
Acta Informatica 26, 615~42 (1989)

�9 Springer-Verlag 1989

Null Values in Nested Relational Databases

Mark A. Roth*, Henry F. Korth**, and Abraham Silberschatz
Department of Computer Science, University of Texas at Austin, Austin, TX 78712, USA

Summary. The desire to extend the applicability of the relational model
beyond traditional data-processing applications has stimulated interest in
nested or non-first normal form relations in which the attributes of a relation
can take on values which are sets or even relations themselves. In this paper,
we study the role of null values in the nested relational model using an
open world assumption. We extend the traditional theory and study the
properties of extended operators for nested relations containing nulls. The
no-information, unknown, and non-existent interpretation of nulls are dis-
cussed and the meaning of "empty set" is clarified. Finally, contrary to
several previous results, we determine that the traditional axiomatization
of functional and multivalued dependencies is valid in the presence of nulls.

1. Introduction

There has been a flurry of activity in recent years in the development of databases
to support "high-level" data structures and complex objects. Office forms, com-
puter-aided design, and text retrieval systems are a few examples of non-tradi-
tional applications that require specialized database support. One of the stum-
bling blocks in using traditional relational databases and relational theory is
the assumption that all relations are required to be in first normal form (1NF);
that is, all values in the database are non-decomposable. For this reason, nested
or non-first normal form relations were proposed in which the attributes of
a relation can take on values which are sets or even relations themselves. This
new assumption created a need to reexamine the fundamentals of relational
database theory, and opened the door for the introduction of operators which
take advantage of the nested structure of nested relations.

* Currently with the Air Force Institute of Technology, AFIT/ENG, Wright-Patterson AFB, OH
45433, USA
** Research partially supported by an IBM Faculty Development A ward and NSF grant
DCR-8507224

Offprint requests to: M.A. Roth

616 M.A. Roth et al.

This paper is concerned with the representation of null values in nested
relational databases and the definition of algebraic operators on nested relations
containing nulls. Null values have traditionally represented the nonexistence
of a value or the fact that a value is unknown. In 1NF relational databases
it is not always necessary to represent missing data by means of null values.
To illustrate this, consider a database consisting of two relations rl (employee,
skill) and r2 (employee, child). Skills can be stored for an employee, Jones with
no children by adding tuples to r l . No tuple appears in r2 for Jones. However,
in a nested relational database, we would likely have a single relation r whose
attributes are employee, skill, and a set-valued children attribute. Jones would
have the empty set of children. The empty set is, in a sense, a null value, since
unnesting the relation r forces us to introduce nulls into the resulting 1NF
relation.

Thus, the need for nulls is even more critical in a nested database than
a 1NF database. Since we have the ability to represent multiple relationships
in a single nested relation without the problems of redundancy that doing so
in a 1NF relation would entail, we must also deal with the fact that one or
more of those relationships may be unknown or non-existent at some time.

In this paper we make the open world assumption. That is, we assume
that just because a tuple is not in a relation does not mean it should not
be there. The best we can do at any point in time is enter tuples into a relation
that we know currently belong there. In addition, if we know partial information
about a tuple then the unknown information is represented using null values.

The remainder of this paper is organized as follows. In Sect. 2, we define
the nested relational model we will be using. Two new operators used to restruc-
ture relations, nest and unnest, are defined and partitioned normal form is pre-
sented as a desirable goal in structuring nested relations. In Sect. 3, we summarize
a formal treatment of null values in the traditional relational model. The no-
information, unknown, and nonexistent interpretation of nulls are discussed.
In Sect. 4, we extend the null value theory presented in Sect. 3 to nested relations.
In Sect. 5 we introduce the extension of algebraic operators to relations with
null values. We define the concepts used to measure the "goodness" of these
extensions. Section 6 provides the actual extension of the algebra to nulls along
with proofs of properties of our extensions. Finally, in Sect. 7, we discuss depen-
dency theory, shedding some new light on the problem of nulls when dealing
with functional and multivalued dependencies, and their axiomatization.

2. The Nested Relational Model

In this section, we briefly review concepts from the relational and nested relation-
al models. Various researchers have studied the effect of dropping the assumption
that all relations be in first normal form (1 NF). Early work was done by Makin-
ouchi E22] and led to the concept of nesting. This was later studied by Jaeschke
and Schek [12] for one level nesting over single attributes and by Thomas
and Fischer 1-38] in a more general setting. Utilizing nested relations for structur-
ing database outputs was discussed by Kambayashi et al. [13], while Fischer

Null Values in Nested Relational Databases 617

and Van Gucht [6, 7] looked at dependencies which characterize nested rela-
tions.

Ozsoyo~lu and Ozsoyo~lu [26] consider operations similar to that of [12],
and extend the basic algebra for relations by aggregate operators. Our previous
work 1-32] defines a relational calculus and relational algebra for nested relations
and proves their equivalence. We also introduced partitioned normal form for
nested relations (described later) which is equivalent to scheme trees of [27]
and formats of [1]. Abiteboul and Bidoit [1] also define some extended operators
which are refined in [32], where it was also proved that the set of relations
in partitioned normal form are closed under the extended operators. Others
[10, 11, 28, 31, 33-35] have been developing languages and implementations
for nested relational databases.

2.1. Nested Relational Schemes

We will assume, without loss of generality, that all attributes of our relations
are contained in a finite universe of attributes, U. Each attribute A e U may
assume values drawn from a domain, DOM(A). A relation structure ~ consists
of a relation scheme R and a relation r defined on R, and is denoted (R, r).
A relation scheme is defined by a rule R =(A1, A2 An) where Ai~ U, 1 < i< n.
The set of attributes in a relation scheme rule R are denoted ER. For AEER,
an A-value is an assignment of a value from DOM (A) to attribute A. Generaliz-
ing this notion, an X-value, where X _ ER, is an assignment of values to the
attributes in X from their respective domains. Thus, a relation r defined on
scheme R is a set of ER-values, with the elements of this set called tuples of
r. We will generally use upper case letters from the beginning of the alphabet
to represent single attributes and upper case letters from the end of the alphabet
to represent sets of attributes. We also let X Y denote X u Y.

The operators U, N, - , x , ~,,~, r~, and tr represent the standard relational
operators on 1NF relations without null values. The projection of relation r
onto attributes X is denoted r[X], and similarly, the projection of tuple t e r
onto attributes X is denoted t IX]. We also use t[X] to denote an X-value
of t when we are talking about an arbitrary assignment from the respective
domains of each attribute in X. We assume familiarity with 1NF relations and
the relational algebra on these relations. We also assume familiarity with the
definitions of data dependencies (functional, multivalued, and join). For these
definitions, see a database text such as [15]. Fixing a particular scheme, the
set of all relations on that scheme that satisfies a set of dependencies D is
denoted SAT(D).

A database scheme S is a collection of rules of the form Rj=(Rjl , R j2 , Rj,).
The objects Rj, Rj,, l <i<n, are attributes. Rj is a higher order attribute if
it appears on the left hand side of some rule; otherwise it is zero order. The
names on the right hand side of rule Rj form a set denoted ERj, the elements
of Rj. As with any set, attributes on the right hand side of the same rule are
unique, and to avoid ambiguity we require that no two rules can have the
same name on the left hand side.

618 M.A. Roth et al.

Employee Children Skills

Name Dob Type Exams

Year City

Smith Sam 2/10/84 Typing 1984 Atlanta
Sue 1/20/85 1985 Dallas

Dictation 1984 Atlanta

Watson Sam 3/12/78 Filing 1984 Atlanta
1975 Austin
1971 Austin

Typing 1962 Waco

Fig. 1. A sample relation on the Emp scheme

A 1NF database scheme is a collection of rules of the form Rj=(Ri , ,
R j2 Rj,) where all the R j, are zero order. Nested schemes may contain any
combination of zero or higher order attributes on the right hand side of the
rules as long as the scheme remains nonrecursive. A nested relation is represented
simply as a higher order attribute on the right hand side of a rule.

Example I. Consider an expanded version of the employee example used in
the introduction. The scheme is

Emp = (employee, Children, Skills),

Children = (name, dob),

Skills = (type, Exams),

Exams = (year, city).

In this scheme each employee has a set of children each with a name and
birthdate, and a set of skills, each with a skill type and a set of exam years
and cities, when and where the employee retested his proficiency at the skill.
A sample relation is shown in Fig. 1. []

In this example the higher order attributes are Emp, Children, Skills and
Exams. All others are zero order attributes. We will generally use capitalized
names for higher order attributes and uncapitalized names for zero order attri-
butes.

2.2. Partitioned Normal Form

In the relation of Fig. 1, we do not expect two tuples with employee = ' S m i t h '
since all of Smith's children and skills should be grouped into one tuple. That
is, there is no significance in separate groups of children or skills. This leads
us to restrict the set of nested relations to those that are in partitioned normal
form (PNF).

Null Values in Nested Relational Databases 619

A relation r is in PNF if the zero order attributes in the relation r form
a key for r, and each nested relation of r is also in PNF. The employee relation
in Fig. 1 is in PNF. Note that employee is a key for the sample relation, type
is a key for each Skills relation, and (year, city) is a key for each Exams relation.
The formal definition is as follows.

Definition 1 [32]. Let r be a relation on scheme R with attributes ER containing
zero order attributes A1, A2 Ak and higher order attributes X~, X2, ..., Xt.
Relation r is in partitioned normal form (PNF) if and only if the following two
conditions hold:

1. A1 A2 ...Ak ~ ER.
2. For all t~r and for all Xi: l<i<<_l: ~ , is in PNF, where ~ , is the nested

relation t [X~] on scheme X~.

2.3. Nest and Unnest Operators

We consider now operators for nested relations without null values. The tradi-
tional relational algebra operators can be used with nested relations. We add
unnest and nest operators to allow restructuring of nested relations. We state
the formal definitions of nest and unnest from [32, 381.

Definition 2. Let R be a relation scheme in database S. Let {B1, B2 , B.,} cER
and C = E R - { B 1 , B2, ..., Bin}. Assume that either the rule B=(B1, B2 , B,.)
is in S or that B does not appear on the left hand side of any rule in S. Then
the nest operator VB=~B,,B2 n.,)(r) produces a relation r' on scheme R' where:

1. R'=(C,(B1, BE,. . . ,Bm))=(C,B) and the rule B= (Ba ,B z B,,) is
appended to the set of rules in S if it is not already in S, and

2. r ' = {tp there exists a tuple u ~ r such that t [C] = u [C] ^
t [B] -- {v' [B1 B2--. B,,]I v ~ r ^ v [C] -- t [C] } }.

Definition 3. Let R be a relation scheme in database S. Assume B is some
higher order attribute in ER with an associated rule B=(B~, Bz ,B,,) in S.
Let C = E R - B . Then the unnest operator #~=~n,,sz B,.)(r) produces a relation
r' on scheme R' where:

1. R ' = (C , B1, B 2 , B,,) and the rule B=(BI , B2, ..., B,.) is removed from
the set of rules in S if it does not appear in any other relation scheme, and

2. r ' = {tlthere exists a tuple u~r such that t[C] = u [C]
^ t EB1 B z B . 3 ~u EB] }.

We will use #* or unnest* to indicate the complete unnesting of a relation
into a 1NF relation.

There is not much correspondence between the way most of the relational
algebra operators work on 1 N F relations and their counterparts work on nested
relations.

Example 2. Consider nested relations r~ and rz of Fig. 2 and their 1NF counter-
parts, sl and s2. Note, however, that r l n r 2 is not the nested counterpart of
s~ ~s2, as the usual definition of intersection requires that a tuple is in the
result only if that tuple is in both input relations. []

620 M.A. Roth et al.

rl r2 r lc~r 2

A B* A B* A B*
B B B

a b a b a b
b' b' b'

a' b a' b
b' b"

S 1 S 2 S 1 N S 2

A B A B A B

a b a b a b
a b' a b' a b'
a' b a' b a' b
a' b' a' b"

Fig. 2. Intersection applied to nested and 1NF relations

We believe that each 1NF operator should have a reasonable nested counter-
part. Intuitively, a nested operator is reasonable if it behaves identically to the
corresponding 1NF operator on 1NF relations and if it produces a result which
would have been produced had the equivalent set of 1 N F relations been used
instead of nested relations. We take this point of view since the information
content of a nested relational database is the same as in the corresponding
1NF relational database. We thus desire the ability both to take advantage
of the nested structure and easily to simulate the effect of the 1NF operators
on 1NF relations. In [29, 32], we define in terms of the basic operators extended
operators that operate on nested relations and have this "reasonableness" prop-
erty. In that paper, we show by example that the extended operators preserve
the P N F property and, thus, are more appealing intuitively in most cases than
direct application of the traditional algebra operators.

3. Null Values in 1NF Relations

In this section, we briefly review the basic concepts that concern null values
in 1NF relations. The presentation is based on some of the work of Zaniolo
1-42, 43]. We distinguish between three types of nulls:

ni - no-information,

uuk - unknown, and

d n e - nonexistent (or does not exist),

and extend each domain to include these null values.
Previous approaches have usually assumed only one of the interpretations

is valid, unknown by [3, 4, 9, 20-1, and nonexistent by 1-16, 17, 37, 43,1. In [40]

Null Values in Nested Relational Databases 621

b \a dl d2 ... dn unk dne ni

dl dt unk unk unk unk ni ni
d2 unk d 2 unk unk unk ni ni
: unk unk unk unk ni ni
d~ unk unk unk d~ unk ni ni
unk unk unk unk unk unk ni ni
dne ni ni ni ni ni dne ni
ni ni ni ni ni ni ni ni

Fig. 3. Definition of g lb function

~ 2 ... ~. dne

unk

I I
ni

Fig. 4. Information lattice

a combination of the two is proposed in which nonexistence is considered an
inconsistent state of data. Finally, Zaniolo 1-42] provides a unified approach
to nulls with the use of a no-information null. This null is less informative than
either an unknown or a nonexistent null, and can be used to approximate both
when we don't know whether or not a value exists. As this is the most complete
and conceptually sound approach proposed to date, it forms the basis of our
extensions to nested relations.

Other proposals for nulls are rather sophisticated, involving partial specifica-
tion [18, 19, 23-25], probability distributions 1-41], and conditional tuples 1-14],
but it could be argued "that the complexity of their management is not justified
by their richer semantics" [2, p. 233].

When dealing with incomplete information, we talk about a strength ordering
of information in which certain tuples will be more informative than others,
say by having a previously unknown value replaced by an actual value, or
by finding out that a value for which we previously had no-information is
now known not to exist. In order to compare values for this purpose we define
a greatest lower bound function which tells us the most information we can
infer from two values from the same extended domain.

Definition 4. Let { d l , d2 , d,} be a domain and D = {dl, d2 d,, unk, dne,
ni} the corresponding extended domain. A greatest lower bound function,
g lb (a, b), between two values a and b from D is defined in Fig. 3.

This information can also be represented as a lattice with ni as the bottom
element, unk and dne as more informative nulls than ni, and actual values
dl, d2 dn as more informative than unk. (See Fig. 4).

622 M.A. Roth et al.

Note that the dne null is special in that it does not have a possible, more
informative, replacement. It is, in fact, a special "va lue" in itself, for which
equality is meaningful. That is, dne = dne, but ni ~e ni and unk :~ unk.

Our decision to define equality in this manner is consistent with our open
world assumption. Assuming ni # ni and unk + unk does not preclude the poten-
tial existence of values such that equality holds. Rather our assumption is consis-
tent with the fact that we cannot prove equality based on the information given
in the database.

We now define an information-wise strength ordering of tuples using the
glb function as follows:

Definition 5. An X-value s is said to be more informative than a Y-value t,
written s > t, if for each B ~ Y, if t [B] is not ni then B E X, and for each A ~ X n Y,
glb(t[A], s [a])= t [A] .

Conversely, if s > t we say that t is less informative than s. The notion of
more informative is synonymous to the concept of subsumption. We say s sub-
sumes t when s > t. If we have two tuples in a relation such that one is more
informative than the other, then the less informative tuple is redundant and
can be removed. Note that in the absence of nulls, this condition reduces to
elimination of redundant identical tuples. If both t > s and s > t, then we say
t and s are information-wise equivalent and write s ~ t.

As a running example in this section, we use relation schemes R1 = (employee,
skill), and R 2 = (employee, child, skill).

Example 3. Let

t~ = (Smith, Bill, typing), t 2 = (Smith, hi, unk)

denote ER2-Values, and let

t 3 = (Smith, unk), t 4 = (Smith, typing)

denote ERl-Values. Then, t x is more informative than t2, t3, a n d t 4. Furthermore,
t4>t2, t 4 ~ t 3 , and t2~-t3 . []

For certain relational operators it is convenient that all tuples be defined
over the same set of attributes. With the availability of a no-information null
we can extend tuples defined over different sets of attributes without changing
the information content of the tuples. The extension is done by adding attributes
used in one tuple and not in the other and assigning the value ni to these
added attributes.

In order to find the most informative tuple which characterizes two other
tuples we define the meet operator as follows:

Definition 6. The meet of an X-value, t l , and a Y-value, t2, is the XY-value,
t, written, t 1 ̂ t2, where for each attribute A e X n Y, t [A] = g lb (t x [A], t2 [A]),
and for each attribute BCX n Y, t [B] = hi.

Null Values in Nested Relational Databases 623

Example 4. Using the tuples defined in Example 3 we find that

t 1 A t 3 = t 2

tl ^ t4 = (Smith, ni, typing). []

We also generalize the notion of a tuple being an element, or a member
of a relation as follows.

Definition 7. A tuple t is an x-element of a relation r, written t~r, when there
exists a tuple s~r such that s>t.

Thus an x-element of a relation is any tuple that is equal to or less informative
than some tuple in the relation. We also write t~_r to denote ~(t~r).

Given a set of tuples t l , rE, . . . , t , , we can eliminate tuples in which all
attributes have value ni (the null tuple)1, eliminate all tuples less informative
than some other tuple, and extend all tuples by adding ni values for attributes
not in the tuple but in some other tuple in the set. This is called tuple set
reduction and is denoted by

~t l , t2 , . . . , t ,~.

The notion of being more informative can be extended to relations.

Definition 8. A relation rl is more informative than, or subsumes, a relation rz,
written r~ _>--r2, when for each tuple t2~r 2 there is a tuple tier1 with tl ~t2.

This > relationship is transitive and reflexive, leading to the following defini-
tion of information-wise equivalence
Definition 9. The relations r~ and r 2 are information-wise equivalent, written
r I - - r 2 , when rl ~ r 2 and r 2 = r I .

The equivalence relation ~ partitions the universe of relations into disjoint
subclasses. Each class can be represented by a minimal relation in which no
tuples in the relation are subsumed by a tuple in the same relation.

Definition 10. A relation r constitutes a minimal representation for a relation
q when r _ q, r - q, and ~p ~ r such that p - q.

It is straightforward to show that the minimal representation of a relation
is unique and therefore minimum.

4. Null Values in Nested Relations

We extend the definitions of the previous section to handle nested relations.
The key issue is the interpretation of empty sets. Schek states, " In the general
case unnest on empty relations will produce undefined attribute values" [33,
page 180]. However, if the empty set has a meaning in the relation, then whatever
it unnests to should have meaning also. In the VERSO model [1], empty sets
are used as null values for set-valued attributes. However, nulls are not allowed
for atomic-valued attributes. Thus, when an empty set is unnested the entire
tuple is deleted from the resulting relation.

Several researchers have assigned the non-existent interpretation to empty
set. One of Makinouchi's properties of "not-necessarily-normalized" relations

1 Even though a null tuple is subsumed by all tuples, it may be the only tuple in a relation, and
thus should be eliminated

624 M.A. Roth et al.

is that "A null set (0) may be in the domain of a relation column. 0 means
exactly non-existence" [-22, p. 448]. In deriving an extended set-containment
operation for 1NF relations with non-existent nulls, Zaniolo [-43] discusses the
nested viewpoint. In this development, he assigns the non-existence meaning
to the empty set, viewing the non-existent null as the image of an empty set
when mapping from an unnormalized relation to a normalized one. Scholl [36]
assigns the non-existent interpretation to empty set in his model utilizing a
closed-world assumption. This is appropriate when utilizing nested relations
to store data from a 1NF database. Then the empty set appears only when
dangling tuples are present.

We believe that the correct interpretation for empty set is the no-information
one. We have already seen in the definition of tuple set reduction that the null
tuple is eliminated from any relation even if it is the only tuple in the relation.
So, in the simplest case of a relation with one attribute, we have that the empty
relation is equivalent to the relation with the relation containing only the tuple
(ni). This is consistent with the open world assumption we have been making
in which we do not assume that the empty relation indicates that no tuples
belong in the relation but that we currently have no information about the
world and so we do not know if the tuples belong or not. As we will see,
this means an empty nested relation should unnest to a no-information, null
tuple. Our work inspired Gfiting et al. [8], who have taken a similar approach
but rename the null values so that empty set corresponds to the atomic dne
null and a new set-valued null, niseq, corresponds to the atomic ni null for
nested relations. We feel our approach is simpler and leads to more straightfor-
ward extensions of null value concepts for the nested relational model.

When nulls are introduced into our model, the concept of more informative
(or subsumes) must be extended to handle nested relations. The main idea is
to treat nested relations as values which must be more informative than the
corresponding nested relation in the less informative tuple. In addition, a null
tuple which consists of all ni values in the 1 NF model is extended in the nested
model so that all zero order attributes have ni values and all higher order
attributes are empty or, equivalently, contain exactly one null tuple. Thus, our
new definition of more informative, which includes the old one as a special case,
is as follows.

Definition 11. Let tl be a tuple on zero order attributes X1 and higher order
attributes I11, and let t2 be a tuple on zero order attributes X2 and higher
order attributes Yz. The tuple t~ is said to be more informative than the tuple
t z when:

1. for each B~X2, if t2[B] is not ni then BeX~,

2. for each Ce Y2, if t2 [,C] contains a tuple that is not null then C~ Y1,

3. for each A ~ X 1 c~ X2, g lb (t 1 [-A], t2 [-A]) = t2 [,A], and

4. for each De Y~ n I12 and tuple u2et2 [D], there exists some tuple ul ~tx [D]
which is more informative than u2.

Example 5. Recall the Emp scheme and sample relation introduced in the pre-
vious section (see Fig. 1). If a new employee, say Jones, is added to the database

Null Values in Nested Relational Databases 625

and we do not know anything about him except his name, then we would
add the tuple (Jones, { }, { }), or, equivalently, (Jones, {(ni, hi)}, {(ni,
{(hi, ni)}}). If we find out later that Jones has no children and has some
skill for which he took a 1981 exam, we could update the tuple to (Jones,
{(dne, dne)}, {(unk, {(1981, unk)})}). []

There is an aspect of our definition of more informative which goes beyound
nulls. Consider the following tuple

(Smith, {(Sam, 2/10/84)}, {(ni, {(ni, ni)})}).

According to Definition 11, this tuple is less informative than the one in Fig.
1. Note that the Children attribute in the original "Smith" tuple is a nested
relation with two tuples while in the new tuple only one of the Children tuples
exists. This reasoning stems from our interpretation of the relationship between
the attributes in nested relations. Nested relations are not nondecomposable
values, so that it is the tuples of the nested relation that are related to the
other attributes. Thus an employee is related to each child and there is no
particular significance to sets of children. Similar reasoning about the significance
of sets led to our definition of PNF. However, the requirement of PNF is a
somewhat different notion than that of subsumption, as the following example
shows.

Example 6. Let tl =(Smith, {(Sam), (Sue)} and t2=(Smith, {(Sue), (Bill)})
be tuples from a projected employee relation. We have that tl ~ t2 and t2 ~ tl,
but under PNF tl and t2 would be combined into t3=(Smith,{(Sam),
(Sue), (Bill)}). []

The definitions of x-element (~), and tuple set reduction (~set of tuples~), from
Sect. 3, carry over to nested relations in a straightforward manner. However,
the meet of two tuples must be extended to handle nested relations. This can
be done using the glb function for zero order attributes and applying the defini-
tion recursively for higher order attributes.

Definition 12. Let U be the attributes on which two tuples tl and t2 are defined,
where tl and t: have been extended to U with the addition of ni values for
zero order attributes and single null tuple relations for higher order attributes,
if necessary. A tuple t is the meet of t~ and t2, written t~ ^ t2, when for each
zero order attribute A ~ U, t [A] = g l b(q [A], t2 [A]), and for each higher order
attribute X e U, t [X] = {s A U Ise t~ [X] and u ~ t2 [X] }.

Finally, the ideas of more informative relations, information-wise equivalence
and minimal representations for a relation all have the same definitions when
we substitute the nested version of subsumption.

5. Extended Operators

In this section, we extend the relational algebra in several steps. First, we consider
extending the 1 NF algebra to include nulls, then an extension to the nested
relational algebra, and finally the extension of the nested relational algebra

626 M.A. Roth et al.

to include nulls. As before, we assume that all relations are in PNF. Our definition
of PNF relies on the definition of functional dependency in which we test equality
of attribute values. As discussed in Sect. 3, ni+ni , nnk:~unk, and dne=dne.
We treat the dne null as any other domain value and, unless otherwise specified,
any future reference to null will include only ni and unk nulls. Here we are
concerned with only the single application of operators rather than composition
of operators. See [24] for a treatment of issues with null values in 1NF relational
expressions. Some of the following presentation is based on [21, Sect. 12.4].

5.1. Classes of Relations

In order to define our extensions to the relational algebra, we define classes
of relations corresponding to 1NF relations and nested relations, with and with-
out nulls:

- Rel: the set of all 1NF relations having no nulls

- Rely: the set of all 1NF having at least one null value

- Rel*: the set of all nested relations having at least one higher order attribute

- Rel T*: the set of all nested relations having at least one higher order attribute
or at least one null value.

We denote the restriction of Rel, Relt , Rel*, and RelT* to scheme R by Rel(R),
ReI T (R), Rel* (R), and Rel T * (R) respectively. Observe that Rel* u ReI T =Rely*
and Rel c~ Rel T* = O.

5.2. Possibility Functions

We relate a relation containing null values with the set of null-free relations
that subsume it. This relationship is defined by a possibility function. We shall
consider two such functions:

- POSS, relating Rel and Rel~

- POSS*, relating Rel and RelT*.

A relation r in Rel T (R) represents a set of relations from Rel(R) that subsume
r. Each such relation in Rel(R) is called a possibility for r. The set of possibilities
for r is denoted by POSS(r), which is defined as:

POSS(r) = (qlq~Rel(R) and q > r}.

The above definition could be applied to nested relations as well. However,
this could result in a PNF relation having non-PNF possibilities. To illustrate
this, consider a relation containing the two tuples (hi, {(a)}) and (ni, {(b)}).
If we allow both ni nulls to be replaced by the same value x, the result is
a non-PNF relation containing (x, {(a)}) and (x, {(b)}). We choose instead
to consider only PNF possibilities and would thus consider (x, { (a) , (b) })

Null Values in Nested Relational Databases 627

in this case. Formally, the set of PNF possibilities for relation r on scheme
R is denoted POSS*(r), and is defined as:

POSS* (r) = {qlq ~ Rel* (R) w Rel(R) and q > r and q is in PNF}.

5.3. Faithfulness and Precision of Generalizations

In this section we present the criteria that we use to establish the correctness
of our extended operators for nested relations with null values. We start by
extending the definition of relational operators to map sets of relations to other
sets of relations.

Definition 13. For sets P~ and P2 of relations and relational operator 7,

and
7(PJ = {y (q)[qeP~}

P1 7P2 = {q, 7q2 I q, eP~, q2 eP2}.

Our criteria for correctness of an extended operator is that it be faithful
and precise.

Definition 14. Let P and P' be classes of relations and ? and 7' operators on
P and P w P' respectively.

We say that y' is faithful to 7 if one of the following two conditions holds:

1. When 7 and 7' are unary operators, y(r)=y'(r) for every r~P for which
7 (r) is defined.

2. When Y and 7' are binary operators, rTq=rT'q for every r, qeP for which
rTq is defined.

Definition 15. Let P and P' be classes of relations and 7 and Y' operators on
P and P' respectively. Let ~ be an operator on P u P'. We say 7' is a precise
generalization of 7 relative to ct if one of the following two conditions holds:

1. When y and 7' are unary operators, a(y'(r))=?(~(r)) for every r~P'.
2. When ? and 7' are binary operators, aft7' q)= aft) 7 a(q) for every r, qr
Our generalization of relational operators to sets of relations allows a to

map relations to sets of relations. We shall use this subsequently when we consid-
er ~ to be a possibility function.

We shall see that for some choices of a, not all relational operators have
a precise generalization relative to a. In these cases, we consider the weaker
notion of an adequate and restricted generalization which captures 7(a(r)) or
aft) 7a(7) and as little extra as is possible.

Definition I6. Let P and P' be classes of relations, and 7 and 7' be operators
on P and P' respectively. Let ~ be an operator on P u P'. We say that operator

628 M.A. Roth et al.

?' is an adequate generalization for 7 with respect to ~ if one of the following
two conditions holds:

1. When 7 and Y' are unary operators, ct(7'(r))~7(ct(r)) for every reP ' .
2. When 7 and Y' are binary operators, ct(rT'q)~(r) Tot(q) for every r, qeP ' .

Furthermore, we say that operator 7' is a restricted generalization for 7 with
respect to ~t if one of the following two conditions holds:

1. When 7 and 7' are unary operators, for every r~P' , there is no p in P'
such that ct (7' (r)) +~ ~ (p) _ 7 (~ (r)).

2. When 7 and 7' are binary operators, for every r, q~P', there is no p in
P' such that ~(ry' q) +~ a(p)_ ~(r) Tot(q).

Clearly, if 7' is precise for 7, then 7' is adequate and restricted for 7. We
would also like the generalized operators to have properties that the standard
operator possesses, such as commutativity or associativity. For example, if 7
is an associative binary operator, we want a generalization 7' to satisfy:

(pT' q) 7 ' r=pT ' (q? ' r)

for p, q, r~P' . Finally, we would like the generalized operators to return only
minimal relations given minimal relations as input.

Generalizations of the standard operators relative to P O S S appear in [42,
43]. These generalizations are faithful, and at least adequate and restricted,
if not precise.

6. Nested Operators

We now define nested operators which are both faithful and precise and, more-
over, they also have some intuition behind them. In [32], we defined some
extended operators in order to work within the domain of PNF relations. We
now discuss these extensions in light of the above requirements.

In order to take the extended union of two relations r 1 and r2 we require
that they be defined over equal relation schemes, say R. The scheme of the
resultant structure is also R. We define extended union, denoted by U e, at the
instance level as follows.

Definition 17. Let r~ and r2 be relations on scheme R. Let X range over the
zero order attributes in ER, and let Y range over the higher order attributes
in ER. The extended union of r 1 and r2 is:

rl ~)er2= {t l(Stl 6r l A 3t2~r2: (VX, Y~ER:

t I X] = t 1 I X] : t 2 I X] A t [Y] = (t 1 [Y] k.) e t 2 [Y])))

v (t e r 1 ̂ (V t' ~ r 2 : (VX ~ E R �9 t [-X] # t' [X])))

v (t ~ rE ^ (V t' e r 1 : (V X e ER: t [X] # t' [X])))}.

Note, this definition is recursive in that we apply the extended union to each
higher order attribute Y.

Nul l Values in Nes ted Re la t iona l Da t abase s 629

rl r2 r l u ~ r2 /z* (rl u ~ r2)

A B* C* A B* C* A B* C* A B C
B C B C B C

a b c a b' c a b c a b c'
c' n' c' a b c'

a b' c
a b' c'

/~* (r 1) /t* (r2) /t* (r 0 u/~* (r2)

A B C A B C A B C

a b c a b' c a b c
a b c' a b c'

a b' c

Fig. 5. Coun t e r example to preciseness of O e

Extended union is not a precise generalization of standard union with respect
to unnesting. Figure 5 shows two nested relations rl and r2 where #*(rl uer2)
:~/~*(rl)u#*(r2). Extended union is not precise due to the syntactic nature
of standard union. Standard union does not take into account dependencies
that should exist in a relation if it is going to be nested. If we agree that only
relations from Rel* which are in PNF should be allowed, then each nesting
scheme is allowed if and only if certain multivalued dependencies hold in the
completely unnested relation.

If we use a modified version of standard union which takes into account
the MVDs or, equivalently, the join dependency which produces the nested
structure, then we have a precise extended union operator.

Definition 18, Let*(X1, X2 Xn) be a join dependency on scheme R with
zero order attributes ER= X~ k-) X 2 k.) "'" t..) X n. The decomposition union (or A-
union), denoted by U a, of two 1NF relations r~ and r 2 on R is

rl u a r2 -- t~(r l I-X1] w r 2 l-X1], rl I-X2] u r 2 IX2], . . . , r 1 [X J u r 2 [Xn])

where ~,~ is the standard natural join.
Extended difference, denoted by - e also has the same scheme requirements

as union. In r l - e r 2 a tuple is retained from rt if it does not agree with any
tuple in r E on the zero order attributes or if it does then it has non-empty
extended differences between the higher order attributes.

Definition 19. Let rl and r 2 be relations on scheme R. Let X range over the
zero order attributes in E R and let Y and Z range over the higher order attributes
in E R . The extended difference of r I and r 2 is:

r 1 - - e r 2 = {tl(~tl~r 1 ̂ 3 t 2 ~ r 2 A 3 Z ~ E R : (V X , Y)~ER:
t [X] = tl IX] = t2 I-X] ^ t [Y] =(t l I-Y] --et2 [Y]) ^ t [r] 4:0))
v (t~r 1 ̂ (Vt'~r2: (VXCER: t [X] 4: t '[X])))}.

630 M.A. Roth et al.

The extended difference operator has semantic complications similar to
extended union. Extended difference is not a precise generalization of standard
difference with respect to unnesting. This leads us to define the decomposition
difference.

Definition 20. Let *(X1, X2 X,) be a join dependency on scheme R with
zero order attributes E R = X 1 u X 2 k.).., k g X n. The decomposition difference or
A-difference, denoted by _a , of two 1NF relations rl and r2 on R is

rl _ a r2 = t~a(r 1 [X1] -- r2 [X1], rl [X2] - r2 [X2], ..., rl [X,] - r 2 [X,])

where ~ is the natural join.
In the standard natural join, two tuples contribute to the join if they agree

on the attributes in common to both schemes. Under extended natural join,
two tuple contribute to the join if the extended intersection of their projections
over common attributes is not empty.

Definition 21. Let X be the higher order attributes in ER, nER2 , A = E R , - X ,
and B = ER2--X. Then the extended natural join of r 1 and r2, denoted by r a ~,<e r2
which produces a relation r on scheme R where:

1. R = (A, X, B) and
2. r= {tl(~u~rl, v ~ r 2 : t[A] = u [A] ^ t[B] = v [B] ^

t [X] = (u IX] n e v IX]) ^ t IX] # O}.
Extended projection is a normal projection followed by a tuplewise extended

union of the result. The union merges tuples which agree on the zero order
attributes left in the projected relation.

Definition 22. The extended projection of relation r on attributes X, denoted
by n e is:

e

U (t)
tExx(r)

Note, that projection removes duplicate tuples; that is, those which agree on
all attributes, with set equality holding on higher order attributes.

The following propositions summarize the faithfulness and preciseness results
for the extended operators. Detailed proofs for all operators can be found in
[293.

Proposition 1. Extended union, intersection, difference, natural join, and projection
are faithful to standard union, intersection, difference, natural join, and projection,
respectively.

Proposition 2. Extended union and extended difference are precise generalizations
of A-union and A-difference with respect to unnesting.

Proposition 3. Extended intersection is a precise generalization of standard inter-
section with respect to unnesting.

Proposition 4. Extended natural join is precise generalization of standard natural
join with respect to unnesting.

Proposition 5. Extended projection is a precise generalizatin of standard projection
with respect to unnesting.

Null Values in Nested Relational Databases 631

Teacher Course

v'0 ,=~ ~(r)

Teacher Course*
Course

Smith Math 1 Smith Math 1
Smith Math 2 Math 2
dne Math 5 dne Math 5
dne Math 6 Math 6
ni Science 1 ni Science 1
ni Science 2 ai Science 2

(a) (b)

Fig. 6. Example of nest with null values

6.1. Null Nest and Unnest

In this section we consider the semantics of nest and unnest in the presence
of nulls.

6.1.1. Null-nest. When null values occur as values of attributes which are being
nested, then no special rules need apply. We could use tuple set reduction on
each nested relation, but if we assume that the input relation is minimal then
the new relation and its new nested relations will all be minimal as well. Problems
in the standard definition of nest arise when nulls are values of the partitioning
attributes. The question is whether we equate nulls for partitioning purposes.
At first glance, equating nulls would be advantageous in that we could have
a succinct notation for grouping all values for which we do not have a fully
defined partition value. However, doing this grouping would give the impression
that one value could replace the null for all members of the group. Since this
is not generally true, we should not equate no-information and unknown nulls,
when partitioning the relation. The does not exist null is a special case though.
Since there is no value which can replace a tlne null, it is appropriate to nest
all tuples which have that property together. Thus, our definition of null-nest
(v') is not different from standard nest except that two attribute values are
considered equal iff they are both the same domain value or they are both
dne nulls. This is consistent with our definition in Sect. 3 of equality applied
to nulls.

Example 7. Consider the 1NF relation of Fig. 6a. Suppose that we want to
nest all courses taught by each teacher. For the two "Smith" tuples the standard
nest applies and we get the single tuple with "Math 1" and " M a t h 2 " together
in a nested relation. The same applies to the two tuples with dne nulls. These
two tuples indicate that " M a t h 5 " and " M a t h 6 " are courses that exist, but
there are not teachers teaching them, so we can group these courses together
as courses for which there is no teacher. If we find that our information was
wrong and " M a t h 5 " does have a teacher then we would be forced to update
this tuple just as if we found out the "Smi th" is not really teaching "Math2" .

632 M.A. Roth et al.

Finally, the two tuples with ni nulls are nested singly, since we have no assurance
that they will be in the same partition when more information is found out
about them. In this case, the two courses may be newly added ones, for which
we know nothing about who will teach them or even if they will be taught.
Figure 6b shows the nested relation. []

Consider the nested relation of Example 7. Using POSS, one possibility
for this relation is constructed by replacing the ni nulls with the same value,
say "Jones". As a result, we no longer have a PNF relation. An alternative
possibility, representing the same information, is constructed by replacing the
(hi, {(Science 1)}) and (hi, {(Science2)}) tuples with the single tuple, (Jones,
{(Science 1), (Science 2)}). The resulting relation is in PNF. Therefore, we will
use POSS*, rather than POSS as our possibility function.

Proposition 6. Null-nest (v') is a precise generalization of standard nest (v) with
respect to POSS*.

Proof Let X be the attributes of r being nested. We show that POSS*(v's=tx)(r))
= vn = tx)(POSS* (r)). We show inclusion both ways. Let p = v~ =tx)(r).
_ Let pePOSS* (p). There are two cases depending on the assignment by POSS*

to null values in the partition keys of p. In the first case, if POSS* assigned
the same value to nulls in otherwise equal partition keys of p, then these
tuples will be combined by the PNF requirement of POSS*. By making
this same assignment of nulls directly to r, then nesting will also combine
these tuples. In the second case, if we make the ~ame assignment to nulls
in 10 and in r, then nesting on POSS*(r) will also produce 10. Thus,

e vs = (x)(POSS* (r)).
_ Let l~Vn=tx)(POSS*(r)). There must be ~ P O S S * (r) such that/~=vn=tx)(f).

Consider the assignment of values made by POSS* in f. If we, in POSS* (p),
make the same assignment to the corresponding nulls in p, then we get
also i0. Thus, Or

We conclude that v' is a precise generalization of v for POSS*. []

6.1.2. Null-unnest. If nested relations are inserted into our database solely by
application of the nest operator to relations in 1NF, then the standard definition
of unnest can apply to relations with nulls and there are no problems. However,
if we allow arbitrary nested relations then unnesting can produce non-minimal
relations and cause loss of information.

Example 8. Recalling the database scheme of the previous example, consider
a relation r with two tuples tl = (Jones, {(Math) , (Science)}) and t2
= (hi, {(Math) , (English)}). If we unnest r, then the resulting (hi, Math) tuple
is less informative than the (Jones, Math) tuple. Thus, even though tl and
t2 form a minimal relation, their unnested counterparts do not. []

The problem with arbitrary nested relations is they allow the misuse of
ni and unk nulls in the partition attributes. Our previous discussion of the
nest operator showed that when an ni or a nnk null is in one of the partition
attributes, then the nested relation should have cardinality of one. But, one
can argue that we may know that, say, two tuples are both related to one

Null Values in Nested Relational Databases 633

undetermined value and we should take advantage of that fact and store those
two tuples in the same nested relation. If this is true, then an answer is to
use marked ni and unk nulls [37]. Then a tuple can be subsumed only if its
marked nulls do not exist in any tuple other than the subsuming tuple. Using
marked nulls also avoids some loss of information. In the previous example,
if we unnest r and then perform the reverse nest operation, we would find
three tuples in the result as the tuples with ni as the teacher value would not
be nested together as per our previous arguments. It would be appropriate
to equate identical marked nulls and so a nest would return the original relation.
Although we do not deal explicitly with marked nulls in this paper, our results
extend naturally to a model that includes them.

Another reason for our treatment of ni and unk is so that null-unnest is
a precise generalization of the standard operator. In Example 8, every relation
in ~t e,(POSS*(r)) must contain (x, Math) and (x, English) for some value
x. However, there are relations in POSS*(#'c e,(r)) which do not have both
of these tuples for some value x. So, under the assumption that tuples with
ni or ank nulls in the partition attributes of a relation (nested or otherwise)
have only single tuple nested relations for each higher order attribute, our defini-
tion of null-unnest (if) is unchanged from the standard unnest definition. Fur-
thermore, we can prove that null-unnest is a precise generalization.

Proposition 7. Null-unnest (p') is a precise generalization of standard unnest (#)
with respect to POSS*.

Proof. We show that POSS* (/~(r)) = ItB(POSS* (r)). Let p =/z~(r).
_~ Let pePOSS*(p). If we make the same assignment to the nulls in p as in

the nested relation r then pe#B(POSS*(r)). This is possible since we assume
that tuples in r with null values in the partition keys have single tuple nested
relations. Therefore, there is a one-to-one correspondence between these null
values in both r and p.

___ Let ~#B(POSS*(r)). Then there must be ~POSS*(r) such that iO=/~B(~).
Let tp be a tuple in p. Now, tp unnested from some tuple t, in r, which
has some PNF possibility t~e~ such that te>t , Let tp=/~B(te). Then, we
have tp > tp. We conclude that i0 > p and so p~POSS* (p).

We conclude that null-unnest is a precise generalization of standard unnest
for POSS*. []

With this result we can now show that the null-unnest* operator (~t'*) is
a precise generalization of the standard unnest* operator.

Corollary 1. Null-unnest* (if*) is a precise generalization of standard unnest*
(1~*) with respect to POSS*.

Proof. Apply the same argument as for Proposition 7, only use complete unnest-
ing instead of single unnesting. []

6.2. Null-extended Operators

Let Rel'r* represent the set of all relations which are not in 1NF or which
contain a null value. Thus, Rel*uReIT=RelT* and Relc~Rel~*=O. Our goal

634 M.A. Roth et al.

is to generalize the nested operators to deal with null values. We have two
choices for our definition of a precise generalization for the operators with
respect to a composition of unnesting and the PNF possibility function. We
can either apply the PNF possibility function first and then unnest the result
or we can unnest first and then apply the PNF possibility function, resulting
in the following two definitions.

Definition 23. Let 7 be an operator on Rel and let 7'* be an operator on RelT*.
We say that 7'* is a precise generalization of 7 relative to unnesting and PNF
possibility function POSS* if one of the following two conditions holds:

1. when 7 and 7'* are unary operators, p*(POSS*(7'*(r)))=7(#*(POSS*(r)))
for every r~RelT* for which 7'*(r) is defined.

2. when 7 and 7'* are binary operators, #*(POSS*(rT'*q))=#*(POSS*(r))
7 P* (POSS* (q)) for every r, q ~ Rel'f* for which r T'*q is defined.

Definition 24. Let 7 be an operator on Rel and let 7'* be an operator on RelT*.
We say that 7'* is a precise generalization of 7 relative to unnesting and P N F
possibility function POSS* if one of the following two conditions holds.

1. when 7 and 7'* are unary operators, POSS* (#'* (7'* (r))) = 7 (POSS* (#'* (r)))
for every r~Rel~f * for which 7'*(r) is defined.

2. when 7 and 7'* are binary operators, POSS*(#'*(rT'*q))=POSS*(#'*(r))
7 POSS* (#'* (q)) for every r, q ~ Rel y* for which r7'* q is defined.

Theorem 1. Definitions 23 and 24 are equivalent.

Proof. By Corollary 1, we know that null-unnest* is a precise generalization
of standard unnest* for POSS*. Thus, the definitions are equivalent. []

There are corresponding definitions of adequate and restricted for Rely*,
and there are three specifications of faithfulness we could use: comparing rela-
tions in Rely* to relations in Rel, ReIT, and Rel*. The proofs of faithfulness
are straightforward and so we shall omit them in what follows.

6.2.1. Null-extended union. Our definition of null-extended union can be revised
to accommodate nulls by adding tuple set reduction as follows.

Definition 25. In order to take the null-extended union of two relations r 1 and
r 2 we require that they have equal relation schemes, say R. The scheme of
the resultant structure is also R. We define null-extended union at the instance
level as follows. Let X range over the zero order attributes in E R and Y range
over the higher order attributes in ER. The null-extended union of rl and r2
is:

r l k-)e'r2 = ~tl(3h ~rl ^ 3t2~r2: (VX, Y~ER: t[X]
= t l IX] = t2 IX] ^ t [Y] = (t 1 [Y] ue' t2 [Y])))

v (terl A (Vt'er2: (VXeER: t[X] ~ t '[X])))

v (t E r 2 A (V t' E r 1 : (VX ~ ER: t [Xl 4= t' [X])))~.

Note, this definition is recursive in that we apply the null-extended union to
each higher order attribute Y.

Proposition 8. Null-extended union is a precise generalization of A-union with
respect to unnesting and PNF possibility function POSS*.

Null Values in Nested Relational Databases 635

Proof We show that #* (POSS* (r ue'q)) = tz* (POSS* (r)) ua#* (POSS* (q)). By
Proposition 2, we know that extended union is a precise generalization of A-
union, and so/~* (POSS* (r)) w ~/z* (POSS* (q)) = #* (POSS* (r) ue POSS* (q)). Thus,
we only need to show that POSS*(rwe'q)=POSS*(r)w~POSS*(q). We show
inclusion both ways. Let p = r ue' q.
_ Let p~POSS*(r)w"POSS*(q). There must be ~ePOSS*(r) and OePOSS*(q)

such that p=~weo. Let tp be a tuple in p. Either tper, tpeq, or t~ is a
combination of tuples in r and q with equal partition keys. If tpsr, there
is a tuple tp~f such that t~>tp. Now, tp is either in /~ or is included in
a combined tuple of/~, since the null values of some partition key may
have been assigned values that make the partition key non-unique. In any
case, this tuple subsumes tp. A similar argument can be made if tpeq. If
tp is a combination of tuples in t and q, then there are no null values in
the outer most partition key. Therefore, in/L these tuples will also combine,
and there is a possibility which subsumes tp. We conclude /)>p, and so

~ POSS* (p). Therefore, POSS* (p) ~_ POSS* (r) w ~ POSS* (q).
=_ Let pePOSS*(p). Since p>>_r, ~>r and/~ is in PNF. Therefore, pePOSS*(r).

Similarly,/~ e POSS* (q). Then, i0 E POSS* (r) u ~ POSS* (q), and so POSS* (p) =_
POSS* (r) u e POSS* (q).

We conclude that null-extended union is a precise generalization of standard
union for POSS*. []

6.2.2. Null-extended difference. We change the definition of extended difference
to include null values by keeping tuples in a relation only if they are not sub-
sumed by some tuple in the other relation.

Definition 26. Let rl and r2 be relations on scheme R. Let X range over the
zero order attributes in ER and Y and Z range over the higher order attributes
in E R . The null-extended difference of r 1 and r 2 is:

r 1 - - e ' r 2 = {t [(3t I c r l A 3 t 2 e r 2 A 3ZeEa:

(VX, Y~E a: t [X] = t 1 [X] = t2 [X] ^ t [Y] = (tl [Y] - e, t2 [Y])))

v (tErl ^ (Vt'erz:-7 (t '> t)))}.

Proposition 9. Null-extended difference is an adequate and restricted generalization
of d-difference with respect to unnesting and possibility function POSS*.

Proof We show adequacy and then restrictedness.

adequate: We show/~* (POSS* (r - e, q)) ~ #, (POSS* (r))- #* (POSS* (q)). By Prop-
osition 2, we know that extended difference is a precise generalization of A-
difference, and so /~* (POSS* (r))- ~ kt* (POSS* (q)) = #* (POSS* (r)- e POSS* (q)).
Thus, we need only show that POSS*(r-e'q)~_POSS*(r)-ePOSS*(q). Let p
=r-e 'q , and ~ePOSS*(r)-ePOSS*(q). Then, there exists ~POSS*(r) and
O~POSS*(q), such that ~ = ~ - e O. Let tp be a tuple in p. Then, tp must be in
r with, perhaps, some of its needed relations reduced by interaction with a
tuple tq in q. Therefore, there must be tuples t~e~ and t~EO which will also
interact in the same way, noting that interaction occurs only when the zero

636 M.A. R o t h et al.

order attributes have non-null values. Thus there is a tuple tp=t~--et~ in /~,
such that t~>tp. We conclude that p>p and so p~POSS*(p). Therefore,
POSS* (p) ~_ POSS* (r)-e POSS* (q).
restricted: We show that there does not exist p such that #*(POSS*(r
_ e, q)) ~+ ~t* (POSS* (p)) ~ #* (POSS* (r))- ~ #* (POSS* (q)). As in the case for ade-
quate, we need only show that there does not exist p such that POSS*(r
- e'q) ~+ POSS* (p) ~_ POSS* (r)- ~POSS* (q)). Suppose there is some p. If
POSS*(r-e'q)~_POSS*(p), then there must be some tuple t in p that does not
subsume any tuple in r - ' q . This means that the non-null valued zero order
attributes X of t, or some nested relation in t, do not match any tuple on
X in the corresponding place in r-~'q. Let z be the relation (either r or a
nested relation in r) and t' the tuple in z where the matching does not occur,
and w be the corresponding, possibly empty, relation in q. There are two possible
reasons for there not being a match: either t '[XJ~z and 3s~w: s>t', or
t' [X] Cz [X]. In each case, the corresponding relation in POSS* (p) must contain
a tuple which subsumes t', however, POSS*(r)-POSS*(q) contains a relation
in which the corresponding relation does not. In the first case, the possibility
of t' can be eliminated by the possibility of s in w that subsumes it, and in
the second case, simply choose not to include t' in POSS*(r). Therefore,
POSS* (p) ~ POSS* (r)- POSS* (q), which is a contradiction.

We conclude that null-extended difference is an adequate and restricted general-
ization of A-difference for POSS* with respect to unnesting. []

6.2.3. Intersection, Cartesian Product, and Select. We will not formally define
"null-extended" versions of these operators. A null-extended intersection can
be obtained from union and difference by

rl (.~e, r2 =(rl t..)e, r2) e, ((rl e, r2) ue,(r2 __e, r,)).

We note also that null-extended intersection is an adequate and restricted gener-
alization of standard interscction with respect to unncsting and PNF possibility
function POSS*. As in the previous two sections we will use the standard carte-
sian product operator. For select we will use null-select, which uses our notion
of equality of nulls and is otherwise identical to standard sclect.

6.2.4. Join. The problems involved in defining join operations for relations with
nulls and for nested relations have becn discussed before. Combining nulls with
nested relations does not improve the situation. However, our limited operator,
extended natural join, does have an adequate and restricted gcneralization with
respect to PNF possibility function POSS*.

Definition 27. Lct X be the higher order attributes in ER~ c~ER~, A=ER,-X,
and B = E R 2 - X. Then the null-extended natural join is r l t ~ e' r 2 which produces
a relation r on scheme R where:

1. R = (A, X, B), and
2. r= {tl(3uerl, ver2: t[A] = u [A] A t[B] = r I B] A

t IX] = (u IX] c~ ~'v IX]) A t IX] * 0}.
Note we use null-extended intersection to combine the nested relations, and
that zero order attributes can only have equal values if neither is ni or unk.

Null Values in Nested Relational Databases 637

Proposition 10. Null-extended natural join is an adequate and restricted generaliza-
tion of standard natural join with respect to unnesting and PNF possibility function
POSS*.

Proof By Proposition 4 we know that extended natural join is a precise general-
ization for standard natural join. Therefore, we need only show that null-
extended natural join is an adequate and restricted generalization of extended
natural join. We show adequacy and then restrictedness.
adequate: We show POSS* (r ~<e, q) ~ POSS* (r) ~<~ POSS* (q). Let p = r ~ ' q and
~r Also, let C be the common zero order attributes of
r and q. Then, there must be ~ePOSS*(r) and ~ePOSS*(q) such t h a t / ~ = ~ - ~ 0.
Let t v be a tuple in p. Then, there are tuples t ,e r and tq~q such that tp[C]
-~tr[C]:tq[C']. There are also tuples t ~ and t q ~ that agree on C with t v
and will participate in the join giving t~. Now, the common higher order attri-
butes X of t~ and tp will participate in an extended intersection, the result of
which will subsume the result of the null-extended intersection of tr[X] and
ta [X]. Therefore, tp > t v, ~ >__ p, and so/~ ~POSS* (p).
restricted: We show that there does not exist p such that
POSS*(r~,< ~'q)~+POSS*(p)~_POSS*(r)~ePOSS*(q). Suppose there is some p.
If POSS*(r~< e' q)~+POSS*(p), then there must be some tuple t in p that does
not subsume any tuple in r ~ e' q. Thus, t contains non-null values which must
occur in any possibility of p, but not in all possibilities of r~.,a ~' q. Consider
the possibilities for tuples in r and q which could exist to join to make a possibili-
ty for t. Since t does not subsume any tuple in r ~ e' q, it must either have
projections on the common zero order attributes that are null or different actual
values, or have different actual values in a common nested relation. In the
first case, there is a possibility for tuples in r and q which set the null value
to different actual values, and so they do not participate in the join. In the
second and third case, there are possibilities which do not have those different
values, yet there are possibilities of r and q which do not. Therefore, there
is a possibility of r and q whose extended join is not a possibility of p. So,
POSS* (p) 7~ POSS* (r)~,<~ POSS* (q), which is a contradiction.
We conclude that null-extended natural join is an adequate and restricted gener-
alization of standard natural join with respect to unnesting and PNF possibility
function POSS*. []

6.2.5. Null-extended Projection. We define null-extended projection as an
extended projection followed by tuple set reduction, or as a tuple-wise null-
extended union of the usual projection.

Definition 28. The null-extended projection of relation r on attributes X is
e !

n~(r)=~tlt~Ir~(r)~= U (t).
t~r[X]

Proposition 11. Null-extended projection is a precise generalization of standard
projection with respect to unnesting and PNF possibility function POSS*.

Proof Since the only difference between null-extended projection and extended
projection is removal of subsumed tuples, the proof mirrors the proof for null-
extended union (Proposition 8). []

638 M.A. R o t h et al.

i"

A B C D

a 1 dne cl dl

a l dne c 2 d 2
a2 b cl dl

a 2 b c 2 d2
a2 b c2 dt

a 2 b cl d2

Fig. 7. R e l a t i o n sa t i s fy ing A --* -* B a n d B ~ ~ C, b u t n o t A ~ ~ C w h e n dne nul ls a re no t e q u a t e d

7. Dependencies in a Database with Null Values

A key assumption made in this paper has been the requirement of partitioned
normal form. In the definition of PNF, we assume that certain multivalued
dependencies must hold in a 1NF relation before it can be legally nested into
a particular form. Furthermore, multivalued dependencies imply functional
dependencies in the nested relation. Therefore, it is important to determine what
effect the addition of null values will have on these dependencies.

In this section we will discuss the previous work on extending dependencies
to deal with nulls, providing some new clarifying information. We will examine
how these dependencies interact with the non-existent, unknown, and no-infor-
mation interpretation of nulls.

7.I. Non-existent Nulls

In [17], a sound and complete axiomatization for functional and multivalued
dependencies is given for a relational model in which due nulls are allowed.
In this model, fine nulls are not considered equal to each other. Notably missing
from the inference rules for both FDs and MVDs is the transitivity rule. The
problem occurs when due nulls appear in the attribute that implements the
transitivity, as the application of the FD and MVD rules is denied when null
values are present on the left hand side of the rule.

An example for MVDs is a relation r on scheme R =(A, B, C, D) where
A --* ~ B and B ~ ~ C hold, but A ~ ~ C does not hold (Fig. 7).

We assume a model of a relation in which tuples or fragments of tuples
represent fundamental relationships in the world being modeled. Each set of
attributes that is involved in one of these fundamental relationships is called
an object [5]. On examining the first two tuples in relation r, it must be true
that there is an object involving attributes A, C, and D, and no subset of them.
Otherwise, we would have to add two tuples matching the first two tuples
in r but with the C and D values swapped. However, on examining the last
four tuples, where dne nulls do not occur, there are independent AC and AD
objects. If we accept this, then we must accept the fact that there are two different

Null Values in Nested Relational Databases 639

semantics for tuples in r. If the value of B is dne then an ACD association
must exist, and if the value is not dne then independent AC and AD associations
must exist, in addition to associations involving B. We do not believe this is
a plausible way to interpret a relation.

The solution is to equate dne nulls from the same domain, as we have done
previously. Then, in a database with only dne nulls added, the definitions of
FD and MVD remain identical to the standard ones and the same axiomatiza-
tion is valid. This is intuitively pleasing as well, since a dne null cannot be
replaced by another value. In fact, it indicates that we know that no other
domain value is valid.

Non-existent nulls also require a more complicated test when tuples are
inserted into a relation. In addition to the usual tests to see that given dependen-
cies are not violated, we must ensure the exclusivity of the tlne null in each
object in which it appears. For example, let us attempt to add the tuple (a3,
b, dne, d3) to relation r above. This insertion should be denied since it is inconsis-
tent that b is related to c~ and c2 and also that b is related to no C value.
This new integrity constraint is embodied in the following rule.

Exclusivity Rule for dne Nulls. Let r be a relation with objects C. For each
O~(9, in ~o(r) there do not exist two tuples t~ and t2 where tt [A] =dne, t~ [A]

t2 [A], and tl [O - A] = t2 [0 - A], for any A e O.

7.2. Unknown Nulls

The effect of unk nulls on functional dependencies has been adequately covered
in [39]. The definition of an FD must be modified so that unk nulls are not
equivalent. This must be the case since we have no way of knowing whether
two unk nulls will turn out to be the same or different values. The same logic
holds for MVDs. However, unlike the assumptions made by [16, 17] for dne
nulls, even though we cannot apply an FD to adjust values or an MVD to
add tuples when there are unk nulls on the left hand side of the dependency,
we still have the usual axiomatization for FDs and MVDs. In proof, suppose
we have a relation that satisfies some given dependencies, but not some depen-
dency which follows from the usual axiomatization. An example is relation
r in Fig. 7, with nnk nulls replacing the dne nulls. Since nnk nulls are placeholders
for actual facts about the world, the dependencies with which we have con-
strained the world are not altered by the presence of these nulls. Therefore,
dependencies which follow from the given dependencies in a world without
null values must still hold in a world with nulls. Thus, a relation such as r
with unk nulls, must not be a complete or accurate representation of the world,
since for any relation r, every relation in POSS(r) must satisfy all FDs and
MVDs which can be derived from the given dependencies.

7.3. No-information Nulls

The only published work dealing with dependencies and the no-information
interpretation of nulls is an axiomatization of FDs by [2]. As in previous

640 M.A. Roth et al.

approaches, they redefine the FD so that it is applicable only when non-null
values are present. Therefore, they conclude the same results as [-17], about
the lack of transitivity in this model. Based on the lattice developed in Sect.
3, we know that an ni null will eventually be replaced by either an unk null
or a dne null when we find out whether or not a value actually exists. Hence,
given a relation r with ni nulls, in any relation in POSS(r) all ni nulls will
be replaced by actual values or by dne. As discussed earlier in this section,
in these cases, there is no valid reason not to retain the same axiomatization
for FDs and MVDs as for relations without nulls, and to do so would possibly
eliminate important dependencies for use in database design and normalization.
Thus, we repeat and earlier statement, that the definitions of FD and MVD
need not be changed as long as the convention that two values from the same
extended domain are equal if they are the same value and neither one is ni
or unk.

7.4. Join Dependency

At first glance, there does not seem to be any good way to define the join
dependency on relations with nulls. Consider the tuple (a, ni, c) defined on
scheme R =(A, B, C). Normally any one tuple relation satisfies any join depen-
dency since any projections of the tuple will obviously join to form the original
tuple. However, with the given tuple, the join dependency.(AB, BC) does not
hold since the projections will not join on ni. However, the MVD which follows
from this join dependency, B-+~A, does hold by default. What we need is
a "default" for the join dependency when ui or unk nulls are present in the
join attributes. We have decided that, in general, ni and unk nulls should not
be equated with each other. However, each null does stand for one and only
one value (actual or dne), and so if a null is transported to more than one
place we should identify them to be the same. Therefore, we mark ni and unk
nulls before applying the test for satisfying the join dependency, doing so by
equating identically marked nulls. We now have an appropriate definition for
a join dependency in our framework and we can use the existing theory for
deriving MVDs from valid join dependencies.

8. Conclusion

The model of incomplete information presented in this paper is based on the
concept of more informative tuples and relations. Using a partial order in which
the no-information null is less informative than both the unknown and non-existent
nulls allows systems to be designed with either the no-information null alone
or with a combination of nulls. If one wants to avoid any computational prob-
lems with unknown nulls, they can be deleted from the model. However, the
framework is there if applications arise in which the no-information interpreta-
tion is not adequate.

Null Values in Nested Relational Databases 641

It was shown how the theory of nulls can be used in a nested database
with a straightforward extension. We discovered that our extended operators
for nested relations have a pleasing mapping to their 1NF counterparts, based
on the concept of partitioned normal form. Furthermore, null values do not
affect the operation of the important nest and unnest operators. Finally, we
showed how existing theories on the axiomatization of functional and multiva-
lued dependencies in the presence of nulls are flawed, and, in fact, the traditional
axiomatization is valid.

Further work is needed in the area of relational operators for nested relations.
We especially need more sophisticated select and project operators which can
work on nested relations. The lack of a satisfactory generalization for natural
join suggests that more work is necessary before a solution is reached. Of special
interest is a join which will work in a database in nested normal form [30].

References

1. Abiteboul, S., Bidoit, N.: Non first normal form relations to represent hierarchically organized
data. In: Proceedings of the Third ACM SIGACT-SIGMOD Symposium on Principles of Data-
base Systems, pp. 191-200. Waterloo, 1984

2. Atzeni, P., Morfuni, N.M.: Functional dependencies in relations with null values. Inf. Process.
Lett. 18, 233-238 (1984)

3. Biskup, J.: A formal approach to null values in database relations. In: Gallaire, H., Minker,
J., Nicolas, J. (eds.) Advances in Database Theory, Volume 1, pp. 299-341. New York: Plenum
Press 1981

4. Codd, E.F.: Extending the database relational model to capture more meaning. ACM Trans.
Database Syst. 4, 397-434 (1979)

5. Fagin, R., Mendelzon, A.O.,, Ullman, J.D.: A simplified universal relation assumption and its
properties. ACM Trans. Database Syst. 7, 343-360 (1982)

6. Fischer, P.C., Van Gucht, D.: Determining when a structure is a nested relation. In: Proceedings
of the Eleventh International Conference on Very Large Databases, pp. 171-180. Stockholm,
1985

7. Fischer, P.C., Van Gucht, D.: Weak multivalued dependencies. In: Proceedings of the Third
ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, pp. 266-274. Waterloo,
1984

8. Giiting, R.H., Zicari, R., Choy, D.M.: An Algebra for Structured Office Documents. Technical
Report RJ 5559 (56648), IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120,
1987

9. Grant, J.: Null values in a relational data base. Inf. Process. Lett. 6, 156-157 (1977)
10. Jaeschke, G.: Nonrecursive Algebra for Relations with Relation Valued Attributes. Technical

Report 84.12.001, Heidelberg Scientific Center. IBM Germany 1984
11. Jaeschke, G.: Recursive Algebra for Relations with Relation Valued Attributes. Technical Report

84.01.003, Heidelberg Scientific Center, IBM Germany 1984
12. Jaeschke, G., Schek, H.-J.: Remarks on the algebra of non first normal form relations. In: Proceed-

ings of the ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, pp. 124-138.
Los Angeles, 1982

13. Kambayashi, Y., Tanaka, K., Takeda, K.: Synthesis of unnormalized relations incorporating more
meaning. Inf. Sci. 29, 201-247 (1983)

14. Keller, A., Winslett Wilkins, M.: On the use of an extended relational model to handle changing
incomplete information. IEEE Trans. Software Eng. 11, 620-633 (1985)

15. Korth, H.F., Silberschatz, A.: Database System Concepts. New York: McGraw-Hill 1986
16. Lien, Y.E.: Multivalued dependencies with null values in relational data bases. In: Proceedings

of the Fifth International Conference on Very Large Databases, pp. 61-66. Rio De Janeiro 1979
17. Lien, Y.E.: On the equivalence of database models. J. ACM 29, pp. 333-362 (1982)

642 M.A. Roth et al.

18. Lipski, W. Jr.: On databases with incomplete information. J. ACM 28, 41-70 (1981)
19. Lipski, W. Jr.: On semantic issues connected with incomplete information databases. ACM Trans.

Database Syst. 4, 262-296 (1979)
20. Maier, D.: Discarding the universal relation assumption: Preliminary results. In: Proceedings

of the XP 1 Workshop on Relational Database Theory. New York 1980
21. Maier, D.: The Theory of Relational Databases. Rockville, MD: Computer Science Press 1983
22. Makinouchi, A.: A consideration on normal form of not-necessarily-normalized relation in the

relational data model. In: Proceedings of the Third International Conference on Very Large
Databases, pp. 447-453. Tokyo 1977

23. Imielifiski, T., Lipski, W. Jr.: Incomplete information and dependencies in relational databases.
In: Proceedings of ACM-SIGMOD 1983 International Conference on Management of Data,
pp. 178-184. San Jose 1983

24. Imielifiski, T., Lipski, W. Jr.: Incomplete information in relational databases. J. ACM 31, 761-791
(1984)

25. Imielihski, T., Lipski, W., Jr.: On representing incomplete information in a relational database.
In: Proceedings of the Seventh International Conference on Very Large Databases, pp. 388-397.
Cannes 1981

26. Ozsoyo~lu, G., Ozsoyo~lu, Z.M.: An extension of relational algebra for summary tables. In:
Proceedings of the 2nd International (LBL) Conference on Statistical Database Management,
pp. 202-211. Los Angeles 1983

27. Ozsoyo~lu, Z.M., Yuan, L.-Y.: A new normal form for nested relations. ACM Trans. Database
Syst. 12, 111-136 (1987)

28. Pistor, P., Traunmiiller, R.: A data base language for sets, lists, and tables. Inf. Syst. 11, 323-336
(1986)

29. Roth, M.A.: Theory of Non-First Normal Form Relational Databases. PhD thesis, The University
of Texas at Austin, Austin, Texas, May 1986

30. Roth, M.A., Kirkpatrick, J.E.: Algebras for nested relations. Data Eng. 11, 39-47 (1988)
31. Roth, M.A., Korth, H.F., Batory, D.S.: SQL/NF: A query language for --n 1NF relational data-

bases. Inf. Syst. 12, 99-114 (1987)
32. Roth, M.A., Korth, H.F., Silberschatz, A.: Extended algebra and calculus for ~ 1NF relational

databases. ACM Trans. Database Syst. 13, 389-417 (1988)
33. Schek, H.-J.: Towards a basic relational NF z algebra processor. In: Proceedings of the Internation-

al Conference on Foundations of Data Organization, pp. 173-182. Kyoto 1985
34. Schek, H.-J., Scholl, M.H.: An Algebra for the Relational Model with Relation-Valued Attributes.

Technical Report DVSI-1984-T 1. Technical University of Darmstadt, Darmstadt, FRG 1984
35. Schek, H.-J., Scholl, M.H.: Die NF2-relationenalgebra zur einheitlichen Manipulation externer,

konzeptueller und interner Datenstrukturen. In: Schmidt, J. (ed.) Sprachen f/Jr Datenbanken.
Informatik Fachberichte Nr. 72. Berlin Heidelberg New York Tokyo: Springer 1983

36. SchoU, M.H.: Theoretical foundation of algebraic optimization utilizing unnormalized relations.
In: International Conference on Database Theory, Rome. Lect. Notes Comput. Sci. 243, 380-396
(1986)

37. Sciore, E.: Null Values, Updates, and Normalization in Relational Databases. Technical Report,
Department of Electrical Engineering and Computer Science, Princeton University 1979

38. Thomas, S.J., Fischer, P.C.: Nested relational structures. In: KaneUakis, P.C. (ed.) Advances in
Computing Research, Vol. 3. The Theory of Databases, pp. 269-307. Greenwich, CT: JAI Press
1985

39. Vassiliou, Y.: Functional dependencies and incomplete information. In: Proceedings of the Sixth
International Conference on Very Large Databases, pp. 260-269. Montreal 1980

40. Vassiliou, Y.: Null values in data base management: A denotational semantics approach. In:
Proceedings of ACM-SIGMOD International Conference on Management of Data, pp. 162-169.
Boston 1979

41. Wong, E.: A statistical approach to incomplete information in database systems. ACM Trans.
Database Syst. 7, 470-488 (1982)

42. Zaniolo, C.: Database relations with null values. J. Comput. Syst. Sci. 28, 142-166 (1984)
43. Zaniolo, C.: A Formal Treatment of Nonexistent Values in Database Relations. Technical Report,

Bell Laboratories, Holmdel, NJ, 1983

Received September 11, 1987/April 12, 1989

