, 

then the covariances are C ~ = 2 C 0 ~ o ~ = ~ r  2.  
Thus, in the absence of  epistasis, the final lines from 
the whole base populat ion have twice the variance of  
those descended from a single random F 1. If  selection 
is among homozygous bulks, each of  which is des- 
cended from a distinct individual  in the t th generation, 
then this ratio is even greater. Since they are not indi- 
vidually in equi l ibr ium,  there may be differences 
among individual  F f s  with respect to their  descendant 
line variances, but  these are not predic table  and with 
many loci are expected to be small. 

E s t i m a t i o n  o f  c o m p o n e n t s  

Estimation of quadratic components from certain measured 
covariances, generally those in the earlier generations, allows 
the prediction of other covariances which determine selection 
responses. Since the performance of the final homozygous 
lines is of most interest, the important components are a 2 and 

O'MH, the latter being needed to predict the relative value of 
selection between and within lines of descent from individual 
outbred ancestors. 

As pointed out by Cockerham (1983), covariances Ctgg, 
for which t = g involve the measurement of single individuals, 
and are probably difficult to estimate in many species. Table 2 
gives the coefficients of quadratic components for the statistics 
available from the growth and measurement of families 
arising from three generations of selfing, equivalent to the 
F3, F4, and F5 when a single F2 is involved. 

The estimation of the four quadratic components can be 
carried out using a hierarchical analysis of variance (Homer 
and Weber 1956) or by a weighted least squares analysis as 
described by Mather and Jinks (1982). Unfortunately, from 
the point of view of estimation, the coefficients of a 2, aMH, 
and a 2 are highly mutually correlated in these statistics 
although those of H* are almost independent, and this 
problem remains even if more generations are grown. Mather 
and Jinks (1982) show that families produces by sib mating at 
different generations help to break these correlations in the 
case of F2 descendants, but their use is not considered further 
here. For selection in the generations which are used for 
estimation, the standard deviations of observations can be 
measured directly, so that independent estimates only of a 2 
and aMH are necessary, but if predictions of the value of selec- 
tion in later generations are required, then at least three of the 
four components are needed, in addition to the appropriate 
error variances. When only within-pedigree selection is of 
interest, then only within-pedigree statistics need be measured 
in order to estimate two genetic parameters, a 2 and 
(a~ + 2H*), as in the case of a single F> 

Table2. Coefficients of quadratic components in statistics 
estimable from families following three generations of selfing 

1 1 1 
Co, j 2 -  2 8 -  0 

1 3 1 
C~ 2-  8 16 0 

1 1 1 
C022 2-  4 32 0 

1 1 1 
C0122 = CI22 - C022 0 

4 32 16 
1 5 1 

C~ -2- 16 32 0 

1 3 1 
C~ -2- 16 64 0 

1 1 1 
C~ "2- 4 128 0 

t 1 1 
C0123 = El23 -- C023 0 

4 64 32 
1 1 1 

C0133 = C133 - C033 0 
4 128 64 
1 1 1 

Ct233 = C233 -- Ci33 ~ -  0 64 3-"2- 
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Epistasis and linkage 

The general formulae have assumed linkage equilib- 
rium in the outbred base population and absence of  
linkage and epistasis. 

Although the genotypic model has been shown to be con- 
venient when just additive and dominance effects are in- 
cluded, and can accommodate epistasis when there are two 
equally frequent alleles at each locus (Mather and Jinks 1982), 
an attempt at further generality meets with difficulties. The 
inclusion of additive by additive epistasis in Ctgg, requires the 
addition of variance and covariance terms whose coefficients 
are functions of allele frequency as well as of generations of 
selfing. In the model defined by least squares, the only new 
term is (1 + Ft) 2 a~A, because the method of successive fitting 
leads to the absorption of the remaining variance and the 
covariance into the additive variance. This additive and addi- 
tive by additive least squares model is an alternative to the 
additive-dominance model, and the two can be compared for 
goodness-of-fit (Cockerham 1983). The complete description 
of epistasis with inbreeding requires the separation of the 
interactions involving dominance effects of identical and non- 
identical allele pairs (Gallais 1974; Weir and Cockerham 
1977) and leads to a large number of components. 

It is only the variances or components of  variance of  
homozygous lines that can be written explicitly in 
terms of  the single locus homozygote variance (a~4) and 
interactions of  homozygous genotypes at two or more 
loci ( 0 . 2 M ,  O.MMM,2 etc.). The variances of  final lines 
from the outbred base and from a single F1, with 
epistasis of  any type, are 

Cooc~ oo = 0 . 2  q- O '2M q.- , . ,  

and 

C 0 ~ : ~  = l  2 3 a ~ M +  ~- O'M -]- Z . . . ,  

(l)n the nt_hterm in C 0 ~  having a coefficient of  1 - ~ . 
Epistasis therefore reduces the ratio of  C ~  to 

C 0 ~ a ~ .  
Linkage leads to linkage disequilibrium in a single 

F 2, and disequilibrium can exist in the more general 
base population even in the absence of  linkage. For  a 
model with two alleles at arbitrary frequencies, Gates 
et al. (1957) showed that cross products o f  additive and 
dominance effects at different loci enter the covari- 
ances. Their decay with selfing when linkage is incom- 
plete causes bias in the prediction of  unknown covari- 
ances from those which can be measured, but also 
allows tests for linkage to be devised (Gates 1954; 
Mather and Jinks 1982). For the more general model 
with two alleles, Gates etal. (1957) showed that the 
component of  covariances Ct-ltgg, includes the extra 
terms: 

(�89 ~ '  ~" di dj / / i j  ,~t 
i j > i  

+ (�89 E E hi hj xij 22 (1 + 22) t - '  
i j > i  

where Hij is the linkage disequilibrium between loci i 
and j in the base population, cij = (1 - 2 i i ) / 2  their re- 
combination rate, and xii the frequency of  double 
heterozygotes. Whereas these terms disappear when 
there is no linkage, the covariances Ctgg, contain joint 
contributions of  the dominance effects of  pairs o f  loci 
in disequilibrium regardless of  whether they are linked 
or not. 

Although Jinks and Pooni (1982) have shown that 
the linkage bias involved in the prediction o f  the vari- 
ance of  homozygotes from an F 2 using estimates of  
covariances from earlier generations is not expected to 
be large, that for covariances involved in response to 
selection in earlier generations remains. However, for a 
population of  intercrosses, the individual Hij's may be 
smaller than in the case of  a single F2 as well as 
variable in sign, so that there is no consistent bias and 
the errors may be small. This is particularly likely 
when more than one generation of  intercrossing pre- 
cedes selfing (Gates 1954). 

Discussion 

In his examination of the value of a system of intermating 
prior to the commencement of selling, Hanson (1959) 
emphasized that an increase in the number of parents used 
would not only have a beneficial effect on the rate of breakup 
of linkage blocks, but would also provide the breeding pro- 
gram with a wider genetic base. With the exception of work 
by Hansel (1964) and Jensen (1970), subsequent consideration 
of this means of increasing available variation has largely dis- 
appeared and emphasis has been placed on investigation of 
the value of intermating among the progeny of a single cross 
(Baker 1968; Pederson 1974; Bos 1977). Jensen (1970) suggest- 
ed that a diallel scheme of intercrossed Fl's should be used as 
the base population from which selfing is initiated. This single 
generation of intercrossing, in addition to that among the 
parents, allows the inclusion of alleles from up to four parents 
in any single genotype before the commencement of selfing. In 
general, a total of n cycles allows 2 n parents to contribute. In 
many naturally self-fertilised species, intercrossing may be 
facilitated by the chemical induction of male sterility and the 
use of markers to detect the progeny of chance selfings. 

Apart from showing how the expected response to 
selection of  any type can be predicted and the param- 
eters necessary estimated from available statistics, the 
covariances among relatives given here allow some 
comparisons to be made between different selection 
strategies. The variance of  lines descended from a 
complex base population might be expected to be 
larger than for any specific F2 because more alleles are 
present at each locus, and a higher proportion of  loci is 
expected to be initially heterozygous. It has now been 
confirmed that such lines show 100% more variance 
due to single loci and 33% more due to interactions of  
pairs of  loci because an Fl samples just two alleles 
from the population of  alleles at each locus and four 
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from any pair. In general, the variance among the des- 
cendant lines from a population derived from k paren- 
tal lines as a proportion of  that from an infinite base is 
( k -  1)/k and ( 2 k -  1)/2k for a 2 and O'MM , 2  respective- 
ly. The proportions appearing within Fi pedigrees 
from a base population initiated by k parents are 
therefore k/(2 (k - 1)) and 6k/[4 (2k - 1)], respective- 
ly. If several generations of  intercrossing are used 
before selfing, then k represents an effective population 
size which depends on the numbers used at each gen- 
eration. 

These variances give only part of  the information 
necessary for comparison of  selection programs based 
on the two types of  base population, as in practice an 
F t will be the result of  crossing two selected rather than 
random parents. The formal question now posed by the 
consideration of  broad-based source populations is 
analogous to a comparison between single- and multi- 
stage selection procedures; whether it is efficient to 
select among the parents and then among the final 
lines, or to defer all selection until the latter stage. In 
the absence of  epistasis, the mean value of  descendant 
lines equals that of  their parents and any gain from 
parental selection is transmitted in full to the lines. 
However, realistic formulations of  the total gain cannot 
easily be made, as if earlier selection has brought 
about negative linkage disequilibrium the variance is 
reduced and the effectiveness o f  selection is impaired. 
Furthermore, the choice of  parents has not always been 
explicitly recognized as a selection process, and they 
are usually selected as a complementary pair with the 
idea of raising the variance as well as the mean of  the 
resultant lines. Although this may sometimes be rea- 
sonable for two traits, there is no means of  predicting 
for any single trait the variance of  lines descended from 
a parental combination without information from des- 
cendant generations. If  the major emphasis is placed on 
this criterion, the choice of  parental lines may be little 
better than random, 

It may be concluded that schemes of  selection 
based on populations of  intercrosses among parental 
lines could be advantageous in many species, but 
especially those whose agricultural potential is rela- 
tively undeveloped and whose parental lines are there- 
fore not well characterized. These are also likely to be 
those in which a wide spectrum of environmental con- 
ditions are met, so that a single selection program has 
multiple objectives and a "fine tuning" approach is 
inappropriate. 
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