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Summary. The desire to extend the applicability of the relational model 
beyond traditional data-processing applications has stimulated interest in 
nested or non-first normal form relations in which the attributes of a relation 
can take on values which are sets or even relations themselves. In this paper, 
we study the role of null values in the nested relational model using an 
open world assumption. We extend the traditional theory and study the 
properties of extended operators for nested relations containing nulls. The 
no-information, unknown, and non-existent interpretation of nulls are dis- 
cussed and the meaning of "empty set" is clarified. Finally, contrary to 
several previous results, we determine that the traditional axiomatization 
of functional and multivalued dependencies is valid in the presence of nulls. 

1. Introduction 

There has been a flurry of activity in recent years in the development of databases 
to support "high-level" data structures and complex objects. Office forms, com- 
puter-aided design, and text retrieval systems are a few examples of non-tradi- 
tional applications that require specialized database support. One of the stum- 
bling blocks in using traditional relational databases and relational theory is 
the assumption that all relations are required to be in first normal form (1NF); 
that is, all values in the database are non-decomposable. For this reason, nested 
or non-first normal form relations were proposed in which the attributes of 
a relation can take on values which are sets or even relations themselves. This 
new assumption created a need to reexamine the fundamentals of relational 
database theory, and opened the door for the introduction of operators which 
take advantage of the nested structure of nested relations. 
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This paper is concerned with the representation of null values in nested 
relational databases and the definition of algebraic operators on nested relations 
containing nulls. Null values have traditionally represented the nonexistence 
of a value or the fact that a value is unknown. In 1NF relational databases 
it is not always necessary to represent missing data by means of null values. 
To illustrate this, consider a database consisting of two relations rl (employee, 
skill) and r2 (employee, child). Skills can be stored for an employee, Jones with 
no children by adding tuples to r l .  No tuple appears in r2 for Jones. However, 
in a nested relational database, we would likely have a single relation r whose 
attributes are employee, skill, and a set-valued children attribute. Jones would 
have the empty set of children. The empty set is, in a sense, a null value, since 
unnesting the relation r forces us to introduce nulls into the resulting 1NF 
relation. 

Thus, the need for nulls is even more critical in a nested database than 
a 1NF database. Since we have the ability to represent multiple relationships 
in a single nested relation without the problems of redundancy that doing so 
in a 1NF relation would entail, we must also deal with the fact that one or 
more of those relationships may be unknown or non-existent at some time. 

In this paper we make the open world assumption. That is, we assume 
that just because a tuple is not in a relation does not mean it should not 
be there. The best we can do at any point in time is enter tuples into a relation 
that we know currently belong there. In addition, if we know partial information 
about a tuple then the unknown information is represented using null values. 

The remainder of this paper is organized as follows. In Sect. 2, we define 
the nested relational model we will be using. Two new operators used to restruc- 
ture relations, nest and unnest, are defined and partitioned normal form is pre- 
sented as a desirable goal in structuring nested relations. In Sect. 3, we summarize 
a formal treatment of null values in the traditional relational model. The no- 
information, unknown, and nonexistent interpretation of nulls are discussed. 
In Sect. 4, we extend the null value theory presented in Sect. 3 to nested relations. 
In Sect. 5 we introduce the extension of algebraic operators to relations with 
null values. We define the concepts used to measure the "goodness" of these 
extensions. Section 6 provides the actual extension of the algebra to nulls along 
with proofs of properties of our extensions. Finally, in Sect. 7, we discuss depen- 
dency theory, shedding some new light on the problem of nulls when dealing 
with functional and multivalued dependencies, and their axiomatization. 

2. The Nested Relational Model 

In this section, we briefly review concepts from the relational and nested relation- 
al models. Various researchers have studied the effect of dropping the assumption 
that all relations be in first normal form (1 NF). Early work was done by Makin- 
ouchi E22] and led to the concept of nesting. This was later studied by Jaeschke 
and Schek [12] for one level nesting over single attributes and by Thomas 
and Fischer 1-38] in a more general setting. Utilizing nested relations for structur- 
ing database outputs was discussed by Kambayashi et al. [13], while Fischer 
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and Van Gucht [6, 7] looked at dependencies which characterize nested rela- 
tions. 

Ozsoyo~lu and Ozsoyo~lu [26] consider operations similar to that of [12], 
and extend the basic algebra for relations by aggregate operators. Our previous 
work 1-32] defines a relational calculus and relational algebra for nested relations 
and proves their equivalence. We also introduced partitioned normal form for 
nested relations (described later) which is equivalent to scheme trees of [27] 
and formats of [1]. Abiteboul and Bidoit [1] also define some extended operators 
which are refined in [32], where it was also proved that the set of relations 
in partitioned normal form are closed under the extended operators. Others 
[10, 11, 28, 31, 33-35] have been developing languages and implementations 
for nested relational databases. 

2.1. Nested Relational Schemes 

We will assume, without loss of generality, that all attributes of our relations 
are contained in a finite universe of attributes, U. Each attribute A e U may 
assume values drawn from a domain, DOM(A). A relation structure ~ consists 
of a relation scheme R and a relation r defined on R, and is denoted (R, r). 
A relation scheme is defined by a rule R =(A1, A2 . . . . .  An) where Ai~ U, 1 < i< n. 
The set of attributes in a relation scheme rule R are denoted ER. For AEER, 
an A-value is an assignment of a value from DOM (A) to attribute A. Generaliz- 
ing this notion, an X-value, where X _  ER, is an assignment of values to the 
attributes in X from their respective domains. Thus, a relation r defined on 
scheme R is a set of ER-values, with the elements of this set called tuples of 
r. We will generally use upper case letters from the beginning of the alphabet 
to represent single attributes and upper case letters from the end of the alphabet 
to represent sets of attributes. We also let X Y denote X u Y. 

The operators U, N, - ,  x ,  ~,,~, r~, and tr represent the standard relational 
operators on 1NF relations without null values. The projection of relation r 
onto attributes X is denoted r[X], and similarly, the projection of tuple t e r  
onto attributes X is denoted t IX]. We also use t[X] to denote an X-value 
of t when we are talking about an arbitrary assignment from the respective 
domains of each attribute in X. We assume familiarity with 1NF relations and 
the relational algebra on these relations. We also assume familiarity with the 
definitions of data dependencies (functional, multivalued, and join). For these 
definitions, see a database text such as [15]. Fixing a particular scheme, the 
set of all relations on that scheme that satisfies a set of dependencies D is 
denoted SAT(D). 

A database scheme S is a collection of rules of the form Rj=(Rjl , R j2 . . . .  , Rj,). 
The objects Rj, Rj,, l <i<n, are attributes. Rj is a higher order attribute if 
it appears on the left hand side of some rule; otherwise it is zero order. The 
names on the right hand side of rule Rj form a set denoted ERj, the elements 
of Rj. As with any set, attributes on the right hand side of the same rule are 
unique, and to avoid ambiguity we require that no two rules can have the 
same name on the left hand side. 
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Employee Children Skills 

Name Dob Type Exams 

Year City 

Smith Sam 2/10/84 Typing 1984 Atlanta 
Sue 1/20/85 1985 Dallas 

Dictation 1984 Atlanta 

Watson Sam 3/12/78 Filing 1984 Atlanta 
1975 Austin 
1971 Austin 

Typing 1962 Waco 

Fig. 1. A sample relation on the Emp scheme 

A 1NF database scheme is a collection of rules of the form Rj=(Ri , ,  
R j2 . . . . .  Rj,) where all the R j, are zero order. Nested schemes may contain any 
combination of zero or higher order attributes on the right hand side of the 
rules as long as the scheme remains nonrecursive. A nested relation is represented 
simply as a higher order attribute on the right hand side of a rule. 

Example I. Consider an expanded version of the employee example used in 
the introduction. The scheme is 

Emp = (employee, Children, Skills), 

Children = (name, dob), 

Skills = (type, Exams), 

Exams = (year, city). 

In this scheme each employee has a set of children each with a name and 
birthdate, and a set of skills, each with a skill type and a set of exam years 
and cities, when and where the employee retested his proficiency at the skill. 
A sample relation is shown in Fig. 1. []  

In this example the higher order attributes are Emp, Children, Skills and 
Exams. All others are zero order attributes. We will generally use capitalized 
names for higher order attributes and uncapitalized names for zero order attri- 
butes. 

2.2. Partitioned Normal Form 

In the relation of Fig. 1, we do not expect two tuples with employee = ' S m i t h '  
since all of Smith's children and skills should be grouped into one tuple. That  
is, there is no significance in separate groups of children or skills. This leads 
us to restrict the set of nested relations to those that are in partitioned normal 
form (PNF). 
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A relation r is in PNF if the zero order attributes in the relation r form 
a key for r, and each nested relation of r is also in PNF. The employee relation 
in Fig. 1 is in PNF. Note that employee is a key for the sample relation, type 
is a key for each Skills relation, and (year, city) is a key for each Exams relation. 
The formal definition is as follows. 

Definition 1 [32]. Let r be a relation on scheme R with attributes ER containing 
zero order attributes A1, A2 . . . . .  Ak and higher order attributes X~, X2, ..., Xt. 
Relation r is in partitioned normal form (PNF) if and only if the following two 
conditions hold: 

1. A1 A2 ...Ak ~ ER. 
2. For  all t~r and for all Xi: l<i<<_l: ~ ,  is in PNF, where ~ ,  is the nested 

relation t [X~] on scheme X~. 

2.3. Nest and Unnest Operators 

We consider now operators for nested relations without null values. The tradi- 
tional relational algebra operators can be used with nested relations. We add 
unnest and nest operators to allow restructuring of nested relations. We state 
the formal definitions of nest and unnest from [32, 381. 

Definition 2. Let R be a relation scheme in database S. Let {B1, B2 . . . .  , B.,} cER  
and C = E R - { B 1 ,  B2, ..., Bin}. Assume that either the rule B=(B1, B2 . . . .  , B,.) 
is in S or that B does not appear on the left hand side of any rule in S. Then 
the nest operator  VB=~B,,B2 ..... n.,)(r) produces a relation r' on scheme R' where: 

1. R'=(C,(B1, BE,. . . ,Bm))=(C,B ) and the rule B= ( Ba ,B  z . . . . .  B,,) is 
appended to the set of rules in S if it is not already in S, and 

2. r ' =  {tp there exists a tuple u ~ r such that t [C] = u [C] ^ 
t [B] -- {v' [B1 B2--. B,,]I v ~ r  ^ v [C] -- t [C] } }. 

Definition 3. Let R be a relation scheme in database S. Assume B is some 
higher order attribute in ER with an associated rule B=(B~, Bz . . . .  ,B,,) in S. 
Let C = E R - B .  Then the unnest operator  #~=~n,,sz ..... B,.)(r) produces a relation 
r' on scheme R' where: 

1. R ' = ( C ,  B1,  B 2 . . . .  , B,,) and the rule B=(BI ,  B2, ..., B,.) is removed from 
the set of rules in S if it does not appear in any other relation scheme, and 

2. r ' =  {tlthere exists a tuple u~r such that t[C] = u [ C ]  
^ t EB1 B z  . . . .  B . 3  ~u  EB] }. 

We will use #* or unnest* to indicate the complete unnesting of a relation 
into a 1NF relation. 

There is not much correspondence between the way most of the relational 
algebra operators work on 1 N F  relations and their counterparts work on nested 
relations. 

Example 2. Consider nested relations r~ and rz of Fig. 2 and their 1NF counter- 
parts, sl and s2. Note, however, that r l n r  2 is not the nested counterpart  of 
s~ ~s2,  as the usual definition of intersection requires that a tuple is in the 
result only if that tuple is in both input relations. []  
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rl r2 r lc~r  2 

A B* A B* A B* 
B B B 

a b a b a b 
b' b' b' 

a' b a' b 
b' b" 

S 1 S 2 S 1 N S 2 

A B A B A B 

a b a b a b 
a b' a b' a b' 
a' b a' b a' b 
a' b' a' b" 

Fig. 2. Intersection applied to nested and 1NF relations 

We believe that each 1NF operator  should have a reasonable nested counter- 
part. Intuitively, a nested operator  is reasonable if it behaves identically to the 
corresponding 1NF operator  on 1NF relations and if it produces a result which 
would have been produced had the equivalent set of 1 N F  relations been used 
instead of nested relations. We take this point of view since the information 
content of a nested relational database is the same as in the corresponding 
1NF relational database. We thus desire the ability both to take advantage 
of the nested structure and easily to simulate the effect of the 1NF operators 
on 1NF relations. In [29, 32], we define in terms of the basic operators  extended 
operators that operate on nested relations and have this "reasonableness"  prop-  
erty. In that paper, we show by example that the extended operators  preserve 
the P N F  property and, thus, are more appealing intuitively in most  cases than 
direct application of the traditional algebra operators. 

3. Null Values in 1NF Relations 

In this section, we briefly review the basic concepts that concern null values 
in 1NF relations. The presentation is based on some of the work of Zaniolo 
1-42, 43]. We distinguish between three types of nulls: 

ni - no-information, 

uuk - unknown, and 

d n e -  nonexistent (or does not exist), 

and extend each domain to include these null values. 
Previous approaches have usually assumed only one of the interpretations 

is valid, unknown by [3, 4, 9, 20-1, and nonexistent by 1-16, 17, 37, 43,1. In [40] 
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b \a  dl d2 ... dn unk dne ni 

dl dt unk unk unk unk ni ni 
d2 unk d 2 unk unk unk ni ni 
: unk unk unk unk ni ni 
d~ unk unk unk d~ unk ni ni 
unk unk unk unk unk unk ni ni 
dne ni ni ni ni ni dne ni 
ni ni ni ni ni ni ni ni 

Fig. 3. Definition of g lb function 

~ 2 ... ~. dne 

unk 

I I 
ni 

Fig. 4. Information lattice 

a combination of the two is proposed in which nonexistence is considered an 
inconsistent state of data. Finally, Zaniolo 1-42] provides a unified approach 
to nulls with the use of a no-information null. This null is less informative than 
either an unknown or a nonexistent null, and can be used to approximate both 
when we don't know whether or not a value exists. As this is the most complete 
and conceptually sound approach proposed to date, it forms the basis of our 
extensions to nested relations. 

Other proposals for nulls are rather sophisticated, involving partial specifica- 
tion [18, 19, 23-25], probability distributions 1-41], and conditional tuples 1-14], 
but it could be argued "that  the complexity of their management is not justified 
by their richer semantics" [2, p. 233]. 

When dealing with incomplete information, we talk about a strength ordering 
of information in which certain tuples will be more informative than others, 
say by having a previously unknown value replaced by an actual value, or 
by finding out that a value for which we previously had no-information is 
now known not to exist. In order to compare values for this purpose we define 
a greatest lower bound function which tells us the most information we can 
infer from two values from the same extended domain. 

Definition 4. Let { d l ,  d2 . . . .  , d,} be a domain and D = {dl, d2 . . . . .  d,, unk, dne, 
ni} the corresponding extended domain. A greatest lower bound function, 
g lb (a, b), between two values a and b from D is defined in Fig. 3. 

This information can also be represented as a lattice with ni as the bottom 
element, unk and dne as more informative nulls than ni, and actual values 
dl,  d2 . . . . .  dn as more informative than unk. (See Fig. 4). 
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Note that the dne null is special in that it does not have a possible, more 
informative, replacement. It is, in fact, a special "va lue"  in itself, for which 
equality is meaningful. That  is, dne = dne, but ni ~e ni and unk :~ unk. 

Our decision to define equality in this manner  is consistent with our open 
world assumption. Assuming ni # ni and unk + unk does not preclude the poten- 
tial existence of values such that equality holds. Rather  our assumption is consis- 
tent with the fact that we cannot prove equality based on the information given 
in the database. 

We now define an information-wise strength ordering of tuples using the 
glb function as follows: 

Definition 5. An X-value s is said to be more informative than a Y-value t, 
written s > t, if for each B ~ Y, if t [B] is not ni then B E X, and for each A ~ X n Y, 
glb(t[A], s [a] )= t [A] .  

Conversely, if s >  t we say that t is less informative than s. The notion of 
more informative is synonymous to the concept of subsumption. We say s sub- 
sumes t when s > t. If  we have two tuples in a relation such that one is more 
informative than the other, then the less informative tuple is redundant  and 
can be removed. Note  that in the absence of nulls, this condition reduces to 
elimination of redundant  identical tuples. If both t > s and s > t, then we say 
t and s are information-wise equivalent and write s ~ t. 

As a running example in this section, we use relation schemes R1 = (employee, 
skill), and R 2 = (employee, child, skill). 

Example 3. Let 

t~ = (Smith, Bill, typing),  t 2 = (Smith, hi, unk)  

denote ER2-Values, and let 

t 3 = (Smith, unk), t 4 = (Smith, typing)  

denote ERl-Values. Then, t x is more informative than t2,  t3,  a n d  t 4. Furthermore,  
t4>t2, t 4 ~ t 3 ,  and t2~-t3 . [] 

For  certain relational operators  it is convenient that all tuples be defined 
over the same set of attributes. With the availability of a no-information null 
we can extend tuples defined over different sets of attributes without changing 
the information content of the tuples. The extension is done by adding attributes 
used in one tuple and not in the other and assigning the value ni to these 
added attributes. 

In order to find the most  informative tuple which characterizes two other 
tuples we define the meet operator  as follows: 

Definition 6. The meet of an X-value, t l ,  and a Y-value, t2, is the XY-value, 
t, written, t 1 ̂  t2, where for each attribute A e X n Y, t [A] = g lb (t x [A], t2 [A] ), 
and for each attribute BCX n Y, t [B] = hi. 
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Example 4. Using the tuples defined in Example 3 we find that 

t 1 A t 3 = t 2 

tl ^ t4 = (Smith, ni, typing). [ ]  

We also generalize the notion of a tuple being an element, or a member 
of a relation as follows. 

Definition 7. A tuple t is an x-element of a relation r, written t~r, when there 
exists a tuple s~r  such that s>t. 

Thus an x-element of a relation is any tuple that is equal to or less informative 
than some tuple in the relation. We also write t~_r to denote ~(t~r). 

Given a set of tuples t l ,  rE, . . . , t , ,  we can eliminate tuples in which all 
attributes have value ni (the null tuple)1, eliminate all tuples less informative 
than some other tuple, and extend all tuples by adding ni values for attributes 
not in the tuple but in some other tuple in the set. This is called tuple set 
reduction and is denoted by 

~t  l , t2 ,  . . . ,  t ,~.  

The notion of being more informative can be extended to relations. 

Definition 8. A relation rl is more informative than, or subsumes, a relation rz, 
written r~ _>--r2, when for each tuple t2~r 2 there is a tuple tier1 with tl ~t2. 

This > relationship is transitive and reflexive, leading to the following defini- 
tion of information-wise equivalence 
Definition 9. The relations r~ and r 2 are information-wise equivalent, written 
r I - - r 2 ,  when rl ~ r 2  and r 2 = r  I . 

The equivalence relation ~ partitions the universe of relations into disjoint 
subclasses. Each class can be represented by a minimal relation in which no 
tuples in the relation are subsumed by a tuple in the same relation. 

Definition 10. A relation r constitutes a minimal representation for a relation 
q when r _  q, r -  q, and ~p ~ r such that p -  q. 

It is straightforward to show that the minimal representation of a relation 
is unique and therefore minimum. 

4. Null Values in Nested Relations 

We extend the definitions of the previous section to handle nested relations. 
The key issue is the interpretation of empty sets. Schek states, " In  the general 
case unnest on empty relations will produce undefined attribute values" [33, 
page 180]. However, if the empty set has a meaning in the relation, then whatever 
it unnests to should have meaning also. In the VERSO model [1], empty sets 
are used as null values for set-valued attributes. However, nulls are not allowed 
for atomic-valued attributes. Thus, when an empty set is unnested the entire 
tuple is deleted from the resulting relation. 

Several researchers have assigned the non-existent interpretation to empty 
set. One of Makinouchi's properties of "not-necessarily-normalized" relations 

1 Even though a null tuple is subsumed by all tuples, it may be the only tuple in a relation, and 
thus should be eliminated 
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is that "A null set (0) may be in the domain of a relation column. 0 means 
exactly non-existence" [-22, p. 448]. In deriving an extended set-containment 
operation for 1NF relations with non-existent nulls, Zaniolo [-43] discusses the 
nested viewpoint. In this development, he assigns the non-existence meaning 
to the empty set, viewing the non-existent null as the image of an empty set 
when mapping from an unnormalized relation to a normalized one. Scholl [36] 
assigns the non-existent interpretation to empty set in his model utilizing a 
closed-world assumption. This is appropriate when utilizing nested relations 
to store data from a 1NF database. Then the empty set appears only when 
dangling tuples are present. 

We believe that the correct interpretation for empty set is the no-information 
one. We have already seen in the definition of tuple set reduction that the null 
tuple is eliminated from any relation even if it is the only tuple in the relation. 
So, in the simplest case of a relation with one attribute, we have that the empty 
relation is equivalent to the relation with the relation containing only the tuple 
(ni). This is consistent with the open world assumption we have been making 
in which we do not assume that the empty relation indicates that no tuples 
belong in the relation but that we currently have no information about the 
world and so we do not know if the tuples belong or not. As we will see, 
this means an empty nested relation should unnest to a no-information, null 
tuple. Our work inspired Gfiting et al. [8], who have taken a similar approach 
but rename the null values so that empty set corresponds to the atomic dne 
null and a new set-valued null, niseq, corresponds to the atomic ni null for 
nested relations. We feel our approach is simpler and leads to more straightfor- 
ward extensions of null value concepts for the nested relational model. 

When nulls are introduced into our model, the concept of more informative 
(or subsumes) must be extended to handle nested relations. The main idea is 
to treat nested relations as values which must be more informative than the 
corresponding nested relation in the less informative tuple. In addition, a null 
tuple which consists of all ni values in the 1 NF model is extended in the nested 
model so that all zero order attributes have ni values and all higher order 
attributes are empty or, equivalently, contain exactly one null tuple. Thus, our 
new definition of more informative, which includes the old one as a special case, 
is as follows. 

Definition 11. Let tl be a tuple on zero order attributes X1 and higher order 
attributes I11, and let t2 be a tuple on zero order attributes X2 and higher 
order attributes Yz. The tuple t~ is said to be more informative than the tuple 
t z when: 

1. for each B~X2,  if t2[B] is not ni then BeX~,  

2. for each Ce Y2, if t2 [,C] contains a tuple that is not null then C~ Y1, 

3. for each A ~ X 1 c~ X2, g lb (t 1 [-A], t2 [-A] ) = t2 [,A], and 

4. for each De Y~ n I12 and tuple u2et2 [D], there exists some tuple ul ~tx [D] 
which is more informative than u2. 

Example 5. Recall the Emp scheme and sample relation introduced in the pre- 
vious section (see Fig. 1). If a new employee, say Jones, is added to the database 
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and we do not know anything about him except his name, then we would 
add the tuple (Jones, { }, { }), or, equivalently, (Jones, {(ni, hi)}, {(ni, 
{(hi, ni)}}). If we find out later that Jones has no children and has some 
skill for which he took a 1981 exam, we could update the tuple to (Jones, 
{(dne, dne)}, {(unk, {(1981, unk)})}). [] 

There is an aspect of our definition of more informative which goes beyound 
nulls. Consider the following tuple 

(Smith, {(Sam, 2/10/84)}, {(ni, {(ni, ni)})}). 

According to Definition 11, this tuple is less informative than the one in Fig. 
1. Note that the Children attribute in the original "Smith" tuple is a nested 
relation with two tuples while in the new tuple only one of the Children tuples 
exists. This reasoning stems from our interpretation of the relationship between 
the attributes in nested relations. Nested relations are not nondecomposable 
values, so that it is the tuples of the nested relation that are related to the 
other attributes. Thus an employee is related to each child and there is no 
particular significance to sets of children. Similar reasoning about the significance 
of sets led to our definition of PNF. However, the requirement of PNF is a 
somewhat different notion than that of subsumption, as the following example 
shows. 

Example 6. Let tl =(Smith, {(Sam), (Sue)} and t2=(Smith, {(Sue), (Bill)}) 
be tuples from a projected employee relation. We have that tl ~ t2 and t2 ~ tl, 
but under PNF tl and t2 would be combined into t3=(Smith,{(Sam),  
(Sue), (Bill)}). [] 

The definitions of x-element (~), and tuple set reduction (~set of  tuples~), from 
Sect. 3, carry over to nested relations in a straightforward manner. However, 
the meet of two tuples must be extended to handle nested relations. This can 
be done using the glb function for zero order attributes and applying the defini- 
tion recursively for higher order attributes. 

Definition 12. Let U be the attributes on which two tuples tl and t2 are defined, 
where tl and t: have been extended to U with the addition of ni values for 
zero order attributes and single null tuple relations for higher order attributes, 
if necessary. A tuple t is the meet of t~ and t2, written t~ ^ t2, when for each 
zero order attribute A ~ U, t [A] = g l b(q [A], t2 [A] ), and for each higher order 
attribute X e U, t [X] = {s A U Ise t~ [X] and u ~ t2 [X] }. 

Finally, the ideas of more informative relations, information-wise equivalence 
and minimal representations for a relation all have the same definitions when 
we substitute the nested version of subsumption. 

5. Extended Operators 

In this section, we extend the relational algebra in several steps. First, we consider 
extending the 1 NF algebra to include nulls, then an extension to the nested 
relational algebra, and finally the extension of the nested relational algebra 
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to include nulls. As before, we assume that all relations are in PNF. Our definition 
of PNF relies on the definition of functional dependency in which we test equality 
of attribute values. As discussed in Sect. 3, ni+ni ,  nnk:~unk, and dne=dne. 
We treat the dne null as any other domain value and, unless otherwise specified, 
any future reference to null will include only ni and unk nulls. Here we are 
concerned with only the single application of operators rather than composition 
of operators. See [24] for a treatment of issues with null values in 1NF relational 
expressions. Some of the following presentation is based on [21, Sect. 12.4]. 

5.1. Classes of Relations 

In order to define our extensions to the relational algebra, we define classes 
of relations corresponding to 1NF relations and nested relations, with and with- 
out nulls: 

- Rel: the set of all 1NF relations having no nulls 

- Rely: the set of all 1NF having at least one null value 

- Rel*: the set of all nested relations having at least one higher order attribute 

- Rel T*: the set of all nested relations having at least one higher order attribute 
or at least one null value. 

We denote the restriction of Rel, Relt ,  Rel*, and RelT* to scheme R by Rel(R), 
ReI T (R), Rel* (R), and Rel T * (R) respectively. Observe that Rel* u ReI T =Rely* 
and Rel c~ Rel T* = O. 

5.2. Possibility Functions 

We relate a relation containing null values with the set of null-free relations 
that subsume it. This relationship is defined by a possibility function. We shall 
consider two such functions: 

- POSS, relating Rel and Rel~ 

- POSS*, relating Rel and RelT*. 

A relation r in Rel T (R) represents a set of relations from Rel(R) that subsume 
r. Each such relation in Rel(R) is called a possibility for r. The set of possibilities 
for r is denoted by POSS(r), which is defined as: 

POSS(r) = (qlq~Rel(R) and q > r}. 

The above definition could be applied to nested relations as well. However, 
this could result in a PNF relation having non-PNF possibilities. To illustrate 
this, consider a relation containing the two tuples (hi, {(a)})  and (ni, {(b)}). 
If we allow both ni nulls to be replaced by the same value x, the result is 
a non-PNF relation containing (x, {(a)})  and (x, {(b)}). We choose instead 
to consider only PNF possibilities and would thus consider (x, { ( a ) , ( b ) } )  
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in this case. Formally, the set of PNF possibilities for relation r on scheme 
R is denoted POSS*(r), and is defined as: 

POSS* (r) = {qlq ~ Rel* (R) w Rel(R) and q > r and q is in PNF}. 

5.3. Faithfulness and Precision of Generalizations 

In this section we present the criteria that we use to establish the correctness 
of our extended operators for nested relations with null values. We start by 
extending the definition of relational operators to map sets of relations to other 
sets of relations. 

Definition 13. For sets P~ and P2 of relations and relational operator 7, 

and 
7(PJ = {y (q)[qeP~} 

P1 7P2 = {q, 7q2 I q, eP~, q2 eP2}. 

Our criteria for correctness of an extended operator is that it be faithful 
and precise. 

Definition 14. Let P and P' be classes of relations and ? and 7' operators on 
P and P w P' respectively. 

We say that y' is faithful to 7 if one of the following two conditions holds: 

1. When 7 and 7' are unary operators, y(r)=y'(r)  for every r~P for which 
7 (r) is defined. 

2. When Y and 7' are binary operators, rTq=rT'q for every r, qeP for which 
rTq is defined. 

Definition 15. Let P and P' be classes of relations and 7 and Y' operators on 
P and P' respectively. Let ~ be an operator on P u P'. We say 7' is a precise 
generalization of 7 relative to ct if one of the following two conditions holds: 

1. When y and 7' are unary operators, a(y'(r))=?(~(r)) for every r~P'. 
2. When ? and 7' are binary operators, aft7'  q)= aft) 7 a(q) for every r, qr 
Our generalization of relational operators to sets of relations allows a to 

map relations to sets of relations. We shall use this subsequently when we consid- 
er ~ to be a possibility function. 

We shall see that for some choices of a, not all relational operators have 
a precise generalization relative to a. In these cases, we consider the weaker 
notion of an adequate and restricted generalization which captures 7(a(r)) or 
aft) 7a(7) and as little extra as is possible. 

Definition I6. Let P and P' be classes of relations, and 7 and 7' be operators 
on P and P' respectively. Let ~ be an operator on P u P'. We say that operator 
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?' is an adequate generalization for 7 with respect to ~ if one of the following 
two conditions holds: 

1. When 7 and Y' are unary operators, ct(7'(r))~7(ct(r)) for every reP ' .  
2. When 7 and Y' are binary operators, ct(rT'q)~(r)  Tot(q) for every r, qeP ' .  

Furthermore, we say that operator 7' is a restricted generalization for 7 with 
respect to ~t if one of the following two conditions holds: 

1. When 7 and 7' are unary operators, for every r~P' ,  there is no p in P' 
such that ct (7' (r)) +~ ~ (p) _ 7 (~ (r)). 

2. When 7 and 7' are binary operators, for every r, q~P', there is no p in 
P' such that ~(ry' q) +~ a(p)_ ~(r) Tot(q). 

Clearly, if 7' is precise for 7, then 7' is adequate and restricted for 7. We 
would also like the generalized operators to have properties that the standard 
operator possesses, such as commutativity or associativity. For example, if 7 
is an associative binary operator, we want a generalization 7' to satisfy: 

(pT' q) 7 ' r=pT ' (q? ' r )  

for p, q, r~P' .  Finally, we would like the generalized operators to return only 
minimal relations given minimal relations as input. 

Generalizations of the standard operators relative to P O S S  appear in [42, 
43]. These generalizations are faithful, and at least adequate and restricted, 
if not precise. 

6. Nested Operators 

We now define nested operators which are both faithful and precise and, more- 
over, they also have some intuition behind them. In [32], we defined some 
extended operators in order to work within the domain of PNF relations. We 
now discuss these extensions in light of the above requirements. 

In order to take the extended union of two relations r 1 and r2 we require 
that they be defined over equal relation schemes, say R. The scheme of the 
resultant structure is also R. We define extended union, denoted by U e, at the 
instance level as follows. 

Definition 17. Let r~ and r2 be relations on scheme R. Let X range over the 
zero order attributes in ER, and let Y range over the higher order attributes 
in ER. The extended union of r 1 and r2 is: 

rl ~)er2= {t l(Stl  6r l  A 3t2~r2: (VX, Y~ER: 

t I X ]  = t 1 I X ]  : t 2 I X ]  A t [ Y ]  = (t 1 [ Y ]  k.) e t 2 [ Y ]  ))) 

v (t e r 1 ̂  (V t' ~ r 2 : (VX ~ E R �9 t [-X] # t' [X] ))) 

v (t ~ rE ^ (V t' e r 1 : (V X e ER: t [X] # t' [X])))}. 

Note, this definition is recursive in that we apply the extended union to each 
higher order attribute Y. 
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rl  r2 r l  u ~ r2 /z* (rl  u ~ r2) 

A B* C* A B* C* A B* C* A B C 
B C B C B C 

a b c a b' c a b c a b c' 
c' n' c' a b c' 

a b' c 
a b' c' 

/~* (r 1) /t* (r2) /t* (r 0 u/~* (r2) 

A B C A B C A B C 

a b c a b' c a b c 
a b c' a b c' 

a b' c 

Fig. 5. Coun t e r example  to preciseness of O e 

Extended union is not a precise generalization of standard union with respect 
to unnesting. Figure 5 shows two nested relations rl and r2 where #*(rl uer2) 
:~/~*(rl)u#*(r2). Extended union is not precise due to the syntactic nature 
of standard union. Standard union does not take into account dependencies 
that should exist in a relation if it is going to be nested. If we agree that only 
relations from Rel* which are in PNF  should be allowed, then each nesting 
scheme is allowed if and only if certain multivalued dependencies hold in the 
completely unnested relation. 

If we use a modified version of standard union which takes into account 
the MVDs or, equivalently, the join dependency which produces the nested 
structure, then we have a precise extended union operator. 

Definition 18, Let*(X1, X2 . . . . .  Xn) be a join dependency on scheme R with 
zero order attributes ER= X~ k-) X 2  k.) "'" t..) X n.  The decomposition union (or A- 
union), denoted by U a, of two 1NF relations r~ and r 2 on R is 

rl u a r2 -- t~(r l  I-X1] w r 2 l-X1], rl I-X2] u r 2 IX2], . . .  , r 1 [ X J  u r 2 [Xn] ) 

where ~,~ is the standard natural join. 
Extended difference, denoted by - e  also has the same scheme requirements 

as union. In r l - e r 2  a tuple is retained from rt if it does not agree with any 
tuple in r E on the zero order attributes or if it does then it has non-empty 
extended differences between the higher order attributes. 

Definition 19. Let rl  and r 2 be relations on scheme R. Let X range over the 
zero order attributes in E R and let Y and Z range over the higher order attributes 
in E R . The extended difference of r I and r 2 is: 

r 1 - - e r  2 = {tl(~tl~r 1 ̂  3 t 2 ~ r  2 A 3 Z ~ E R :  ( V X ,  Y)~ER: 
t [X]  = tl IX] = t2 I-X] ^ t [Y]  =( t l  I-Y] --et2 [Y]) ^ t [ r ]  4:0)) 
v (t~r 1 ̂  (Vt'~r2: (VXCER: t [X]  4: t '[X])))}. 
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The extended difference operator has semantic complications similar to 
extended union. Extended difference is not a precise generalization of standard 
difference with respect to unnesting. This leads us to define the decomposition 
difference. 

Definition 20. Let *(X1, X2 . . . . .  X,) be a join dependency on scheme R with 
zero order attributes E R = X  1 u X 2 k.).., k g X  n. The decomposition difference or 
A-difference, denoted by _a ,  of two 1NF relations rl and r2 on R is 

rl _ a r2 = t~a(r 1 [X1] -- r2 [X1], rl [X2] - r2 [X2], ..., rl [X,]  - r 2 [X,] )  

where ~ is the natural join. 
In the standard natural join, two tuples contribute to the join if they agree 

on the attributes in common to both schemes. Under extended natural join, 
two tuple contribute to the join if the extended intersection of their projections 
over common attributes is not empty. 

Definition 21. Let X be the higher order attributes in ER, nER2 , A = E R , - X ,  
and B = ER2--X. Then the extended natural join of r 1 and r2, denoted by r a ~,<e r2 
which produces a relation r on scheme R where: 

1. R = (A, X, B) and 
2. r= {tl(~u~rl, v ~ r 2 :  t[A] = u [ A ]  ^ t[B] = v [ B ]  ^ 

t [X] = (u IX] n e v IX])  ^ t IX] # O}. 
Extended projection is a normal projection followed by a tuplewise extended 

union of the result. The union merges tuples which agree on the zero order 
attributes left in the projected relation. 

Definition 22. The extended projection of relation r on attributes X, denoted 
by n e is: 

e 

U (t) 
tExx(r) 

Note, that projection removes duplicate tuples; that is, those which agree on 
all attributes, with set equality holding on higher order attributes. 

The following propositions summarize the faithfulness and preciseness results 
for the extended operators. Detailed proofs for all operators can be found in 
[293. 

Proposition 1. Extended union, intersection, difference, natural join, and projection 
are faithful to standard union, intersection, difference, natural join, and projection, 
respectively. 

Proposition 2. Extended union and extended difference are precise generalizations 
of A-union and A-difference with respect to unnesting. 

Proposition 3. Extended intersection is a precise generalization of standard inter- 
section with respect to unnesting. 

Proposition 4. Extended natural join is precise generalization of standard natural 
join with respect to unnesting. 

Proposition 5. Extended projection is a precise generalizatin of standard projection 
with respect to unnesting. 
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Teacher Course 

v'0 ..... ,=~ ...... ~(r) 

Teacher Course* 
Course 

Smith Math  1 Smith Math  1 
Smith Math  2 Math  2 
dne Math  5 dne Math  5 
dne Math  6 Math  6 
ni Science 1 ni Science 1 
ni Science 2 ai Science 2 

(a) (b) 

Fig. 6. Example of nest  with null values 

6.1. Null Nest and Unnest 

In this section we consider the semantics of nest and unnest in the presence 
of nulls. 

6.1.1. Null-nest. When null values occur as values of attributes which are being 
nested, then no special rules need apply. We could use tuple set reduction on 
each nested relation, but if we assume that the input relation is minimal then 
the new relation and its new nested relations will all be minimal as well. Problems 
in the standard definition of nest arise when nulls are values of the partitioning 
attributes. The question is whether we equate nulls for partitioning purposes. 
At first glance, equating nulls would be advantageous in that we could have 
a succinct notation for grouping all values for which we do not have a fully 
defined partition value. However, doing this grouping would give the impression 
that one value could replace the null for all members of the group. Since this 
is not generally true, we should not equate no-information and unknown nulls, 
when partitioning the relation. The does not exist null is a special case though. 
Since there is no value which can replace a tlne null, it is appropriate to nest 
all tuples which have that property together. Thus, our definition of null-nest 
(v') is not different from standard nest except that two attribute values are 
considered equal iff they are both the same domain value or they are both 
dne nulls. This is consistent with our definition in Sect. 3 of equality applied 
to nulls. 

Example 7. Consider the 1NF relation of Fig. 6a. Suppose that we want to 
nest all courses taught by each teacher. For  the two "Smith"  tuples the standard 
nest applies and we get the single tuple with "Math  1" and " M a t h 2 "  together 
in a nested relation. The same applies to the two tuples with dne nulls. These 
two tuples indicate that " M a t h 5 "  and " M a t h 6 "  are courses that exist, but 
there are not teachers teaching them, so we can group these courses together 
as courses for which there is no teacher. If we find that our  information was 
wrong and " M a t h 5 "  does have a teacher then we would be forced to update 
this tuple just as if we found out the "Smi th"  is not really teaching "Math2" .  
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Finally, the two tuples with ni nulls are nested singly, since we have no assurance 
that they will be in the same partition when more information is found out 
about them. In this case, the two courses may be newly added ones, for which 
we know nothing about who will teach them or even if they will be taught. 
Figure 6b shows the nested relation. [] 

Consider the nested relation of Example 7. Using POSS, one possibility 
for this relation is constructed by replacing the ni nulls with the same value, 
say "Jones". As a result, we no longer have a PNF relation. An alternative 
possibility, representing the same information, is constructed by replacing the 
(hi, {(Science 1)}) and (hi, {(Science2)}) tuples with the single tuple, (Jones, 
{(Science 1), (Science 2)}). The resulting relation is in PNF. Therefore, we will 
use POSS*, rather than POSS as our possibility function. 

Proposition 6. Null-nest (v') is a precise generalization of  standard nest (v) with 
respect to POSS*. 

Proof Let X be the attributes of r being nested. We show that POSS*(v's=tx)(r)) 
= vn = tx)(POSS* (r)). We show inclusion both ways. Let p = v~ =tx)(r). 
_ Let pePOSS* (p). There are two cases depending on the assignment by POSS* 

to null values in the partition keys of p. In the first case, if POSS* assigned 
the same value to nulls in otherwise equal partition keys of p, then these 
tuples will be combined by the PNF requirement of POSS*. By making 
this same assignment of nulls directly to r, then nesting will also combine 
these tuples. In the second case, if we make the ~ame assignment to nulls 
in 10 and in r, then nesting on POSS*(r) will also produce 10. Thus, 

e vs = (x)(POSS* (r)). 
_ Let l~Vn=tx)(POSS*(r)). There must be ~ P O S S * ( r )  such that/~=vn=tx)(f). 

Consider the assignment of values made by POSS* in f. If we, in POSS* (p), 
make the same assignment to the corresponding nulls in p, then we get 
also i0. Thus, Or 

We conclude that v' is a precise generalization of v for POSS*. [] 

6.1.2. Null-unnest. If nested relations are inserted into our database solely by 
application of the nest operator to relations in 1NF, then the standard definition 
of unnest can apply to relations with nulls and there are no problems. However, 
if we allow arbitrary nested relations then unnesting can produce non-minimal 
relations and cause loss of information. 

Example 8. Recalling the database scheme of the previous example, consider 
a relation r with two tuples tl = (Jones, {(Math) ,  (Science)}) and t2 
= (hi, {(Math) ,  (English)}).  If we unnest r, then the resulting (hi, Math)  tuple 
is less informative than the (Jones, Math)  tuple. Thus, even though tl and 
t2 form a minimal relation, their unnested counterparts do not. [] 

The problem with arbitrary nested relations is they allow the misuse of 
ni and unk nulls in the partition attributes. Our previous discussion of the 
nest operator showed that when an ni or a nnk null is in one of the partition 
attributes, then the nested relation should have cardinality of one. But, one 
can argue that we may know that, say, two tuples are both related to one 
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undetermined value and we should take advantage of that fact and store those 
two tuples in the same nested relation. If this is true, then an answer is to 
use marked ni and unk nulls [37]. Then a tuple can be subsumed only if its 
marked nulls do not exist in any tuple other than the subsuming tuple. Using 
marked nulls also avoids some loss of information. In the previous example, 
if we unnest r and then perform the reverse nest operation, we would find 
three tuples in the result as the tuples with ni as the teacher value would not 
be nested together as per our previous arguments. It would be appropriate 
to equate identical marked nulls and so a nest would return the original relation. 
Although we do not deal explicitly with marked nulls in this paper, our results 
extend naturally to a model that includes them. 

Another reason for our treatment of ni and unk is so that null-unnest is 
a precise generalization of the standard operator. In Example 8, every relation 
in ~t ..... e,(POSS*(r)) must contain (x, Math)  and (x, English) for some value 
x. However, there are relations in POSS*(#'c .... e,(r)) which do not have both 
of these tuples for some value x. So, under the assumption that tuples with 
ni or ank nulls in the partition attributes of a relation (nested or otherwise) 
have only single tuple nested relations for each higher order attribute, our defini- 
tion of null-unnest (if) is unchanged from the standard unnest definition. Fur- 
thermore, we can prove that null-unnest is a precise generalization. 

Proposition 7. Null-unnest (p') is a precise generalization of standard unnest (#) 
with respect to POSS*. 

Proof. We show that POSS* (/~(r)) = ItB(POSS* (r)). Let p =/z~(r). 
_~ Let pePOSS*(p). If we make the same assignment to the nulls in p as in 

the nested relation r then pe#B(POSS*(r)). This is possible since we assume 
that tuples in r with null values in the partition keys have single tuple nested 
relations. Therefore, there is a one-to-one correspondence between these null 
values in both r and p. 

___ Let ~#B(POSS*(r)). Then there must be ~POSS*(r) such that iO=/~B(~ ). 
Let tp be a tuple in p. Now, tp unnested from some tuple t, in r, which 
has some PNF possibility t~e~ such that te>t ,  Let tp=/~B(te). Then, we 
have tp > tp. We conclude that i0 > p and so p~POSS* (p). 

We conclude that null-unnest is a precise generalization of standard unnest 
for POSS*. [] 

With this result we can now show that the null-unnest* operator (~t'*) is 
a precise generalization of the standard unnest* operator. 

Corollary 1. Null-unnest* (if*) is a precise generalization of standard unnest* 
(1~*) with respect to POSS*. 

Proof. Apply the same argument as for Proposition 7, only use complete unnest- 
ing instead of single unnesting. [] 

6.2. Null-extended Operators 

Let Rel'r* represent the set of all relations which are not in 1NF or which 
contain a null value. Thus, Rel*uReIT=RelT* and Relc~Rel~*=O. Our goal 
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is to generalize the nested operators to deal with null values. We have two 
choices for our definition of a precise generalization for the operators with 
respect to a composition of unnesting and the PNF possibility function. We 
can either apply the PNF possibility function first and then unnest the result 
or we can unnest first and then apply the PNF possibility function, resulting 
in the following two definitions. 

Definition 23. Let 7 be an operator on Rel and let 7'* be an operator on RelT*. 
We say that 7'* is a precise generalization of 7 relative to unnesting and PNF 
possibility function POSS* if one of the following two conditions holds: 

1. when 7 and 7'* are unary operators, p*(POSS*(7'*(r)))=7(#*(POSS*(r))) 
for every r~RelT* for which 7'*(r) is defined. 

2. when 7 and 7'* are binary operators, #*(POSS*(rT'*q))=#*(POSS*(r)) 
7 P* (POSS* (q)) for every r, q ~ Rel'f* for which r T'*q is defined. 

Definition 24. Let 7 be an operator on Rel and let 7'* be an operator on RelT*. 
We say that 7'* is a precise generalization of 7 relative to unnesting and P N F  
possibility function POSS* if one of the following two conditions holds. 

1. when 7 and 7'* are unary operators, POSS* (#'* (7'* (r))) = 7 (POSS* (#'* (r))) 
for every r~Rel~f * for which 7'*(r) is defined. 

2. when 7 and 7'* are binary operators, POSS*(#'*(rT'*q))=POSS*(#'*(r)) 
7 POSS* (#'* (q)) for every r, q ~ Rel y* for which r7'* q is defined. 

Theorem 1. Definitions 23 and 24 are equivalent. 

Proof. By Corollary 1, we know that null-unnest* is a precise generalization 
of standard unnest* for POSS*. Thus, the definitions are equivalent. []  

There are corresponding definitions of adequate and restricted for Rely*, 
and there are three specifications of faithfulness we could use: comparing rela- 
tions in Rely* to relations in Rel, ReIT, and Rel*. The proofs of faithfulness 
are straightforward and so we shall omit them in what follows. 

6.2.1. Null-extended union. Our definition of null-extended union can be revised 
to accommodate nulls by adding tuple set reduction as follows. 

Definition 25. In order to take the null-extended union of two relations r 1 and 
r 2 we require that they have equal relation schemes, say R. The scheme of 
the resultant structure is also R. We define null-extended union at the instance 
level as follows. Let X range over the zero order attributes in E R and Y range 
over the higher order attributes in ER. The null-extended union of rl and r2 
is: 

r l  k-)e'r2 = ~tl(3h ~rl ^ 3t2~r2: (VX, Y~ER: t[X] 
= t l IX] = t2 IX] ^ t [ Y] = (t 1 [ Y] ue' t2 [ Y]))) 

v (terl A (Vt'er2: (VXeER: t[X] ~ t '[X]))) 

v (t E r 2 A (V t' E r 1 : (VX ~ ER: t [Xl  4= t' [X] )))~. 

Note, this definition is recursive in that we apply the null-extended union to 
each higher order attribute Y. 

Proposition 8. Null-extended union is a precise generalization of A-union with 
respect to unnesting and PNF possibility function POSS*. 
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Proof We show that #* (POSS* (r ue'q)) = tz* (POSS* (r)) ua#* (POSS* (q)). By 
Proposition 2, we know that extended union is a precise generalization of A- 
union, and so/~* (POSS* (r)) w ~/z* (POSS* (q)) = #* (POSS* (r) ue POSS* (q)). Thus, 
we only need to show that POSS*(rwe'q)=POSS*(r)w~POSS*(q). We show 
inclusion both ways. Let p = r ue' q. 
_ Let p~POSS*(r)w"POSS*(q). There must be ~ePOSS*(r) and OePOSS*(q) 

such that p=~weo. Let tp be a tuple in p. Either tper, tpeq, or t~ is a 
combination of tuples in r and q with equal partition keys. If tpsr, there 
is a tuple tp~f such that t~>tp. Now, tp is either in /~ or is included in 
a combined tuple of/~, since the null values of some partition key may 
have been assigned values that make the partition key non-unique. In any 
case, this tuple subsumes tp. A similar argument can be made if tpeq. If 
tp is a combination of tuples in t and q, then there are no null values in 
the outer most partition key. Therefore, in/L these tuples will also combine, 
and there is a possibility which subsumes tp. We conclude /)>p, and so 

~ POSS* (p). Therefore, POSS* (p) ~_ POSS* (r) w ~ POSS* (q). 
=_ Let pePOSS*(p). Since p>>_r, ~>r and/~ is in PNF. Therefore, pePOSS*(r). 

Similarly,/~ e POSS* (q). Then, i0 E POSS* (r) u ~ POSS* (q), and so POSS* (p) =_ 
POSS* (r) u e POSS* (q). 

We conclude that null-extended union is a precise generalization of standard 
union for POSS*. [] 

6.2.2. Null-extended difference. We change the definition of extended difference 
to include null values by keeping tuples in a relation only if they are not sub- 
sumed by some tuple in the other relation. 

Definition 26. Let rl and r2 be relations on scheme R. Let X range over the 
zero order attributes in ER and Y and Z range over the higher order attributes 
in E R . The null-extended difference of r 1 and r 2 is: 

r 1 - - e ' r  2 = {t [(3t I c r  l A 3 t 2 e r  2 A 3ZeEa: 

(VX, Y~E a: t [X] = t 1 [X] = t2 [X] ^ t [Y] = (tl [Y] - e, t2 [Y]))) 

v (tErl ^ (Vt'erz:-7 ( t '> t)))}. 

Proposition 9. Null-extended difference is an adequate and restricted generalization 
of d-difference with respect to unnesting and possibility function POSS*. 

Proof We show adequacy and then restrictedness. 

adequate: We show/~* (POSS* ( r -  e, q)) ~ #,  (POSS* (r))- #* (POSS* (q)). By Prop- 
osition 2, we know that extended difference is a precise generalization of A- 
difference, and so /~* (POSS* (r))- ~ kt* (POSS* (q)) = #* (POSS* (r)- e POSS* (q)). 
Thus, we need only show that POSS*(r-e'q)~_POSS*(r)-ePOSS*(q). Let p 
=r-e 'q ,  and ~ePOSS*(r)-ePOSS*(q). Then, there exists ~POSS*(r) and 
O~POSS*(q), such that ~ = ~ - e  O. Let tp be a tuple in p. Then, tp must be in 
r with, perhaps, some of its needed relations reduced by interaction with a 
tuple tq in q. Therefore, there must be tuples t~e~ and t~EO which will also 
interact in the same way, noting that interaction occurs only when the zero 
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order attributes have non-null values. Thus there is a tuple tp=t~--et~ in /~, 
such that t~>tp. We conclude that p>p and so p~POSS*(p). Therefore, 
POSS* (p) ~_ POSS* (r)-e POSS* (q). 
restricted: We show that there does not exist p such that #*(POSS*(r 
_ e, q)) ~+ ~t* (POSS* (p)) ~ #* (POSS* (r))- ~ #* (POSS* (q)). As in the case for ade- 
quate, we need only show that there does not exist p such that POSS*(r 
- e'q) ~+ POSS* (p) ~_ POSS* (r)- ~POSS* (q)). Suppose there is some p. If 
POSS*(r-e'q)~_POSS*(p), then there must be some tuple t in p that does not 
subsume any tuple in r - ' q .  This means that the non-null valued zero order 
attributes X of t, or some nested relation in t, do not match any tuple on 
X in the corresponding place in r-~'q. Let z be the relation (either r or a 
nested relation in r) and t' the tuple in z where the matching does not occur, 
and w be the corresponding, possibly empty, relation in q. There are two possible 
reasons for there not being a match: either t '[XJ~z and 3s~w: s>t', or 
t' [X] Cz [X]. In each case, the corresponding relation in POSS* (p) must contain 
a tuple which subsumes t', however, POSS*(r)-POSS*(q) contains a relation 
in which the corresponding relation does not. In the first case, the possibility 
of t' can be eliminated by the possibility of s in w that subsumes it, and in 
the second case, simply choose not to include t' in POSS*(r). Therefore, 
POSS* (p) ~ POSS* (r)-  POSS* (q), which is a contradiction. 

We conclude that null-extended difference is an adequate and restricted general- 
ization of A-difference for POSS* with respect to unnesting. []  

6.2.3. Intersection, Cartesian Product, and Select. We will not formally define 
"null-extended" versions of these operators. A null-extended intersection can 
be obtained from union and difference by 

rl (.~e, r2 =(rl t..)e, r2) e, ((rl e, r2 ) ue,(r2 __e, r,)). 

We note also that null-extended intersection is an adequate and restricted gener- 
alization of standard interscction with respect to unncsting and PNF possibility 
function POSS*. As in the previous two sections we will use the standard carte- 
sian product operator. For select we will use null-select, which uses our notion 
of equality of nulls and is otherwise identical to standard sclect. 

6.2.4. Join. The problems involved in defining join operations for relations with 
nulls and for nested relations have becn discussed before. Combining nulls with 
nested relations does not improve the situation. However, our limited operator, 
extended natural join, does have an adequate and restricted gcneralization with 
respect to PNF possibility function POSS*. 

Definition 27. Lct X be the higher order attributes in ER~ c~ER~, A=ER,-X, 
and B = E R 2 -  X. Then the null-extended natural join is r l t ~  e' r 2 which produces 
a relation r on scheme R where: 

1. R = (A, X, B), and 
2. r= {tl(3uerl, ver2: t[A] = u [ A ]  A t[B] = r I B ]  A 

t IX] = (u IX] c~ ~'v IX] ) A t IX] * 0}. 
Note we use null-extended intersection to combine the nested relations, and 
that zero order attributes can only have equal values if neither is ni or unk. 
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Proposition 10. Null-extended natural join is an adequate and restricted generaliza- 
tion of standard natural join with respect to unnesting and PNF possibility function 
POSS*. 

Proof By Proposition 4 we know that extended natural join is a precise general- 
ization for standard natural join. Therefore, we need only show that null- 
extended natural join is an adequate and restricted generalization of extended 
natural join. We show adequacy and then restrictedness. 
adequate: We show POSS* (r ~<e, q) ~ POSS* (r) ~<~ POSS* (q). Let p = r ~ '  q and 
~r Also, let C be the common zero order attributes of 
r and q. Then, there must be ~ePOSS*(r) and ~ePOSS*(q) such t h a t / ~ = ~ - ~  0. 
Let t v be a tuple in p. Then, there are tuples t ,e r  and tq~q such that tp[C] 
-~tr[C]:tq[C']. There are also tuples t ~  and t q ~  that agree on C with t v 
and will participate in the join giving t~. Now, the common higher order attri- 
butes X of t~ and tp will participate in an extended intersection, the result of 
which will subsume the result of the null-extended intersection of tr[X] and 
ta [X]. Therefore, tp > t v, ~ >__ p, and so/~ ~POSS* (p). 
restricted: We show that there does not exist p such that 
POSS*(r~,< ~'q)~+POSS*(p)~_POSS*(r)~ePOSS*(q). Suppose there is some p. 
If POSS*(r~< e' q)~+POSS*(p), then there must be some tuple t in p that does 
not subsume any tuple in r ~  e' q. Thus, t contains non-null values which must 
occur in any possibility of p, but not in all possibilities of r~.,a ~' q. Consider 
the possibilities for tuples in r and q which could exist to join to make a possibili- 
ty for t. Since t does not subsume any tuple in r ~  e' q, it must either have 
projections on the common zero order attributes that are null or different actual 
values, or have different actual values in a common nested relation. In the 
first case, there is a possibility for tuples in r and q which set the null value 
to different actual values, and so they do not participate in the join. In the 
second and third case, there are possibilities which do not have those different 
values, yet there are possibilities of r and q which do not. Therefore, there 
is a possibility of r and q whose extended join is not a possibility of p. So, 
POSS* (p) 7~ POSS* (r)~,<~ POSS* (q), which is a contradiction. 
We conclude that null-extended natural join is an adequate and restricted gener- 
alization of standard natural join with respect to unnesting and PNF possibility 
function POSS*. [] 

6.2.5. Null-extended Projection. We define null-extended projection as an 
extended projection followed by tuple set reduction, or as a tuple-wise null- 
extended union of the usual projection. 

Definition 28. The null-extended projection of relation r on attributes X is 
e !  

n~(r)=~tlt~Ir~(r)~= U (t). 
t~r[X] 

Proposition 11. Null-extended projection is a precise generalization of standard 
projection with respect to unnesting and PNF possibility function POSS*. 

Proof Since the only difference between null-extended projection and extended 
projection is removal of subsumed tuples, the proof mirrors the proof for null- 
extended union (Proposition 8). [] 
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i" 

A B C D 

a 1 dne cl dl 

a l  dne c 2 d 2 
a2 b cl dl 

a 2 b c 2 d2 
a2 b c2 dt 

a 2 b cl d2 

Fig. 7. R e l a t i o n  sa t i s fy ing A --* -* B a n d  B ~ ~ C, b u t  n o t  A ~ ~ C w h e n  dne nul ls  a re  no t  e q u a t e d  

7. Dependencies in a Database with Null Values 

A key assumption made in this paper has been the requirement of partitioned 
normal form. In the definition of PNF, we assume that certain multivalued 
dependencies must hold in a 1NF relation before it can be legally nested into 
a particular form. Furthermore, multivalued dependencies imply functional 
dependencies in the nested relation. Therefore, it is important to determine what 
effect the addition of null values will have on these dependencies. 

In this section we will discuss the previous work on extending dependencies 
to deal with nulls, providing some new clarifying information. We will examine 
how these dependencies interact with the non-existent, unknown, and no-infor- 
mation interpretation of nulls. 

7.I. Non-existent Nulls 

In [17], a sound and complete axiomatization for functional and multivalued 
dependencies is given for a relational model in which due nulls are allowed. 
In this model, fine nulls are not considered equal to each other. Notably missing 
from the inference rules for both FDs and MVDs is the transitivity rule. The 
problem occurs when due nulls appear in the attribute that implements the 
transitivity, as the application of the FD and MVD rules is denied when null 
values are present on the left hand side of the rule. 

An example for MVDs is a relation r on scheme R =(A, B, C, D) where 
A --* ~ B and B ~ ~ C hold, but A ~ ~ C does not hold (Fig. 7). 

We assume a model of a relation in which tuples or fragments of tuples 
represent fundamental relationships in the world being modeled. Each set of 
attributes that is involved in one of these fundamental relationships is called 
an object [5]. On examining the first two tuples in relation r, it must be true 
that there is an object involving attributes A, C, and D, and no subset of them. 
Otherwise, we would have to add two tuples matching the first two tuples 
in r but with the C and D values swapped. However, on examining the last 
four tuples, where dne nulls do not occur, there are independent AC and AD 
objects. If we accept this, then we must accept the fact that there are two different 
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semantics for tuples in r. If the value of B is dne then an ACD association 
must exist, and if the value is not dne then independent AC and AD associations 
must exist, in addition to associations involving B. We do not believe this is 
a plausible way to interpret a relation. 

The solution is to equate dne nulls from the same domain, as we have done 
previously. Then, in a database with only dne nulls added, the definitions of 
FD and MVD remain identical to the standard ones and the same axiomatiza- 
tion is valid. This is intuitively pleasing as well, since a dne null cannot be 
replaced by another value. In fact, it indicates that we know that no other 
domain value is valid. 

Non-existent nulls also require a more complicated test when tuples are 
inserted into a relation. In addition to the usual tests to see that given dependen- 
cies are not violated, we must ensure the exclusivity of the tlne null in each 
object in which it appears. For  example, let us attempt to add the tuple (a3, 
b, dne, d3) to relation r above. This insertion should be denied since it is inconsis- 
tent that b is related to c~ and c2 and also that b is related to no C value. 
This new integrity constraint is embodied in the following rule. 

Exclusivity Rule for dne Nulls. Let r be a relation with objects C. For  each 
O~(9, in ~o(r) there do not exist two tuples t~ and t2 where tt [A] =dne, t~ [A] 

t2 [A], and tl [O - A] = t2 [0  - A], for any A e O. 

7.2. Unknown Nulls 

The effect of unk nulls on functional dependencies has been adequately covered 
in [39]. The definition of an FD must be modified so that unk nulls are not 
equivalent. This must be the case since we have no way of knowing whether 
two unk nulls will turn out to be the same or different values. The same logic 
holds for MVDs. However, unlike the assumptions made by [16, 17] for dne 
nulls, even though we cannot apply an FD to adjust values or an MVD to 
add tuples when there are unk nulls on the left hand side of the dependency, 
we still have the usual axiomatization for FDs and MVDs. In proof, suppose 
we have a relation that satisfies some given dependencies, but not some depen- 
dency which follows from the usual axiomatization. An example is relation 
r in Fig. 7, with nnk nulls replacing the dne nulls. Since nnk nulls are placeholders 
for actual facts about the world, the dependencies with which we have con- 
strained the world are not altered by the presence of these nulls. Therefore, 
dependencies which follow from the given dependencies in a world without 
null values must still hold in a world with nulls. Thus, a relation such as r 
with unk nulls, must not be a complete or accurate representation of the world, 
since for any relation r, every relation in POSS(r) must satisfy all FDs and 
MVDs which can be derived from the given dependencies. 

7.3. No-information Nulls 

The only published work dealing with dependencies and the no-information 
interpretation of nulls is an axiomatization of FDs by [2]. As in previous 
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approaches, they redefine the FD so that it is applicable only when non-null 
values are present. Therefore, they conclude the same results as [-17], about 
the lack of transitivity in this model. Based on the lattice developed in Sect. 
3, we know that an ni null will eventually be replaced by either an unk null 
or a dne null when we find out whether or not a value actually exists. Hence, 
given a relation r with ni nulls, in any relation in POSS(r) all ni nulls will 
be replaced by actual values or by dne. As discussed earlier in this section, 
in these cases, there is no valid reason not to retain the same axiomatization 
for FDs and MVDs as for relations without nulls, and to do so would possibly 
eliminate important dependencies for use in database design and normalization. 
Thus, we repeat and earlier statement, that the definitions of FD and MVD 
need not be changed as long as the convention that two values from the same 
extended domain are equal if they are the same value and neither one is ni 
or unk. 

7.4. Join Dependency 

At first glance, there does not seem to be any good way to define the join 
dependency on relations with nulls. Consider the tuple (a, ni, c) defined on 
scheme R =(A, B, C). Normally any one tuple relation satisfies any join depen- 
dency since any projections of the tuple will obviously join to form the original 
tuple. However, with the given tuple, the join dependency.(AB, BC) does not 
hold since the projections will not join on ni. However, the MVD which follows 
from this join dependency, B-+~A, does hold by default. What we need is 
a "default" for the join dependency when ui or unk nulls are present in the 
join attributes. We have decided that, in general, ni and unk nulls should not 
be equated with each other. However, each null does stand for one and only 
one value (actual or dne), and so if a null is transported to more than one 
place we should identify them to be the same. Therefore, we mark ni and unk 
nulls before applying the test for satisfying the join dependency, doing so by 
equating identically marked nulls. We now have an appropriate definition for 
a join dependency in our framework and we can use the existing theory for 
deriving MVDs from valid join dependencies. 

8. Conclusion 

The model of incomplete information presented in this paper is based on the 
concept of more informative tuples and relations. Using a partial order in which 
the no-information null is less informative than both the unknown and non-existent 
nulls allows systems to be designed with either the no-information null alone 
or with a combination of nulls. If one wants to avoid any computational prob- 
lems with unknown nulls, they can be deleted from the model. However, the 
framework is there if applications arise in which the no-information interpreta- 
tion is not adequate. 
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It was shown how the theory of nulls can be used in a nested database 
with a straightforward extension. We discovered that our extended operators 
for nested relations have a pleasing mapping to their 1NF counterparts, based 
on the concept of partitioned normal form. Furthermore, null values do not 
affect the operation of the important nest and unnest operators. Finally, we 
showed how existing theories on the axiomatization of functional and multiva- 
lued dependencies in the presence of nulls are flawed, and, in fact, the traditional 
axiomatization is valid. 

Further work is needed in the area of relational operators for nested relations. 
We especially need more sophisticated select and project operators which can 
work on nested relations. The lack of a satisfactory generalization for natural 
join suggests that more work is necessary before a solution is reached. Of special 
interest is a join which will work in a database in nested normal form [30]. 
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