
Acta Informatica 17, 121-134 (1982)

�9 Springer-Verlag 1982

The Choice Coordination Problem

Michael O. Rabin

Department of Mathematics, The Hebrew University of Jerusalem
and Division of Applied Mathematics, Aiken Computation Laboratory,
Harvard University, Cambridge, MA02138, USA*

Summary. In the course of a concurrent computation, processes PI , ..., P n

must reach a common choice of one out of k alternatives A1, ..., A k. They
do this by protocols using k shared variables, one for each alternative, If

the range of the variables has m values then 1] / n < m is necessary, and n
+ 2 < m is sufficient, for deterministic protocols solving the choice coordi-
nation problem (C.C.P.). We introduce very simple randomizing protocols
which, independently of n, solve the C.C.P. by use of a fixed alphabet. A
single-byte (256-valued) alphabet permits a solution with non-termination
probability smaller than 2-127. Many software and hardware tasks involv-
ing concurrency can be interpreted as choice coordination problems.
Choice coordination problems occur also in nature.

1. Introduction

Let P1, ..., P n be n processes engaged in some concurrent computation. As-
sume that in the course of that computation some or all of the processes come
upon k possible alternatives A 1 Ak, and that for the global computation to
proceed the processes must choose one and only one of these alternatives. It
does not matter which A i will be agreed upon, but a coordinated choice must
be arrived at.

If the alternatives A 1 A k are identically named by all processes, say by
words w 1 Wk, then there is an easy solution. Each P s participating in the
choice will traverse all the A 1 A k in some order and choose the A i such
that wi=minwj. If, however, each P s has his own system of names for
A 1 A k then a different approach to choice coordination is required.

Assume that each A i has an associated variable vz which is shared by
P1 , P n . A process P s arriving at A i can test and set v~, i.e. in one in-

* This research was supported in part by NSF grants: MCS77-02474 at Washington University,
Seattle, MCS80-12716 at University of California at Berkeley. Presented at the Specker Sym-
posium in Zfirich, January 1980

0001-5903/82/0017/0121/$02.80

122 M.O. Rabin

divisible step and without interruption from any other process, read the cur-
rent value of v i and possibly change it. Choosing A i will be signaled by
assigning vi:= e where e is a distinguished value in the range of v~.

A solution for the choice coordination problem (C.C.P.) is a system of
protocols for P1 P n such that for every order in which the processes are
activated, eventually one and only one of v I v k will satisfy v~=e.

We assume that the ranges of v I v k are Z={0 , 1 m - 2 , e} and that
all the shared variables are initialized v~:= 0. Our main concern will be the size
I S l = m of the coordination alphabet, as a function of the number n of pro-
cesses.

The coordination problem first arose in a study by M. Fischer and the
present author [2], of an algorithm for concurrent search of a data structure
by many processors. The structure is presented as a collection of nodes or cells,
where each node contains a number of pointers to other nodes. A subprogram
of that algorithm involved a part L of the structure which is a simple closed
loop consisting of cells C 1 C k where from Ci there is a unique pointer to
C~+1, l < i < k , (k + l = l m o d k) . Some of the processes P1 P n enter L at
various cells and start traversing it in the order imposed by the pointers. In
order that the global search algorithm may proceed, the processes must arrive
at a common choice of a cell C~ at which to "break" L.

M. Fischer and the present author have devised, for the case that there is
no common system of names for the cells, a coordination protocol which uses
n + 2-valued shared variables.

It is not easy to reduce the size of the coordination alphabet below n and
still find a solution for the C.C.P. On the other hand it is not even obvious
that a fixed alphabet S k (depending on k) will not suffice for the C.C.P. for any
collection P 1 , P n , where the protocols may of course depend on n.

M.Ben-Or [1] found, for k=2 , coordination protocols for n processes using
about n /2+2 letters. This lays to rest the obvious conjecture that if there are
more processes than letters (1•l <n) then coordination is impossible.

The main result of this paper (Theorem 4) is that for k=2 , if we use m
letters to coordinate n processes and 8 m 3 < n then for every P1 P n there
exists a schedule S (sequence of activation of the processes) so that the
processes do not acheive C.C. when computing under S. In short, if 8 [SI3<n
there does not exist a solution for the C.C.P. for n processes.

Thus if n + 2 < m there exists a solution, and for m<�89 ~ there does not
exist a solution for the C.C.P. for n processes. In terms of numbers of bits for
representing the coordination alphabet, 0(logn) bits are necessary and suf-
ficient for a solution of the C.C.P.

Next we introduce the idea of using randomization in the coordination
protocol and get a surprising result. In a randomized protocol or program
each P i, in its turns according to the schedule S, performs an atomic action
which may depend on the value of a randomly chosen number r, 1 < r < R .

Given 0 < e < 1, we consider a system P1 P n of such randomizing protocols
to be an 1 - ~ solution for the C.C.P. if for every schedule S, the probability for
the processes to reach C.C. is at least 1 - ~ . We do not assume a probability
distribution on the schedules S, but rather achieve a highly reliable solution

The Choice Coordination Problem 123

which is effective for every schedule. For this point of view concerning the
introduction of randomization into algorithms see [5]. It turns out that for k
=2 and a fixed alphabet with m letters we can formulate, for any n, protocols
P1 P n which will achieve C.C. with probability at least 1 - 1 / 2 "/2. Thus
with m=256, i.e. using 8 bits, we get a solution with reliability greater than 1
-1/212s. This method easily generalizes to arbitrary k.

William Bossert has pointed out to me an interesting example of choice
coordination in nature. The mite of the genus Myrmoyssus parasites the ear
membrane of moths of the family Phaenidae. If both ears of a moth are
infected, it does not hear the sonar of bats that prey on it and is in greater
danger of being devoured together with its colony of mites. The mites employ
an ear-choice coordination protocol involving chemical markings of trails, see
[63.

2. Basic Concepts

We shall phrase our definitions and results for the case k = 2 of choice coordi-
nation for two alternatives A 1, A 2. The reader is referred to the Introduction
for the intuitive meaning of the formal definitions.

Let L'= {0, 1, ..., m - 2 , e}, where m is an integer and e is a marker, be an
m-letter alphabet. Let T, E stand respectively for transfer and exit. As usual, if
B is a set then B* will denote the set of all finite words (sequences) on B.

Definition 1. A process or protocol P using Z, is a mapping

e : z * ~ (z - {el) • {T} u {(e, E)} (I)

such that

P(we)=(e , E), w e X * . (2)

Note that if P(w)=(z, X) and ~ + e then X = T must hold.
The intended interpretation is that P operates on the pair (,) of cells. At

any given time, P is positioned either on the left or on the right cell and the
pair contains letters (c~, fl), c~ E S, t i eS . Assume that P is positioned on the left
and about to perform an atomic action. If P has seen, in its active stages, the
sequence w=O'l o 2 . . . O" k of symbols (hence ak=~) and P(w)=(z , X), then P will
replace c~ by z. For X = T the process P will transfer to the right, and on X = E
it will exit (leave) the computation.

However, for the sake of uniform description of the computation, we shall
adopt the convention that on E the process P stays on the same side. Since X
= E only when r =e, and because of (2), it follows that in this case the atomic
action of P will be (e, E) in all subsequent activations of P.

The manner in which the activities of the processes interlace in any particu-
lar computation attempting choice coordination is given by a schedule.

Definition 2. A schedule or live sequence is a pair (S,p) where S = i 1 i 2
1 < i j < n , is an infinite sequence and p: {1 n}~{L, R}.

124 M.O. Rabin

If ij=i we say that Pi is active at time j. If p(i)=L we say that Pi is
initially positioned on the left-hand cell, and similarly for p(i)= R.

We shall now define the computat ion performed by processes according to
a schedule (S, p). In the following, A denotes the empty word, 4~ is the empty
set, and A - B is the set of elements in A but not in B.

Note that in our notion of schedule, the time-sequence starts with t = 1. We
shall take t = 0 to mean the instant of initialization of the computation.

Let P1 Pn be processes using 2, and let (S, p) be a schedule.

Definition 3. A history for a process P is a word we2;*. A configuration C is a
pair (2, p), L peX , a sequence (w 1, ..., w,) of histories, one for each process,
and two sets LF, RT, of processes. If P i e L F (P i e R T) we say that in C
process P i is positioned on the left (right).

Definition 4. The computation F by the processes according to the schedule
(S, p), S= i 1 i 2 is the sequence C o, C1 of configurations, where

C, = ((2,, Or), (w l (t) w ,(t)), LV(t), R T(t))

is called the configuration after time t. The computat ion F is defined in-
ductively as follows. Initialize

2 o = P o = 0 , wj(0) = A, l < j < n ,

LF(O)={Pi]p(i)=L}, RT(O)={Pi]p(i)=R}.

Assume that C t is already defined and let i t + l = i so that Pi is the next
process active in S.

If Pi eLF(t) and Pi(wi(t) 2t) =(z, X) then (2t+ 1, P,+ 1) =(z, Pt) and

wi(t+l)=wi(t)2~z, wj(t+l)=wj(t) for j . i . (3)

Furthermore, if X = T then

LV(t+l)=LV(t) - {P i} , RT(t+I)=RT(t)u{P~} ,

and if X = E (in which case z=e) then LF(t+ 1)=LF(t) and RT(t+ 1)=RT(t).
The definition for the case P i e R T(t) runs similarly.

Remark. It is important to note that the history we(t) of any process P f after
time t is the sequence of symbols that P f "saw" at the times it was active
according to S; a process does not continuously examine the content of a cell
even when it is positioned on the side of that cell. This fact is formalized in (3)
by the difference in definition of we(t+ 1) between w~(t+ 1) for the active P i
and wj(t + 1), j#:i.

With the above notations, we can distinguish three possible outcomes of
the computat ion by P1 Pn according to a schedule (S, p).

I. For every t, 2 , . e and p~ ~e e. We shall say that F has not terminated.
II. For some t, 23 = Pt = e. We shall say that F led to contradiction.

III. Neither I nor II; for some t, 2 t=e or pt=e, but for no t<s, (2s, ps)
=(e, e). In this case we say that F resulted in choice coordination.

The Choice Coordination Problem 125

Definition5. Processes (protocols) P1 Pn are called a solution for the
choice coordination problem (C.C.P.) if for every schedule (S,p), the com-
putation according to this schedule results in choice coordination.

3. A Solution for the Choice Coordination Problem

Theorem 1 (M. Fischer, M. Rabin). For every n there exist protocols P1 Pn
solving the C.C.P. and using n + 2 letters Z={0 , 1 n, e}.

Proof. We shall present the argument for the case k = 2 of two alternatives.
Informally the behavior of P i, l< i<n , is described as follows. When P i first
enters, if it sees 0 it prints i, and if it sees l < j < n it prints min(i, j); in either
case P i transfers sides. Later on, if m is the smallest non-zero integer in P i ' s
history and Pi currently sees O<j<n, then P i leaves j < m unchanged and
transfers, prints 0 and transfers if m < j , and prints e if j - -m .

In short, P i always "becomes" P m for the smallest l<_m<_n it has seen,
replaces by 0 any j > m it sees, and marks e when it sees its current name m for
the second time.

Using the standard notation: Let w = x l x 2 . . .x teZ*, 1__<{, and m=minxt,
O<xt

then

Pi(O)=(i, r), Pi(j)=(min(i,j), T) for O<j<n,

P i(e) = P i(w e) = (e, E),

[(j, T) O<j<m

Pi(wj)=l(O, T) m<j<=n

[(e, E) j=m.

To prove termination, let (S, p) be a schedule and recall that S=il i 2 ... is
infinite. Assume by way of contradiction that the computat ion F does not
terminate (i.e. that (e, x) or (x, e) never appears; see Definition 4 and the
terminology following it). Let i be the minimal index of a process appearing in
S. Assume that t is the first time that Pi appears in S and that p(i)=L. At time
t + 1 the content is (i, p). Because i< i s for every i s ~ S, the value i on the left is
never changed subsequent to time t + 1.

Let Pj be a process which is active an infinite number of times in S. Let t
+ 1 < tx < t 2 < t 3 be three consecutive times at which Pj is active in S, such that
at time t~ the process is on the left (seeing i). Then at time t 3 process Pj will
replace i by e. Thus termination is established.

Assume next that some schedule (S,p) leads to (e, e). Let i be the last
content of the left-hand side L before the change to e, and similarly for j on
the right-hand side R. Since i+0 , j4:0, we must have i:~j (by induction on
computations), so that w.l.g, i<j. Let P{ and Pr be the processes which
respectively change the L-side and the R-side into e. Let t be the time at which
P# has seen or written i in L. The contents of L will now remain i until the
change to e.

126 M.O. Rabin

Let t<u be the next time that P f was active (on the right). Then im-
mediately after time u the contents was (i, 0).

Thus Pr must visit the R-side after time u and before marking the R-side
by e. Hence Pr must also visit L after time u and before L is e. But then the
contents of L is i so that Pr "becomes" Pi. This contradicts the assumption
that later Pr change j > i into e on the R-side.

The above algorithm and the proof of correctness apply also in the case of
choice coordination for any number k of alternatives.

4. The Lower Bound

The task of establishing a lower bound on the number of letters necessary for
coordinating n processes is made difficult by the generality of our notion of a
program or process. The atomic action of a process at a particular time within
a computat ion depends on its entire history up to that time, and we make no
assumptions on the nature of that dependency. The proof for the lower bound
will be effected by combining a pigeon-hole argument with some graph theo-
retic results.

We shall be interested in what a process P is about to do at a given time.
This is expressed in the following.

Definition 6. We say that in configuration C (see Definition 3) P i is primed on
the left side (right side) to change ~ into/3 (primed to do e~/3, for short) if

P i e L F (P i e R T) and Pi(wze)=(/3, X).

If F is a computat ion of P1 Pn, then Pi is primed on the left side to do
c~--*/3 at time t if it is so primed in the configuration C (t - 1) immediately after
time t - 1.

Informally, Pi primed on the left side to do c~-,/3 at time t means that if
according to the schedule P i will next be active at time t 1 > t, and at that time
the contents will be (c~, G), then just after time t 1 the contents will be (/3, a).
Note, however, that the contents at time tl could be (7, a), 7 ~ .

Let (S, p) be a schedule, F the computat ion according to (S, p). After time t
- 1 , let G~_LF(t-1) be a set of processes. With G we associate a directed graph
(Z, E) on 2; = {0, 1 m - 2, e} as follows. For each P i ~ G specify one pair c~,/3
such that Pi is primed to do c~/3 at time t, and put the directed edge (~,/3)
into E. Even though the associated graph is not unique, we shall denote it by
G because in any given context it will be clear which edges are chosen.

If G =(V, E) is a directed graph we say that vertex c~ is connected to vertex/3 if
c~=/3 or there exists a path 0~=0~ 1 ~k=/3 such that (~j, ~j+ 1)eE, 1 <=j<k. If

is connected to /3 and /3 is connected to ~ we say that e and /3 are strongly
connected and write e,-,/3.

The relation ~ is an equivalence relation on the set of all vertices of G.
The equivalence classes under ,-~ are called the strongly connected components
of G.

The Choice Coordination Problem 127

Let K_~ V be a strongly connected component of G. We call K a terminal
component of G if (~, fl> e E and ~ K imply t i cK. Every directed graph has
some terminal components. In the extreme case that E = ~b (there are no edges)
the terminal components consist of single vertices. If G is strongly connected
then V is a terminal component.

Consider the following process of adding edges to a graph with set 0~V of
vertices. The graph G(0)=(V, q~) has no edges. If G(i)=(V, Ei> is not strongly
connected, then G(i+ 1)=(V, Ei+ 1) is obtained by choosing a terminal strongly
connected component K of G(i), an ~ 6 K and a tiCK, and setting El+ 1
=Eiu{<~,/~>}.

Lemma 2. I f the graphs G(O), G(1), ..., G(M) are a sequence of the above type
and if the set V of vertices has m elements, then M < 2 m - 2 .

Also, if at every stage k in the construction of the sequence G(O) the
terminal strongly connected component K of G(k) for which a e K is connected
from O, i.e. there is a directed path in G(k) from 0 to ~, and if (~, fl) is added to
obtain G(k+l) , then the strongly connected component K' which contains fl in
G(k + 1) is a terminal component.

Proof. Let S(i) denote the number of strongly connected components and let
T(i) denote the number of terminal components in G(i). Initially S(0)+T(0)
=2m.

Each step from G(i) to G(i+I) , O<__i<M, reduces T(i) or S(i) by at least 1.
Thus 2__<S(M)+ T (M) < 2 m - M . Hence M<=2m-2.

We leave the proof of the second assertion to the reader.
We shall need another combinatorial result.

Lemma3. Let H = X I X z , . . . , X z R , X i e { L , R } be a sequence of even length
and let F(x) be the reversal function such that F(R)=L, F(L)=R. There exists
an index 1 <iN 2 k such that the sequence

H1 = X1 ".. X i - 1 F(Xi) F(Xk + 1)"" F(X zk) (4)

contains an equal number of L's and R's.

Proof. By induction on k. The case k = 1 is obvious. Assume the result true for
all sequences of length 2 k - 2 and let H = X , ... X2k. If X j = L , 1 < j < 2 k , or Xj
=R, l < j < 2 k then choose i = k + l . Otherwise there exists a l < j < 2 k such
that X i = L , Xj+ 1 = R or vice-versa.

Let i be an index such that applying F to the sequence H'
= X 1 ... Xj_ 1X~+2 ... XgR from X i onwards will produce H; with the desired
property. Here l < i < j - 1 or j+2<i<_2k. The same i will work for H to
produce the H , of (4).

Theorem 4. Let P1 Pn be processes on the alphabet 2 = { 0 , 1 m - 2 , e}.
I f 8m 3<n then these processes are not a solution for the choice coordination
problem.

Proof. The overall plan is to define a finite schedule (S,p), S = i l i 2... it_ 1,
where p: {i I i,_ ,}--+{L, R}, so that after time t - 1 the cells have contents

128 M.O. Rabin

(e, e). Furthermore, there will exist symbols 21=c~ , 2e=e , p l=c t pk=e
and processes P J1 PJe-1, Pro1 Pink-1, such that at time t process PJi,
l__<i=<f-1, is primed on the left to do 2i~2i+ 1, and Pmi, l<_i<_k-1, is
primed on the right to do P~--*Pi+ 1.

The construction of a finite schedule with these properties will turn out to
be possible unless we shall encounter at some time s < t - 1 a hitherto unused
process P/, ir {i 1 is}, and a side X e {L, R} with the following behavior. The
computation under the schedule (S', p') will be nonterminating (see the termi-
nology following Definition4), where S '=i l i2 . . . i s i i i p'(i)=X, and p'(j)
=p(j) for j,t:i. In this case P1, ..., Pn are not a solution for the C.C.P.

The existence of a finite schedule as above also entails that P1 Pn are
not a solution. Namely, under the finite schedule (ili2--. tt-1
Jl . . . i t - i ml ... ink- 1, P), the computation by P1 Pn produces (e, e).

To simplify indices we shall first assume 16ma=<n and at the end improve
to 8ma<n. The construction of the finite schedule is achieved in stages. At
stage k < 2 m we have a schedule (Sk, Pk), where S k is of length t k and the
computation by P 1 P n according to this schedule produces a configuration
after time t k (see Definition 4) with the following properties.

1. The contents of the cells is (~k, ~k)"

2. The schedule (S k, Pk) invokes just the processes P1, . . . , P8mEk. In partic-
ular, the domain of Pk is {1 8m2k}.

3. There exist pairwise disjoint subsets GLi(k)c_LF(tk) and GR~(k)c_RT(tk),
l<_i<_4m-2k such that their associated graphs, also denoted by GLi(k) and
GR~(k), satisfy

a) All of these graphs on 2; have the same strongly connected components.

b) The symbol ek lies in a terminal strongly connected component, call it
K, of these graphs.

Recall that a subset G c_LF(tk) is viewed as a graph on 2; by specifying for
every P i e G a pair ~, fl ~2; so that P i is primed on the left at time t k-b 1 to do

~ ----1. ft.
At stage 0 we define So=0, (S o, po)=(A, 4~), GL~(O)=GR~(O)=O, 1 <_i<4m.

Assuming that (Sk, Pk) is already defined and k < 2 m we shall define
(Sk+l,pk+l) or, failing to do so, get that P1 Pn are not a solution. We
need a preliminary observation.

Let fl, 7eK, where K is the strongly connected component in 3.b), and let
GL~(k) be any one of the graphs in 3. Since K is a component of GLi(k), there
exists a sequence of pairwise different symbols 21 =~k, 22)~e=fl (if ~ k = f l
then f = l) , and processes Pj l , . . . ,P je_ leGL~(k) so that Pj,, 1_<r_<(-1 is
primed on the left to do 2r---,2,+ 1. Thus the schedule (Skjlj 2...je 1,Pk) will
lead to the contents (fl, C~k). A similar statement holds for the right-hand side.
Thus an appropriate extension (S', Pk) of (Sk, Pk) would lead to (fl, 7). In particu-
lar this implies that if e e K then P1 Pn are not a solution, so that we may
assume e ~ K.

Consider the processes P 8 m 2 k + 1 P8m2k+ 8m 2, which have not been
used in (Sk, Pk). Since k < 2 m and (for now) 16ma=<n we have 8m2k+8mE<=n.
At time tk+l start P 8 m 2 k + l on side L and run it. In other words, construct

The Choice Coordination Problem 129

the schedule (S,p) where S=Sk(8m2k+l)(8m2k+l) and p extends Pk by
p(8mZk + 1)=L. In the computation according to (S, p) the contents of the cells
after times tk, tk+l , tk+2 will be (ek, ek), (21, ek), (21, Pl) TWO cases are
possible. Either 2 i , p iEK - the terminal component containing ek, for i
=1, 2 (since e CK, in this case (S,p) leads to a non-terminating com-
putation), or there is a smallest i such that 2 i r K or pir K. In this case truncate
S to a finite sequence S', stopping just at the point when P8m2k+l is primed
to do 2~2~+ 1 where 2~r /~i+ I~K, or pi-"~Pi+l where pieK, pi+lr as the
case may be. For example if 21r then S'=S k, and P8m2k+l will be primed
on the left to do C~k~21. And if 21 ,p1 ,22 ~K but p2r then S'=Sk(8mZk
+l)(Sm2k+l)(8m2k+l); after time tk+3, process P8m2k+l will be primed
on the right to do pl--~p2.

Next start P8m2k+2 on side L and extend (S', p') to (S", p") in the above
manner so that after the computation according to (S", p"), process P 8 m 2 k + 2
is primed either on the left or on the right to do f l~? where fl~K, 7r
Continuing in this manner, starting every P8m2k+i, 1 < i < 8 m 2, on the L-side,
we extend (Sk, Pk) to (S ~8"2), ptSm2)) so that after the computation according to
this schedule, every P8m2k+ i, 1 < i<8m 2, is primed to do fl(i)~y(i).

There are at most m possible values for 7(i), so there must exist 8m indexes
8 m 2 k + l <j~ <j2 < ... <Jsm<=8m2(k + l), for which ~)(j l)= '~(j2)=. . . =y (J sm)=7 .
Thus at the end of our schedule, PJe, 1 < f < 8 m, is primed on side X t ~ {L, R}
to do fl(Je)-*Y where fl(jt)eK and 7r

We would like to add one Pj~ to each GLi(k) and each GRi(k), 1 <_i<_4m
- 2 k , thereby creating the desired GLi(k+l), GR~(k+I) and their associated
graphs. This cannot be directly done because the Xe need not be evenly
distributed between L and R. To rectify the situation we use Lemma 3.

According to Lemma3 there exists an l<i<_8m such that the sequence
X1.. . Xi-1 F(Xi)... F(Xsm), where F(L)=R and F(R)=L, has an equal number
of Us and R's. Denote by t the time in the computation according to (Sts"
2),ptam~)) after which PJi-1 is primed (at time t + l) on side Xi_ 1 to do
fl(ji_l)~7. Let the contents of the cells after time t be (2, p) where 2, p~K.
Actually 2 = fl(J~- 1) if X i_ I = L and P=fl(Ji-~) if X~_ I=R , but this fact is not
used.

By our definition of S ~s"2) it has the form

s(8m2)=Sk(8m2 k+ 1).. .Ji- l(Ji- 1 -t'- 1)... 8m2(k + 1),

where the displayed occurence of j~_ 1 is at time t in the computation. Denote
by S the initial segment of S (8"2~ up to and including the displayed j~_ ~; the
length of S is t. Since 2, p e K, we can activate, subsequently to S, processes in
GL4m-2k on the left-side and in GR4~_ 2k (on the right-side), to transform the
contents of the cells from (2, p) to (p, 2). This is done in the manner previously
detailed in the proof just after the definition of (S k, Pk)" The order of activations
of those processes extends S to StY1 ... t~, Define now

S ' = S E I ' " ~ (J i l + 1) . . . 8 m 2 (k + l) .

Here Pf~ PE~ are the processes used to effect the flip-over of the contents
of the cells; we have f j<8m2k, 1 <=j<=s. Note that in the computation accord-

130 M.O. Rabin

ing to S', after time t+s the contents of the cells is (p, 2). Also, Ji Js,,
appear in S' after fs-

Change p~8,,2) into Pk+I by setting pk+l(h)=p(8m2)(h), l<h<j i_ l , and
pk+l(h)=R for j i_ l+l<h<8ma(k+l) . Recall that p(8"2)(h) was L, ji 1
+1 <h<8m2(k+l). Let us examine the effect of the computation according to
the schedule (S', Pk+ 1). After time t+s, i.e. at the end of the S f l ...Es segment,
the contents of the cells is (p, 2). At times t + s + 1, t + s + 2 the computation
will run exactly like the computation according to (S ~8"2), p~8,,~)) at times t + 1, t
+ 2 except that left and right are interchanged in the sense that everything
that occured in the computation according to (S (8m2), p(8,,~)) on the L-side will
occur in the computation according to (S', Pk) on the R-side, and similarly with
L and R interchanged. Since Pji P J8,,, were first activated in (S (8"~), p(Sm~))
after time t, and in (S',Pk+l) after time t+s, it follows that at the end of the
computation according to (S', Pk+x) these processes will be primed on sides
F(Xi)...F(Xs,,) to do fl(ji)~7 fl(j8m)~7. Thus at the end of this com-
putation exactly 4m of the PJl PJs,,, will be primed on the left and exactly
4m of these processes will be primed on the right.

Also, at the end of (S', Pk+ 1) the contents of the cells will be (a 1, a2), where
al, a2~K. Assume, without loss of generality, that PJl ends up primed on the
left and P J2 ends up primed on the right. Since fi(JO, fl(J2) eK, we can use
processes in GL4m_2k_ l(k) on the L-side and processes in GR4m 2k 1(k) on
the R-side, to extend S' to S" so that at the end of the computation according
to (S", Pk+ 1) the contents is (/~(J0,/~(J2)).

Define Sk+I=S"jlj2. Since PJl was primed on the left side to do /3(jl)~7,
and similarly for P J2 on the right side, at the end of the computation accord-
ing to (Sk+ 1, Pk+ 1) the contents is (7, 7). Define ~k+l =7.

That (Sk+ 1, Pk+ 1) has the properties 1 - 2 of (S k, Pk) is obvious. In order to
establish property 3, add to each of GL~(k), 1 < i < 4 m - 2 k - 2 , (a different) one
of the P J3 PJs,, which is primed on the L-side and call the resulting graph
GL~(k+I); proceed similarly with the GR~(k). Ba 3.a), all the GL~(k), GRz(k),
had the same strongly connected components. Every PJe adds a new edge
(/3(it), ek+l) where / ~ (j e) e K - a common strongly connected component. It
follows that all GL~(k+I), GR~(k+I), l < i < 4 m - 2 (k + l) , have the same
strongly connected components. By the second assertion in Lemma2, the
process of obtaining GLi(k+ 1) from GLi(k) insures that ek+l is in a terminal
strongly connected component of GLz(k + 1). Thus 3.a), 3.b), are established for

(Sk+ 1' Pk+ 1)"
To get by with 8maNn, observe that at stage k + 1 of the construction we

want to add processors to just GL~(k), GRi(k), l<_i<_4m-2(k+l), i.e., to 8rn
- 4 (k + l) sets and not 8m sets. Thus it will suffice to activate (8m-4k)m new
processors at this stage, which brings the total to 8m 3.

To conclude the proof of Theorem 4, observe that the sequence of graphs
GLI(0), GLI(1) satisfies the conditions of Lemma 2 so that it has length at
most 2 m - 2 . Thus for some k__<2m-2, the above construction cannot be
continued. This means that either we have encountered at stage k a schedule
leading to a non-terminating computation, or at stage k we had e e K for the
strongly connected component K e c~ k. But in the latter case we had a schedule
leading to a contradiction (e, e). End of proof! []

The Choice Coordination Problem 131

The author does not see a way of using fewer than 0(m 2) new processes at
each stage, and no argument insuring fewer than 0(m) stages. Neither does
there seem to be a way, within the strategy of this proof, to reuse primed
processes P j ~ G L i (k) once they were activated to do a transition ~ f l . For it
was essential that with respect to every process that was introduced and
brought to a primed state in the construction of (Sk+ 1, Pk+ 1) from (Sk, Pk), we
had the freedom to initiate it on the L-side or on the R-side. But once a
process is used, the side is determined. Thus calling for 0(m 2) n e w processes at
each stage seems unavoidable.

On the other hand, examination of the proof reveals that we have estab-
lished a claim somewhat stronger than Theorem 4. Namely, if 8m 3<n then
there exists a schedule (S,p) leading to a non-terminating computation by
P1 Pn, where for some 1 < i < n , S has the form

S = i I i 2 ... i~iii (5)

or there exists a schedule according to which P 1, ..., P n compute (e, e).
The special form (5) of the schedule (S,p) leading to non-termination,

suggests the possibility that the assumption 8 m3_ < n may be too strong.
As was pointed out in the Introduction, in terms of bit-count, which is the

significant measure for implementations, we are not far from optimal: An
alphabet Z requiring at least 1/3 log z n bits is necessary, and requiring log 2 n
bits is sufficient, for a solution of the C.C.P. for n processes. The next signifi-
cant step is to reduce the number of bits to say 8, for every number of
processes, by use of randomized protocols.

5. Randomizing Protocols for the C.C.P.

The difficulty in choice coordination arises out of the initial symmetry of the
contents of the cells, a symmetry that is impossible to break unless sufficiently
many symbols are available in the synchronization alphabet. This suggests the
idea of using randomizing protocols that will break the symmetry with very
high probability. The same idea of randomization was successfully used for
various synchronization problems [3, 4] and seems to be a generally applicable
method in this area.

Let us assume that we have an m+2-valued alphabet 2;={0, 1, 2, . . . ,m, e}
where m is even. The numbers 1 m are viewed as grouped in pairs {1, 2},
{3,4} { m - l , m } . Each of the processes P1 Pn, is able to make a
random binary choice between two items. By random {i, i+ 1} we mean one of
the two numbers i, i+ 1 chosen with equal probabilities. All the processes have
the same program. If, upon first entering, say on the L-side, P sees 0 it writes
random {1, 2} and transfers sides. In general, if the last letter that P saw is
and it currently sees fl then if ~<f l it transfers side, if f l<~ process P marks
the cell, i.e. changes the fl into e, and if a = f l < m - 1 then P replaces fl by

r andom{2[2 f l -]+ l , 212fl-]+2}i.e., by random { i , i + l } where { i , i + l } is the

next pair after the pair containing ft. Thus if P last saw 13 on the L-side and

132 M.O. Rabin

now sees 13 on the R-side (this does not mean that the current contents of the
cells is (13, 13)) then it will write random {15, 16} on the R-side. Formally, for
O<=cq fl<__m, weZ*,

P (w e) = (e, E),

(6)

P(0)=(random{1, 2}, T), P(e)=(e , T) for 1-<c~<_m,

{ (fl, T) c~<fl

P(wc~fl)= (e, E) f l < e

, (random (i, i + 1 }, T), i = 2 [p]~
z

+1, c ~ = f l < m - 1 .

Note that P is not always defined, for example P(7, 13, m - l , m - l) is unde-
fined.

The notions of a schedule and of a computat ion F by randomizing pro-
cesses P1 , Pn according to a schedule, is exactly as in Definitions 2-4. Any
particular computat ion F involves specific outcomes of random {i, i+ 1} when-
ever this operator was used. To a given schedule 7z=(S,p) there correspond
many computations according to 7z. The 1/2 probabilities of the outcomes i
and i+1 in random {i, i+1} entail a probability Pr~(F) for a computat ion F
according to re. Note that Pr~ is not conditional probability, since rc is fixed. It
is easy to see that an event such as F non-terminating (see I following
Definition 4), has a well defined probability.

Theorem 5. I f each of the processes P1 P n on the alphabet Z
= {0, 1 m, e} is defined by (6), then for every schedule (S, p) a computation F
according to this schedule will never lead to a contradiction (i.e., contents (e, e)),
and will terminate with probability greater than 1 - 1 / 2 '~/2.

Furthermore, if P i is active in S 2 k < m or more times, then the probability
that by the 2k th activation Pi will find or write e is greater than 1 - 1 / 2 k.

Proof. Let us start by showing that (e, e) never arises. Let F = C 0, C 1 be a
computat ion according to the schedule (S, p) and let

(0, 0), (41 , Pl) (2t, Pt)

be the sequence of contents of the pair of cells in C o, C 1 Since a change of
a contents of a cell involves randomly drawing from the next pair i, i+ 1, we
have 41 < 2 2 ... and Pl <P2 Assume by way of contradiction that 2z=pt=e
and that P i and Pj were the processes that, respectively, changed the contents
of the left-hand cell at time u + l and the contents of the right-hand cell at
time s + l into e. Let P f s history before time u be ap,, where a~S_,* and v<u,
and Pj's history before time s be b2~,, b~Z*, w<s. Since at time u + l process
P i changes the L-side into e we must have Pv > 2u, and similarly 2 w >Ps-

Assume now s <u . Process P i must have last visited the R-side before time
s + l because at time s + l process Pj was there, and after time s + l the
contents were (4s+ 1, e); hence s > v. Thus 4 w > Ps > Pv > 2u and 4w > 2u. But w < u,
a contradiction.

The only way in which F will not terminate is if for some t the contents
(2t, p~) are (m - l , m - l) or (re, m). For this to occur there must be times

The Choice Coordination Problem 133

t l < t 2 < . . . < t ~ / 2 = t such that 2,1=p,16{1,2}, 2~2=p~2~{3,4},.... Thus m/2
times, independent choices random {i, i+ 1} on the L-side and on the R-side
have produced the same value. The probability of a single such event is 1/2 and
the probability of m/2-fold repetition is 1 - 1/2 "/2.

The assertion concerning waiting-time for the individual process P i until
C.C. is proved similarly.

If we take m + 2 = 2 5 6 so that 8 bits suffice for the alphabet, then choice
coordination will be achieved with probability 1-1/2127 . Also if we count
each time that a process P i visits the L-side cell as a round, then the expected
number of rounds by P i in a computation F before C.C. is 2.

By slightly modifying the protocol (6) we can reduce the expectation and
variance of the waiting time until C.C. of any process participating in the
schedule. Assume that]S]=1002 so that 10bits suffice for implementation.
Divide the integers l < i < 1 0 0 0 into groups of 100, {1 100},
{101 200}, The random draw in case of equality will be from the next
group of i00, so that we use r andom{i+1 i+100} for i=0, 100 900.
The probability of not breaking the symmetry at each stage is 1/100 so that the
probability for non-termination is smaller than 1/100 l ~ 10-12. The probabili-
ty of a process Pi making, say, two rounds without C.C. is at most 100 2.

Could we improve the result concerning randomizing protocols and obtain
a solution involving a fixed alphabet for the C.C.P. with the properties that we
never get a contradiction and the probability of non-termination is 0? If we
generalize Definition 1 of a process by introducing randomness into (1), we get
the general notion of a randomizing process. A careful reading of the proof of
Theorem 4 shows that for randomizing processes we get

Theorem6. Let P1 P n be randomizing processes on an m-letter alphabet
such that for every schedule ~ =(S, p): (1) No computation F according to ~z leads
to the contradiction (e.e.). (2) The probability for a computation F to be non-

terminating is O. Then we must have 1/2.]//n<m.

6. Conclusions

The C.C.P. lends itself to many interpretations both in hardware and in
software situations. For example, in the course of a computation, k almost
identical versions A 1 A k of a text are being generated. Processes P 1 Pn
have to agree on one of these as the commonly used version. Thus a C.C.P.
arises.

Our analysis delineates what can be done by classical deterministic pro-
cesses to solve the C.C.P. It turns out that to solve the C.C.P. for n de-
terministic processes, an alphabet • requiring 0(log 2n) bits is necessary and
sufficient. In terms of bit-count the disparity between our upper and lower
bound results is small.

We suggest the approach employing randomization as a very practical and
convenient paradigm for solving the C.C.P. and in fact other problems of
synchronization and coordination. As indicated in Sect. 5, there are many

134 M.O. Rabin

possible variations of the randomization method. Thus one can tailor a version
of randomizing protocols to suit a particular problem.

It is very important that the protocols P1 P n for the randomizing
solution for the C.C.P. are all identical, use a very small alphabet, and the
whole thing is independent of n. One can envision situations where n will be
very large, and where the set of processes participating in the choice coordi-
nation computation is not known in advance. Thus trying to impose different
protocols depending on n, as is necessary in the classical solution, becomes
cumbersome.

In practice the C.C. protocol of Theorem 5 does not even require use of a
random number generator by P. We can, so to speak, randomize the whole
technology in advance. Assume that we produce many microprocessors on
chips and that we know that during the lifetime of these processors certain
subsets of the ensemble will have to participate in up to a billion billions (1018)
choice coordination computations. During production we can incorporate into
each chip a different randomly generated 127-bit sequence which codes a
random choice of one element from each of the pairs {1,2} {253,254}.
Each processor will play in every encounter in which it participates, using its
fixed random sequence. Under the reasonable assumption that choice coordi-
nation tasks and the schedules of activation of the processors will be inde-
pendent of the preprepared random sequences, it follows from Theorem 5 that
the probability of failure to reach C.C. in one or more of the 1018 possible
encounters is smaller than 1018. 2 -127_ 2-87. Thus we have high reliability for
absence of even one breakdown for the whole lifetime of the system. The
coordination alphabet in this example requires just one byte.

Finally, Theorems 5 and 6 taken together illustrate an interesting phenome-
non. If we are willing to tolerate the practically negligible 2 -127 probability of
failure then a fixed 256-letter alphabet and a very simple protocol will solve
the C.C.P. independently of the number of processes. But if we insist on

probability 0 of failure, then complexity goes up as]//~ with the number n of
processes. Perfectionism, it seems, does not pay!

References

1. Ben-Or, M.: Private communication
2. Fischer, M., Rabin, M.O.: Concurrent search of a large data-structure. In preparation
3. Lehmann, D., Rabin, M.O.: On the advantages of free choice: A symmetric and fully distributed

solution to the dining philosophers problem. Submitted for publication
4. Rabin, M.O.: N-process synchronization by 4.log 2N-valued shared variables. Proceedings of

the 21st IEEE Annual Symp. on Foundations of Computer Science (1980). To appear JCSS
5. Probabilistic algorithms: Algorithms and complexity, New Directions and Recent Trends (J.F.

Traub Ed). Academic Press: NewYork (1976), pp. 21-39
6. Treat, A.: Experimental control of ear choice in the moth ear mite. XI. Internationaler Kongress

ftir Entomologie. Wien (1960), pp. 619-621

Received October 15, 1981

