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Summary. In the course of a concurrent computation, processes PI ,  ..., P n  

must reach a common choice of one out of k alternatives A1, ..., A k. They 
do this by protocols using k shared variables, one for each alternative, If 

the range of the variables has m values then 1 ] / n < m  is necessary, and n 
+ 2 < m  is sufficient, for deterministic protocols solving the choice coordi- 
nation problem (C.C.P.). We introduce very simple randomizing protocols 
which, independently of n, solve the C.C.P. by use of a fixed alphabet. A 
single-byte (256-valued) alphabet permits a solution with non-termination 
probability smaller than 2-127. Many software and hardware tasks involv- 
ing concurrency can be interpreted as choice coordination problems. 
Choice coordination problems occur also in nature. 

1. Introduction 

Let P1, ..., P n  be n processes engaged in some concurrent computation. As- 
sume that in the course of that computation some or all of the processes come 
upon k possible alternatives A 1 . . . . .  Ak, and that for the global computation to 
proceed the processes must choose one and only one of these alternatives. It 
does not matter which A i will be agreed upon, but a coordinated choice must 
be arrived at. 

If the alternatives A 1 . . . . .  A k are identically named by all processes, say by 
words w 1 . . . . .  Wk, then there is an easy solution. Each P s  participating in the 
choice will traverse all the A 1 . . . . .  A k in some order and choose the A i such 
that wi=minwj.  If, however, each P s  has his own system of names for 
A 1 . . . . .  A k then a different approach to choice coordination is required. 

Assume that each A i has an associated variable vz which is shared by 
P1  . . . .  , P n .  A process P s  arriving at A i can test  and set v~, i.e. in one in- 
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divisible step and without interruption from any other process, read the cur- 
rent value of v i and possibly change it. Choosing A i will be signaled by 
assigning vi:= e where e is a distinguished value in the range of v~. 

A solution for the choice coordination problem (C.C.P.) is a system of 
protocols for P1 . . . . .  P n  such that for every order in which the processes are 
activated, eventually one and only one of v I . . . . .  v k will satisfy v~=e.  

We assume that the ranges of v I . . . . .  v k are Z={0 ,  1 . . . . .  m - 2 ,  e} and that 
all the shared variables are initialized v~:= 0. Our main concern will be the size 
I S l = m  of the coordination alphabet, as a function of the number n of pro- 
cesses. 

The coordination problem first arose in a study by M. Fischer and the 
present author [2], of an algorithm for concurrent search of a data structure 
by many processors. The structure is presented as a collection of nodes or cells, 
where each node contains a number  of pointers to other nodes. A subprogram 
of that algorithm involved a part  L of the structure which is a simple closed 
loop consisting of cells C 1 . . . . .  C k where from Ci there is a unique pointer to 
C~+1, l < i < k ,  ( k + l = l m o d k ) .  Some of the processes P1 . . . . .  P n  enter L at 
various cells and start traversing it in the order imposed by the pointers. In 
order that the global search algorithm may proceed, the processes must arrive 
at a common choice of a cell C~ at which to "break"  L. 

M. Fischer and the present author have devised, for the case that there is 
no common system of names for the cells, a coordination protocol which uses 
n + 2-valued shared variables. 

It is not easy to reduce the size of the coordination alphabet below n and 
still find a solution for the C.C.P. On the other hand it is not even obvious 
that a fixed alphabet S k (depending on k) will not suffice for the C.C.P. for any 
collection P 1 . . . .  , P n ,  where the protocols may of course depend on n. 

M.Ben-Or  [1] found, for k=2 ,  coordination protocols for n processes using 
about n /2+2  letters. This lays to rest the obvious conjecture that if there are 
more processes than letters (1•l <n) then coordination is impossible. 

The main result of this paper (Theorem 4) is that for k=2 ,  if we use m 
letters to coordinate n processes and 8 m 3 < n  then for every P1 . . . . .  P n  there 
exists a schedule S (sequence of activation of the processes) so that the 
processes do not acheive C.C. when computing under S. In short, if 8 [SI3<n  
there does not exist a solution for the C.C.P. for n processes. 

Thus if n + 2 < m  there exists a solution, and for m<�89  ~ there does not 
exist a solution for the C.C.P. for n processes. In terms of numbers of bits for 
representing the coordination alphabet, 0(logn) bits are necessary and suf- 
ficient for a solution of the C.C.P. 

Next we introduce the idea of using randomization in the coordination 
protocol and get a surprising result. In a randomized protocol or program 
each P i, in its turns according to the schedule S, performs an atomic action 
which may depend on the value of a randomly chosen number  r, 1 < r < R .  

Given 0 < e <  1, we consider a system P1 . . . . .  P n  of such randomizing protocols 
to be an 1 - ~  solution for the C.C.P. if for every  schedule S, the probability for 
the processes to reach C.C. is at least 1 - ~ .  We do not assume a probability 
distribution on the schedules S, but rather achieve a highly reliable solution 
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which is effective for every schedule. For this point of view concerning the 
introduction of randomization into algorithms see [5]. It turns out that for k 
=2  and a fixed alphabet with m letters we can formulate, for any n, protocols 
P1 . . . . .  P n  which will achieve C.C. with probability at least 1 - 1 / 2  "/2. Thus 
with m=256, i.e. using 8 bits, we get a solution with reliability greater than 1 
-1/212s. This method easily generalizes to arbitrary k. 

William Bossert has pointed out to me an interesting example of choice 
coordination in nature. The mite of the genus Myrmoyssus  parasites the ear 
membrane of moths of the family Phaenidae. If both ears of a moth are 
infected, it does not hear the sonar of bats that prey on it and is in greater 
danger of being devoured together with its colony of mites. The mites employ 
an ear-choice coordination protocol involving chemical markings of trails, see 
[63. 

2. Basic Concepts 

We shall phrase our definitions and results for the case k = 2  of choice coordi- 
nation for two alternatives A 1, A 2. The reader is referred to the Introduction 
for the intuitive meaning of the formal definitions. 

Let L'= {0, 1, ..., m - 2 ,  e}, where m is an integer and e is a marker, be an 
m-letter alphabet. Let T, E stand respectively for transfer and exit. As usual, if 
B is a set then B* will denote the set of all finite words (sequences) on B. 

Definition 1. A process or protocol P using Z, is a mapping 

e :  z * ~ ( z -  {el) • {T} u {(e, E)} (I) 

such that 

P(we)=(e ,  E), w e X * .  (2) 

Note that if P(w)=(z, X) and ~ + e  then X = T  must hold. 
The intended interpretation is that P operates on the pair ( , ) of cells. At 

any given time, P is positioned either on the left or on the right cell and the 
pair contains letters (c~, fl), c~ E S, t i eS .  Assume that P is positioned on the left 
and about to perform an atomic action. If P has seen, in its active stages, the 
sequence w=O'l o 2 . . .  O" k of symbols (hence ak=~ ) and P(w)=(z ,  X), then P will 
replace c~ by z. For  X = T the process P will transfer to the right, and on X = E  
it will exit (leave) the computation. 

However, for the sake of uniform description of the computation, we shall 
adopt the convention that on E the process P stays on the same side. Since X 
= E  only when r =e,  and because of (2), it follows that in this case the atomic 
action of P will be (e, E) in all subsequent activations of P. 

The manner in which the activities of the processes interlace in any particu- 
lar computation attempting choice coordination is given by a schedule. 

Definition 2. A schedule or live sequence is a pair (S,p) where S = i  1 i 2 .... 
1 < i j < n ,  is an infinite sequence and p: {1 . . . . .  n}~{L,  R}. 
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If ij=i we say that Pi is active at time j. If  p(i)=L we say that Pi is 
initially positioned on the left-hand cell, and similarly for p(i)= R. 

We shall now define the computat ion performed by processes according to 
a schedule (S, p). In the following, A denotes the empty word, 4~ is the empty 
set, and A - B  is the set of elements in A but not in B. 

Note that in our notion of schedule, the time-sequence starts with t = 1. We 
shall take t = 0 to mean the instant of initialization of the computation. 

Let P1 . . . . .  Pn be processes using 2, and let (S, p) be a schedule. 

Definition 3. A history for a process P is a word we2;*. A configuration C is a 
pair (2, p), L peX ,  a sequence (w 1, ..., w,) of histories, one for each process, 
and two sets LF, RT, of processes. If P i e L F  ( P i e R T )  we say that in C 
process P i is positioned on the left (right). 

Definition 4. The computation F by the processes according to the schedule 
(S, p), S= i  1 i 2 .... is the sequence C o, C1 . . . . .  of configurations, where 

C, = ((2,, Or), (w l (t) . . . . .  w ,(t)), LV(t), R T(t)) 

is called the configuration after time t. The computat ion F is defined in- 
ductively as follows. Initialize 

2 o = P o = 0 ,  wj(0) = A, l < j < n ,  

LF(O)={Pi]p(i)=L}, RT(O)={Pi]p(i)=R}. 

Assume that C t is already defined and let i t + l = i  so that Pi is the next 
process active in S. 

If Pi eLF(t) and Pi(wi(t ) 2t) =(z, X) then (2t+ 1, P,+ 1) =(z, Pt) and 

wi(t+l)=wi(t)2~z, wj(t+l)=wj(t)  for j . i .  (3) 

Furthermore, if X = T then 

LV( t+l )=LV( t ) - {P i} ,  RT( t+I)=RT( t )u{P~} ,  

and if X = E  (in which case z=e )  then LF(t+ 1)=LF(t) and RT( t+  1)=RT(t). 
The definition for the case P i e  R T(t) runs similarly. 

Remark. It is important to note that the history we(t ) of any process P f  after 
time t is the sequence of symbols that P f  "saw" at the times it was active 
according to S; a process does not continuously examine the content of a cell 
even when it is positioned on the side of that cell. This fact is formalized in (3) 
by the difference in definition of we(t+ 1) between w~(t+ 1) for the active P i 
and wj(t + 1), j#:i. 

With the above notations, we can distinguish three possible outcomes of 
the computat ion by P1 . . . . .  Pn according to a schedule (S, p). 

I. For  every t, 2 , .  e and p~ ~e e. We shall say that F has not terminated. 
II. For some t, 23 = Pt = e. We shall say that F led to contradiction. 

III. Neither I nor II;  for some t, 2 t=e  or pt=e, but for no t<s, (2s, ps ) 
=(e, e). In this case we say that F resulted in choice coordination. 
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Definition5. Processes (protocols) P1 . . . . .  Pn are called a solution for the 
choice coordination problem (C.C.P.) if for every schedule (S,p), the com- 
putation according to this schedule results in choice coordination. 

3. A Solution for the Choice Coordination Problem 

Theorem 1 (M. Fischer, M. Rabin). For every n there exist protocols P1 .. . . .  Pn 
solving the C.C.P. and using n + 2  letters Z={0 ,  1 . . . . .  n, e}. 

Proof. We shall present the argument for the case k = 2  of two alternatives. 
Informally the behavior of P i, l< i<n ,  is described as follows. When P i first 
enters, if it sees 0 it prints i, and if it sees l < j < n  it prints min(i, j);  in either 
case P i transfers sides. Later on, if m is the smallest non-zero integer in P i ' s  
history and Pi currently sees O<j<n, then P i  leaves j < m  unchanged and 
transfers, prints 0 and transfers if m < j ,  and prints e if j - -m .  

In short, P i  always "becomes"  P m  for the smallest l<_m<_n it has seen, 
replaces by 0 any j > m it sees, and marks e when it sees its current name m for 
the second time. 

Using the standard notation: Let w = x l x  2 . . .x teZ*,  1__<{, and m=minxt,  
O<xt 

then 

Pi(O)=(i, r), Pi(j)=(min(i,j), T) for O<j<n, 

P i(e) = P i(w e) = (e, E), 

[(j, T) O<j<m 

Pi(wj)=l(O, T) m<j<=n 

[(e, E) j=m.  

To prove termination, let (S, p) be a schedule and recall that S=il  i 2 ... is 
infinite. Assume by way of contradiction that the computat ion F does not 
terminate (i.e. that (e, x) or (x, e) never appears; see Definition 4 and the 
terminology following it). Let i be the minimal index of a process appearing in 
S. Assume that t is the first time that Pi appears in S and that p(i)=L. At time 
t + 1 the content is (i, p). Because i<  i s for every i s ~ S, the value i on the left is 
never changed subsequent to time t + 1. 

Let Pj be a process which is active an infinite number  of times in S. Let t 
+ 1 < tx < t 2 < t 3 be three consecutive times at which Pj is active in S, such that 
at time t~ the process is on the left (seeing i). Then at time t 3 process Pj will 
replace i by e. Thus termination is established. 

Assume next that some schedule (S,p) leads to (e, e). Let i be the last 
content of the left-hand side L before the change to e, and similarly for j on 
the right-hand side R. Since i+0 ,  j4:0,  we must have i:~j (by induction on 
computations), so that w.l.g, i<j. Let P{ and Pr be the processes which 
respectively change the L-side and the R-side into e. Let t be the time at which 
P#  has seen or written i in L. The contents of L will now remain i until the 
change to e. 
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Let t<u be the next time that P f  was active (on the right). Then im- 
mediately after time u the contents was (i, 0). 

Thus Pr must visit the R-side after time u and before marking the R-side 
by e. Hence Pr must also visit L after time u and before L is e. But then the 
contents of L is i so that Pr "becomes"  Pi. This contradicts the assumption 
that later Pr change j > i  into e on the R-side. 

The above algorithm and the proof  of correctness apply also in the case of 
choice coordination for any number  k of alternatives. 

4. The Lower Bound 

The task of establishing a lower bound on the number of letters necessary for 
coordinating n processes is made difficult by the generality of our notion of a 
program or process. The atomic action of a process at a particular time within 
a computat ion depends on its entire history up to that time, and we make no 
assumptions on the nature of that dependency. The proof  for the lower bound 
will be effected by combining a pigeon-hole argument with some graph theo- 
retic results. 

We shall be interested in what a process P is about to do at a given time. 
This is expressed in the following. 

Definition 6. We say that in configuration C (see Definition 3) P i is primed on 
the left side (right side) to change ~ into/3 (primed to do e~/3, for short) if 

P i e L F  ( P i e R T )  and Pi(wze)=(/3, X). 

If F is a computat ion of P1 . . . . .  Pn, then Pi is primed on the left side to do 
c~--*/3 at time t if it is so primed in the configuration C ( t - 1 )  immediately after 
time t -  1. 

Informally, Pi primed on the left side to do c~-,/3 at time t means that if 
according to the schedule P i will next be active at time t 1 > t, and at that time 
the contents will be (c~, G), then just after time t 1 the contents will be (/3, a). 
Note, however, that the contents at time tl could be (7, a), 7 ~ .  

Let (S, p) be a schedule, F the computat ion according to (S, p). After time t 
- 1 ,  let G~_LF(t-1)  be a set of processes. With G we associate a directed graph 
(Z, E) on 2; = {0, 1 . . . . .  m -  2, e} as follows. For each P i ~ G specify one pair c~,/3 
such that Pi is primed to do c~/3 at time t, and put the directed edge (~,/3) 
into E. Even though the associated graph is not unique, we shall denote it by 
G because in any given context it will be clear which edges are chosen. 

If G =(V, E) is a directed graph we say that vertex c~ is connected to vertex/3 if 
c~=/3 or there exists a path 0~=0~ 1 . . . . .  ~k=/3 such that (~j, ~j+ 1)eE, 1 <=j<k. If 

is connected to /3 and /3 is connected to ~ we say that e and /3 are strongly 
connected and write e,-,/3. 

The relation ~ is an equivalence relation on the set of all vertices of G. 
The equivalence classes under ,-~ are called the strongly connected components 
of G. 
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Let K_~ V be a strongly connected component of G. We call K a terminal 
component of G if (~, fl> e E  and ~ K  imply t i cK.  Every directed graph has 
some terminal components. In the extreme case that E = ~b (there are no edges) 
the terminal components consist of single vertices. If G is strongly connected 
then V is a terminal component. 

Consider the following process of adding edges to a graph with set 0~V of 
vertices. The graph G(0)=(V, q~) has no edges. If G(i)=(V, Ei> is not strongly 
connected, then G(i+ 1)=(V, Ei+ 1) is obtained by choosing a terminal strongly 
connected component K of G(i), an ~ 6 K  and a tiCK, and setting El+ 1 
=Eiu{<~,/~>}. 

Lemma 2. I f  the graphs G(O), G(1), ..., G(M) are a sequence of the above type 
and if the set V of vertices has m elements, then M < 2 m - 2 .  

Also, if at every stage k in the construction of the sequence G(O) . . . . .  the 
terminal strongly connected component K of G(k) for which a e K  is connected 
from O, i.e. there is a directed path in G(k) from 0 to ~, and if (~, fl) is added to 
obtain G(k+l ) ,  then the strongly connected component K' which contains fl in 
G(k + 1) is a terminal component. 

Proof. Let S(i) denote the number of strongly connected components and let 
T(i) denote the number of terminal components in G(i). Initially S(0)+T(0) 
=2m.  

Each step from G(i) to G( i+I) ,  O<__i<M, reduces T(i) or S(i) by at least 1. 
Thus 2__<S(M)+ T ( M ) < 2 m - M .  Hence M<=2m-2. 

We leave the proof of the second assertion to the reader. 
We shall need another combinatorial result. 

Lemma3.  Let H = X I X z , . . . , X z R ,  X i e { L , R  } be a sequence of even length 
and let F(x) be the reversal function such that F(R)=L,  F(L)=R. There exists 
an index 1 <iN 2 k such that the sequence 

H1 = X1 ".. X i -  1 F(Xi) F(Xk + 1)"" F(X zk) (4) 

contains an equal number of L's and R's. 

Proof. By induction on k. The case k = 1 is obvious. Assume the result true for 
all sequences of length 2 k - 2  and let H = X ,  ... X2k. If X j = L ,  1 < j < 2 k ,  or Xj 
=R, l < j < 2 k  then choose i = k + l .  Otherwise there exists a l < j < 2 k  such 
that X i = L ,  Xj+ 1 = R  or vice-versa. 

Let i be an index such that applying F to the sequence H'  
= X  1 ... Xj_ 1X~+2 ... XgR from X i onwards will produce H;  with the desired 
property. Here l < i < j - 1  or j+2<i<_2k.  The same i will work for H to 
produce the H ,  of (4). 

Theorem 4. Let P1 . . . . .  Pn be processes on the alphabet 2 = { 0 ,  1 . . . . .  m - 2 ,  e}. 
I f  8m 3<n then these processes are not a solution for the choice coordination 
problem. 

Proof. The overall plan is to define a finite schedule (S,p), S = i  l i  2... it_ 1, 
where p: {i I . . . . .  i,_ ,}--+{L, R}, so that after time t - 1  the cells have contents 
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(e, e). Furthermore, there will exist symbols 21=c~ . . . .  , 2e=e ,  p l=c t  . . . . .  pk=e 
and processes P J1 . . . . .  PJe-1, Pro1 . . . . .  Pink-1, such that at time t process PJi, 
l__<i=<f-1, is primed on the left to do 2i~2i+ 1, and Pmi, l<_i<_k-1, is 
primed on the right to do P~--*Pi+ 1. 

The construction of a finite schedule with these properties will turn out to 
be possible unless we shall encounter at some time s < t - 1  a hitherto unused 
process P/, ir {i 1 . . . . .  is}, and a side X e {L, R} with the following behavior. The 
computation under the schedule (S', p') will be nonterminating (see the termi- 
nology following Definition4), where S '=i l i2 . . . i s i i i  .... p'(i)=X, and p'(j) 
=p(j) for j,t:i. In this case P1, ..., Pn are not a solution for the C.C.P. 

The existence of a finite schedule as above also entails that P1 . . . . .  Pn are 
not a solution. Namely, under the finite schedule (ili2--. tt-1 
Jl . . . i t -  i ml ... ink- 1, P), the computation by P1 . . . . .  Pn produces (e, e). 

To simplify indices we shall first assume 16ma=<n and at the end improve 
to 8ma<n. The construction of the finite schedule is achieved in stages. At 
stage k < 2 m  we have a schedule (Sk, Pk), where S k is of length t k and the 
computation by P 1 . . . . .  P n according to this schedule produces a configuration 
after time t k (see Definition 4) with the following properties. 

1. The contents of the cells is (~k, ~k)" 

2. The schedule (S k, Pk) invokes just the processes P1, . . . ,  P8mEk. In partic- 
ular, the domain of Pk is {1 . . . . .  8m2k}. 

3. There exist pairwise disjoint subsets GLi(k)c_LF(tk) and GR~(k)c_RT(tk), 
l<_i<_4m-2k such that their associated graphs, also denoted by GLi(k) and 
GR~(k), satisfy 

a) All of these graphs on 2; have the same strongly connected components. 

b) The symbol ek lies in a terminal strongly connected component, call it 
K, of these graphs. 

Recall that a subset G c_LF(tk) is viewed as a graph on 2; by specifying for 
every P i e  G a pair ~, fl ~2; so that P i is primed on the left at time t k-b 1 to do 

~ ----1. ft. 
At stage 0 we define So=0, (S o, po)=(A, 4~), GL~(O)=GR~(O)=O, 1 <_i<4m. 

Assuming that (Sk, Pk ) is already defined and k < 2 m  we shall define 
(Sk+l,pk+l) or, failing to do so, get that P1 . . . . .  Pn are not a solution. We 
need a preliminary observation. 

Let fl, 7eK,  where K is the strongly connected component in 3.b), and let 
GL~(k) be any one of the graphs in 3. Since K is a component of GLi(k ), there 
exists a sequence of pairwise different symbols 21 =~k, 22 . . . . .  )~e=fl (if ~ k = f l  
then f = l ) ,  and processes Pj l , . . . ,P je_ leGL~(k)  so that Pj,, 1_<r_<(-1 is 
primed on the left to do 2r---,2,+ 1. Thus the schedule (Skjlj 2...je 1,Pk) will 
lead to the contents (fl, C~k). A similar statement holds for the right-hand side. 
Thus an appropriate extension (S', Pk) of  (Sk, Pk) would lead to (fl, 7). In particu- 
lar this implies that if e e K  then P1 . . . . .  Pn are not a solution, so that we may 
assume e ~ K. 

Consider the processes P 8 m 2 k +  1 . . . . .  P8m2k+ 8m 2, which have not been 
used in (Sk, Pk). Since k < 2 m  and (for now) 16ma=<n we have 8m2k+8mE<=n. 
At time tk+l  start P 8 m 2 k + l  on side L and run it. In other words, construct 
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the schedule (S,p) where S=Sk(8m2k+l)(8m2k+l)  .... and p extends Pk by 
p(8mZk + 1)=L.  In the computation according to (S, p) the contents of the cells 
after times tk, tk+l ,  tk+2 ... .  will be (ek, ek), (21, ek), (21, Pl) . . . . .  TWO cases are 
possible. Either 2 i , p iEK - the terminal component containing ek, for i 
=1, 2 . . . . .  (since e CK, in this case (S,p) leads to a non-terminating com- 
putation), or there is a smallest i such that 2 i r K or pir K. In this case truncate 
S to a finite sequence S', stopping just at the point when P8m2k+l  is primed 
to do 2~2~+ 1 where 2~r /~i+ I~K,  or pi-"~Pi+l where pieK,  pi+lr as the 
case may be. For  example if 21r then S'=S k, and P8m2k+l  will be primed 
on the left to do C~k~21. And if 21 ,p1 ,22 ~K  but p2r  then S'=Sk(8mZk 
+l)(Sm2k+l)(8m2k+l);  after time tk+3, process P8m2k+l  will be primed 
on the right to do pl--~p2. 

Next start P8m2k+2 on side L and extend (S', p') to (S", p") in the above 
manner so that after the computation according to (S", p"), process P 8 m 2 k + 2 
is primed either on the left or on the right to do f l~?  where fl~K, 7r 
Continuing in this manner, starting every P8m2k+i,  1 < i < 8 m  2, on the L-side, 
we extend (Sk, Pk) to (S ~8"2), ptSm2)) so that after the computation according to 
this schedule, every P8m2k+ i, 1 < i<8m 2, is primed to do fl(i)~y(i ). 

There are at most m possible values for 7(i), so there must exist 8m indexes 
8 m 2 k + l  <j~ <j2 < ... <Jsm<=8m2(k + l), for which ~)( j l )= '~( j2)=. . .  =y ( J sm)=7 .  
Thus at the end of our schedule, PJe, 1 < f  < 8 m, is primed on side X t ~ {L, R} 
to do fl(Je)-*Y where fl(jt)eK and 7r 

We would like to add one Pj~ to each GLi(k ) and each GRi(k), 1 <_i<_4m 
- 2 k ,  thereby creating the desired GLi(k+l), GR~(k+I) and their associated 
graphs. This cannot be directly done because the Xe need not be evenly 
distributed between L and R. To rectify the situation we use Lemma 3. 

According to Lemma3 there exists an l<i<_8m such that the sequence 
X1.. .  Xi-1 F(Xi)... F(Xsm), where F(L)=R and F(R)=L,  has an equal number 
of Us and R's. Denote by t the time in the computation according to (Sts" 
2),ptam~)) after which PJi-1 is primed (at time t + l )  on side Xi_ 1 to do 
fl(ji_l)~7. Let the contents of the cells after time t be (2, p) where 2, p~K.  
Actually 2 = fl(J~- 1) if X i_ I = L  and P=fl(Ji-~) if X~_ I=R ,  but this fact is not 
used. 

By our definition of S ~s"2) it has the form 

s(8m2)=Sk(8m2 k+ 1).. .Ji-  l(Ji-  1 -t'- 1)... 8m2(k + 1), 

where the displayed occurence of j~_ 1 is at time t in the computation. Denote 
by S the initial segment of S (8"2~ up to and including the displayed j~_ ~; the 
length of S is t. Since 2, p e K, we can activate, subsequently to S, processes in 
GL4m-2k on the left-side and in GR4~_ 2k (on the right-side), to transform the 
contents of the cells from (2, p) to (p, 2). This is done in the manner previously 
detailed in the proof just after the definition of (S k, Pk)" The order of activations 
of those processes extends S to StY1 ... t~, Define now 

S ' = S E I ' " ~ ( J i  l + 1 ) . . . 8 m 2 ( k + l ) .  

Here Pf~ . . . . .  PE~ are the processes used to effect the flip-over of the contents 
of the cells; we have f j<8m2k,  1 <=j<=s. Note that in the computation accord- 
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ing to S', after time t+s the contents of the cells is (p, 2). Also, Ji . . . . .  Js,, 
appear in S' after fs- 

Change p~8,,2) into Pk+I by setting pk+l(h)=p(8m2)(h), l<h<j i_ l ,  and 
pk+l(h)=R for j i_ l+l<h<8ma(k+l) .  Recall that p(8"2)(h) was L, ji 1 
+1 <h<8m2(k+l). Let us examine the effect of the computation according to 
the schedule (S', Pk+ 1). After time t+s, i.e. at the end of the S f l  ...Es segment, 
the contents of the cells is (p, 2). At times t + s + 1, t + s + 2 . . . . .  the computation 
will run exactly like the computation according to (S ~8"2), p~8,,~)) at times t + 1, t 
+ 2 . . . . .  except that left and right are interchanged in the sense that everything 
that occured in the computation according to (S (8m2), p(8,,~)) on the L-side will 
occur in the computation according to (S', Pk) on the R-side, and similarly with 
L and R interchanged. Since Pji ..... P J8,,, were first activated in (S (8"~), p(Sm~)) 
after time t, and in (S',Pk+l) after time t+s, it follows that at the end of the 
computation according to (S', Pk+x) these processes will be primed on sides 
F(Xi)...F(Xs,,) to do fl(ji)~7 ..... fl(j8m)~7. Thus at the end of this com- 
putation exactly 4m of the PJl ..... PJs,,, will be primed on the left and exactly 
4m of these processes will be primed on the right. 

Also, at the end of (S', Pk+ 1) the contents of the cells will be (a 1, a2), where 
al, a2~K. Assume, without loss of generality, that PJl ends up primed on the 
left and P J2 ends up primed on the right. Since fi(JO, fl(J2) eK, we can use 
processes in GL4m_2k_ l(k) on the L-side and processes in GR4m 2k 1(k) on 
the R-side, to extend S' to S" so that at the end of the computation according 
to (S", Pk+ 1) the contents is (/~(J0,/~(J2)). 

Define Sk+I=S"jlj2. Since PJl was primed on the left side to do /3(jl)~7, 
and similarly for P J2 on the right side, at the end of the computation accord- 
ing to (Sk+ 1, Pk+ 1) the contents is (7, 7). Define ~k+l =7. 

That (Sk+ 1, Pk+ 1) has the properties 1 - 2  of (S k, Pk) is obvious. In order to 
establish property 3, add to each of GL~(k), 1 < i < 4 m - 2 k - 2 ,  (a different) one 
of the P J3 ..... PJs,, which is primed on the L-side and call the resulting graph 
GL~(k+I); proceed similarly with the GR~(k). Ba 3.a), all the GL~(k), GRz(k), 
had the same strongly connected components. Every PJe adds a new edge 
(/3(it), ek+l)  where / ~ ( j e ) e K - a  common strongly connected component. It 
follows that all GL~(k+I), GR~(k+I), l < i < 4 m - 2 ( k + l ) ,  have the same 
strongly connected components. By the second assertion in Lemma2,  the 
process of obtaining GLi(k+ 1) from GLi(k) insures that ek+l is in a terminal 
strongly connected component of GLz(k + 1). Thus 3.a), 3.b), are established for 

(Sk+ 1' Pk+ 1)" 
To get by with 8maNn, observe that at stage k +  1 of the construction we 

want to add processors to just GL~(k), GRi(k), l<_i<_4m-2(k+l), i.e., to 8rn 
- 4 ( k + l )  sets and not 8m sets. Thus it will suffice to activate (8m-4k)m new 
processors at this stage, which brings the total to 8m 3. 

To conclude the proof of Theorem 4, observe that the sequence of graphs 
GLI(0), GLI(1 ) . . . .  satisfies the conditions of Lemma 2 so that it has length at 
most 2 m - 2 .  Thus for some k__<2m-2, the above construction cannot be 
continued. This means that either we have encountered at stage k a schedule 
leading to a non-terminating computation, or at stage k we had e e K for the 
strongly connected component K e c~ k. But in the latter case we had a schedule 
leading to a contradiction (e, e). End of proof! [] 
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The author does not see a way of using fewer than 0(m 2) new processes at 
each stage, and no argument insuring fewer than 0(m) stages. Neither does 
there seem to be a way, within the strategy of this proof, to reuse primed 
processes P j ~ G L i ( k  ) once they were activated to do a transition ~ f l .  For  it 
was essential that with respect to every process that was introduced and 
brought to a primed state in the construction of (Sk+ 1, Pk+ 1) from (Sk, Pk), we 
had the freedom to initiate it on the L-side or on the R-side. But once a 
process is used, the side is determined. Thus calling for 0(m 2) n e w  processes at 
each stage seems unavoidable. 

On the other hand, examination of the proof reveals that we have estab- 
lished a claim somewhat stronger than Theorem 4. Namely, if 8m 3<n  then 
there exists a schedule (S,p) leading to a non-terminating computation by 
P1 . . . . .  Pn,  where for some 1 < i < n ,  S has the form 

S = i  I i 2 ... i~iii . . . .  (5) 

or there exists a schedule according to which P 1, ..., P n compute (e, e). 
The special form (5) of the schedule (S,p) leading to non-termination, 

suggests the possibility that the assumption 8 m3_ < n may be too strong. 
As was pointed out in the Introduction, in terms of bit-count, which is the 

significant measure for implementations, we are not far from optimal: An 
alphabet Z requiring at least 1/3 log z n bits is necessary, and requiring log 2 n 
bits is sufficient, for a solution of the C.C.P. for n processes. The next signifi- 
cant step is to reduce the number of bits to say 8, for every number of 
processes, by use of randomized protocols. 

5. Randomizing Protocols for the C.C.P. 

The difficulty in choice coordination arises out of the initial symmetry of the 
contents of the cells, a symmetry that is impossible to break unless sufficiently 
many symbols are available in the synchronization alphabet. This suggests the 
idea of using randomizing protocols that will break the symmetry with very 
high probability. The same idea of randomization was successfully used for 
various synchronization problems [3, 4] and seems to be a generally applicable 
method in this area. 

Let us assume that we have an m+2-valued alphabet 2;={0, 1, 2, . . . ,m, e} 
where m is even. The numbers 1 . . . . .  m are viewed as grouped in pairs {1, 2}, 
{3,4} . . . . .  { m - l , m } .  Each of the processes P1 . . . . .  Pn, is able to make a 
random binary choice between two items. By random {i, i+  1} we mean one of 
the two numbers i, i+  1 chosen with equal probabilities. All the processes have 
the same program. If, upon first entering, say on the L-side, P sees 0 it writes 
random {1, 2} and transfers sides. In general, if the last letter that P saw is 
and it currently sees fl then if ~<f l  it transfers side, if f l<~  process P marks 
the cell, i.e. changes the fl into e, and if a = f l < m - 1  then P replaces fl by 

r andom{2[2 f l - ]+ l ,  212fl-]+2}i.e., by random { i , i + l }  where { i , i + l }  is the 

next pair after the pair containing ft. Thus if P last saw 13 on the L-side and 
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now sees 13 on the R-side (this does not mean that the current contents of the 
cells is (13, 13)) then it will write random {15, 16} on the R-side. Formally, for 
O<=cq fl<__m, weZ*,  

P (w e) = (e, E), 

(6) 

P(0)=(random{1,  2}, T), P(e)=(e ,  T) for 1-<c~<_m, 

{ (fl, T) c~<fl 

P(wc~fl)= (e, E) f l < e  

, (random (i, i + 1 }, T), i = 2 [p]~ 
z 

+1,  c ~ = f l < m - 1 .  

Note that P is not always defined, for example P(7, 13, m - l ,  m - l )  is unde- 
fined. 

The notions of a schedule and of a computat ion F by randomizing pro- 
cesses P1 . . . .  , Pn according to a schedule, is exactly as in Definitions 2-4. Any 
particular computat ion F involves specific outcomes of random {i, i+  1} when- 
ever this operator was used. To a given schedule 7z=(S,p) there correspond 
many computations according to 7z. The 1/2 probabilities of the outcomes i 
and i+1  in random {i, i+1} entail a probability Pr~(F) for a computat ion F 
according to re. Note  that Pr~ is not conditional probability, since rc is fixed. It 
is easy to see that an event such as F non-terminating (see I following 
Definition 4), has a well defined probability. 

Theorem 5. I f  each of the processes P1 . . . . .  P n on the alphabet Z 
= {0, 1 . . . . .  m, e} is defined by (6), then for every schedule (S, p) a computation F 
according to this schedule will never lead to a contradiction (i.e., contents (e, e)), 
and will terminate with probability greater than 1 - 1 / 2  '~/2. 

Furthermore, if P i is active in S 2 k < m  or more times, then the probability 
that by the 2k th activation Pi  will find or write e is greater than 1 - 1 / 2  k. 

Proof. Let us start by showing that (e, e) never arises. Let F =  C 0, C 1 . . . . .  be a 
computat ion according to the schedule (S, p) and let 

(0, 0), (41 , Pl) . . . . .  (2t, Pt) . . . .  

be the sequence of contents of the pair of cells in C o, C 1 . . . . .  Since a change of 
a contents of a cell involves randomly drawing from the next pair i, i+  1, we 
have 41 < 2  2 ... and Pl <P2 . . . .  Assume by way of contradiction that 2z=pt=e 
and that P i  and Pj  were the processes that, respectively, changed the contents 
of the left-hand cell at time u + l  and the contents of the right-hand cell at 
time s + l  into e. Let P f s  history before time u be ap,, where a~S_,* and v<u, 
and Pj's history before time s be b2~,, b~Z*, w<s. Since at time u + l  process 
P i changes the L-side into e we must have Pv > 2u, and similarly 2 w >Ps- 

Assume now s <u .  Process P i must have last visited the R-side before time 
s + l  because at time s + l  process Pj was there, and after time s + l  the 
contents were (4s+ 1, e); hence s > v. Thus 4 w > Ps > Pv > 2u and 4w > 2u. But w < u, 
a contradiction. 

The only way in which F will not terminate is if for some t the contents 
(2t, p~) are ( m - l ,  m - l )  or (re, m). For this to occur there must be times 
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t l < t 2 < . . . < t ~ / 2 = t  such that 2,1=p,16{1,2}, 2~2=p~2~{3,4},.... Thus m/2 
times, independent choices random {i, i+  1} on the L-side and on the R-side 
have produced the same value. The probability of a single such event is 1/2 and 
the probability of m/2-fold repetition is 1 -  1/2 "/2. 

The assertion concerning waiting-time for the individual process P i until 
C.C. is proved similarly. 

If we take m + 2 = 2 5 6  so that 8 bits suffice for the alphabet, then choice 
coordination will be achieved with probability 1-1/2127 . Also if we count 
each time that a process P i visits the L-side cell as a round, then the expected 
number of rounds by P i in a computation F before C.C. is 2. 

By slightly modifying the protocol (6) we can reduce the expectation and 
variance of the waiting time until C.C. of any process participating in the 
schedule. Assume that ]S]=1002 so that 10bits suffice for implementation. 
Divide the integers l < i < 1 0 0 0  into groups of 100, {1 . . . . .  100}, 
{101 . . . . .  200}, . . . .  The random draw in case of equality will be from the next 
group of i00, so that we use r andom{i+1  . . . . .  i+100} for i=0,  100 . . . . .  900. 
The probability of not breaking the symmetry at each stage is 1/100 so that the 
probability for non-termination is smaller than 1/100 l ~  10-12. The probabili- 
ty of a process Pi  making, say, two rounds without C.C. is at most 100 2. 

Could we improve the result concerning randomizing protocols and obtain 
a solution involving a fixed alphabet for the C.C.P. with the properties that we 
never get a contradiction and the probability of non-termination is 0? If we 
generalize Definition 1 of a process by introducing randomness into (1), we get 
the general notion of a randomizing process. A careful reading of the proof of 
Theorem 4 shows that for randomizing processes we get 

Theorem6. Let  P1 . . . . .  P n  be randomizing processes on an m-letter alphabet 
such that for  every schedule ~ =(S, p): (1) No computation F according to ~z leads 
to the contradiction (e.e.). (2) The probability for  a computation F to be non- 

terminating is O. Then we must have 1/2. ]//n<m. 

6. Conclusions 

The C.C.P. lends itself to many interpretations both in hardware and in 
software situations. For example, in the course of a computation, k almost 
identical versions A 1 . . . . .  A k of a text are being generated. Processes P 1 . . . . .  Pn  
have to agree on one of these as the commonly used version. Thus a C.C.P. 
arises. 

Our analysis delineates what can be done by classical deterministic pro- 
cesses to solve the C.C.P. It turns out that to solve the C.C.P. for n de- 
terministic processes, an alphabet • requiring 0(log 2n) bits is necessary and 
sufficient. In terms of bit-count the disparity between our upper and lower 
bound results is small. 

We suggest the approach employing randomization as a very practical and 
convenient paradigm for solving the C.C.P. and in fact other problems of 
synchronization and coordination. As indicated in Sect. 5, there are many 
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possible variations of the randomization method. Thus one can tailor a version 
of randomizing protocols to suit a particular problem. 

It is very important that the protocols P1 . . . . .  P n  for the randomizing 
solution for the C.C.P. are all identical, use a very small alphabet, and the 
whole thing is independent of n. One can envision situations where n will be 
very large, and where the set of processes participating in the choice coordi- 
nation computation is not known in advance. Thus trying to impose different 
protocols depending on n, as is necessary in the classical solution, becomes 
cumbersome. 

In practice the C.C. protocol of Theorem 5 does not even require use of a 
random number generator by P. We can, so to speak, randomize the whole 
technology in advance. Assume that we produce many microprocessors on 
chips and that we know that during the lifetime of these processors certain 
subsets of the ensemble will have to participate in up to a billion billions (1018) 
choice coordination computations. During production we can incorporate into 
each chip a different randomly generated 127-bit sequence which codes a 
random choice of one element from each of the pairs {1,2} . . . . .  {253,254}. 
Each processor will play in every encounter in which it participates, using its 
fixed random sequence. Under the reasonable assumption that choice coordi- 
nation tasks and the schedules of activation of the processors will be inde- 
pendent of the preprepared random sequences, it follows from Theorem 5 that 
the probability of failure to reach C.C. in one or more of the 1018 possible 
encounters is smaller than 1018. 2 -127_  2-87. Thus we have high reliability for 
absence of even one breakdown for the whole lifetime of the system. The 
coordination alphabet in this example requires just one byte. 

Finally, Theorems 5 and 6 taken together illustrate an interesting phenome- 
non. If we are willing to tolerate the practically negligible 2 -127 probability of 
failure then a fixed 256-letter alphabet and a very simple protocol will solve 
the C.C.P. independently of the number of processes. But if we insist on 

probability 0 of failure, then complexity goes up as ]//~ with the number n of 
processes. Perfectionism, it seems, does not pay! 
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