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Zusammenfassung 

Das mathematische Modell f'tir das Prinzip der lateralen 
Inhibition in der Theorie der optischen Perzeption fiihrt auf ein 
System nichtlinearer Gleichungen fiJr n reelle Variable. Dieses 
System wird auf L6sbarkeit und eindeutige LSsbarkeit untersucht. 
Es zeigt sich, dab die Gleichung als Bedingung fiir die station~tren 
Zust~inde eines geeigneten zeitabh~ingigen Systems zu deuten ist. 
Hier kann man ein diskretes und ein kontinuierliches Modell 
einf'fihren. In beiden Fallen kann die Frage der Existenz der 
L/Ssungen und der Stabilit~it einigermaBen vollst~indig gekl~irt 
werden. Eine Verallgemeinerung auf kontinuierlich viele Raum- 
variable ist mSglich. 

. 

We shall investigate a special type of nonlinear 
systems with applications to certain theories of optical 
perception and pattern recognition, usually called 
networks with lateral inhibition. For  applications 
and related results see the Appendix and Reichardt 
(1962). 

The system consists of a finite number of units A j, 
j = 1 . . . . .  n, each of them having a real input Ys and a 
nonnegative output z s. If the units A s are not 
connected then 

Zj = bjO(yj - -yj) . (1) 

Here the nonlinearity O is defined by 

8(y) = max (y, 0), (2) 

the number bj is a positive factor and Y-s a constant 
threshold. If the output z, acts inhibiting on Aj then 
the relation (2) has to be replaced by 

z~=bsO( y s - ~ j -  k=~ flskZk)'/ j = l  . . . . .  n,  (3) 

where the nonnegative inhibition coefficient risk re- 
presents a measure for the magnitude of the inhibition 
between Ak and Aj. We shall exclude self-inhibition, 
thus 

flss = 0, j = 1 . . . . .  n. (4) 

By a simple substitution we achieve ~s = 0, b s = 1, 
i.e. 

Z j = ~ ( y j - -  ~ f l jkZk) ,  j =  l . . . . .  n .  (5) 

We introduce vector and matrix notation. The input 
of the system is y = (y~), the output z = (zs). We define 
a nonnegative matrix B=(fl~k ). We shall use the 
following wellknown facts from matrix theory 
[Theorems of Perron and Frobenius, see Varga 
(1962)]. Let r(B) be the spectral radius of B (the 
radius of the smallest disc with center zero con- 
taining all eigenvalues of B). Then r (B) is an eigenvalue 
of B, and B has a nonnegative (right or left) eigen- 
vector corresponding to r(B). If all fljk, j W-k, are 
positive then r ( B ) > 0  and to r(B) corresponds a 
uniquely determined positive eigenvector. 

A reasonable question is whether in the system (5) 
every input y corresponds to a uniquely determined 
output z, i.e. whether the Eqs. (5) have a unique 
solution z for every fixed y. 

Let y be a fixed input and z a solution of (5). 
Obviously each component of z satisfies 0 < z s __< 8(y~). 
Hence the solution z is contained in the convex 
compact (compact =closed and bounded) subset D 
of the n-dimensional space 1R", 

D={z=(zs):O<-zj<O(y~), j = l  . . . . .  n}. (6) 

We define a continuous nonlinear mapping T: 
IR" ~IR" by 

(Tz)j=O(yj--~fljkZk), j = t  . . . . .  n. (7) 

The number (Tz)s is the j -  th component of the image 
vector Tz. For each particularj we have 0 < (Tz) s < 8(Ys), 
hence T maps the whole space IR" into the set D. 
In particular the set D is mapped into itself. We make 
use of a well-known result from topology (see 
Ljusternik and Sobolew, 1968), the 

Brouwer Fixed Point Theorem. Let T be a con- 
tinuous'mapping of a convex compact set D C IR" into 
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itself. Then T has a fixed point in D, i.e. a point z 
with Tz = z. 

For the special mapping T defined by (7) we 
obtain 

Theorem 1. For every fixed input y the Eqs. (5) 
have at least one solution z. 

With an additional hypothesis we can prove 
uniqueness. Obviously the function 8 has the property 

Io (O-o (~ ) l  ___< I~ -  ~1 (8) 

Suppose u, v �9 IR'. Then for each j 

I(Tu)j-(Tv)jI< 8 (YJ-- ~flJkUk) --8 (YJ-- ~ fljkvk) (9) 

 e,k(uk-'k) S   ,klu -vkl 

Let assume that the fljk, J 4: k, are positive. Then B 
has a unique (up to a positive factor) positive left 
eigenvector (~ 1 . . . . .  ~,), 

~Otjfljk=rCt k , k =  1 . . . . .  n; r=r(B) .  (10) 
J 

From (9) we obtain 

Z~jl(Tu)j - (Tv)j[ < ~jZf l jk]Uk -- Vd (11) 
j j k 

= rE~ktUk-- Vk I �9 
k 

We define a norm II II on the n-dimensional space by 

Ilull = E~j}ujl �9 
J 

Then the distance of two elements u, v~IR ~ is 
Ilu - vii. From (11) follows 

I[Tu-Tv[l~rllu-v[[ fora l l  u,v~IR".  (12) 

If r < 1 then T is a contraction with respect to the 
distance II II (the application of T contracts the 
distance of u and v). 

If some of the//jk, J 4= k, vanish, define 

[/~jk if fljk>0, 
if f l j k = O , j . k ,  

flJk'~-IO if j = k  

with e > 0. Then instead of (9) 

I(Tu)j-(T~)jl ~ Z~jklu~ - v~l. 
k 

If r(B)<1 then for e sufficiently small the spectral 
radius of/~ = (]~jk) is still less than unity, and T is a 
contraction with respect to the corresponding norm. 

A contractive mapping has at most one fixed 
point. Thus we proved 

Theorem 2. Suppose the spectral radius r(B) of B 
is less than unity. Then the Eq. (5) have exactly one 
solution. 

o 

For n = 2 the condition of Theorem 2 is necessary 
for uniqueness. We put 

and require c~fl, 1. We discuss four cases. 
Case 1. There is a solution z 1 >0,  z 2 >0.  Then 

the Eq. (5) are linear with respect to this solution, 

Yl =Z1 -~-O~Z2' Y2 =Z2-'}-flZ1 " (13) 

We express the z~ in terms of the Yk, 

zl =(y l -~y21/ (1-~#) ,  z2 =(y2-/~y,)/(1-~/~). 
(14) 

Case 2. There is a solution zl > 0, z= = 0. Then 

y t = z l ,  y~_<_/~zl=/~yl. (15) 

Case 3. There is a solution z 1 =0,  z 2 >0.  Then 

Y2 = 2 2 ,  Yl ~ Z 2  -----~Y2 �9 (16) 

Case 4. z 1 = z 2 = 0  is a solution. Then yj <0,  y2<0 .  

Suppose r2(B) = ~fl < 1. Then the four sets 

{Yl>~Y2, Y2>f lY l} ,  {Yz>O, Y l<~Y2} ,  
(17) 

{yl>O, y2<f l y t } ,  {yl <0,  y2 <0} 

are disjoint and cover the Yl, Yz-P lane. Thus to every 
y corresponds a unique z. To each positive z 
corresponds a unique y. 

If ~fl> 1 then the first set is the intersection of 
the second and the third. Therefore to every y in the 

Y2 

 lliIJl]Jl]lrllllrl 
,~p< ! 

Y2 
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first set correspond three solutions z. Hence for 
~ f l > l  the solution is not unique in general. If 
c~fl = 1 then there are some y to which correspond 
several positive z. 

In a similar way we can discuss the set of all 
solutions of Eqs. (5), i.e. Tz = z, for n __ 2. 

1) If z is a positive solution then z = y -  Bz, 

( B + I )  z = y ,  z > 0 .  (18) 

2) If z4:0  is a nonpositive solution, we can 
assume z~, ..., z,, > O, z,,+ ~ . . . . .  z. = 0 and choose 
appropriate decompositions 

(:) .3) ,.9, z =  , y =  , B =  B1 
2 B 4  

of z, y, B. Then from Tz = z follows 

(B, + I ) ( = u ,  ( > 0 ,  B z ( > v .  (20) 

Thus the number of solutions of Tz---z is either 
infinite or at most 2 " -  1. 

. 

As we see from the preceding paragraph, for 
certain choices of the inhibition matrix B and the 
input y there are several outputs. Since the system 
described in Section 1 and governed by Eq. (5) has 
but a single state, it is not clear on what the actual 
output should depend. It seems reasonable to in- 
troduce a corresponding nonstationary system with 
a discrete time parameter (in this context investiga- 
tions of the stability of the system become meaningful, 
see Reichardt and MacGinitie, 1962). The nonsta- 
tionary system is 

. . . . .  

(21) 

At the moment v the system has the state z (~. The 
input is y~) and the output is z (~+*~, the state in 
v + 1. If we write y{~+ ~ instead of y{~, an interpreta- 
tion would be that z is determined by the input y 
and the inhibiting z is acting with a time lag 1. 

We consider the system (21) with a stationary 
input 

z(Y+l)=O(yj--~kflJkZ(V) ) V=0, 1,2 (22) J ' . . . .  , 

i.e. 
z(~+l)=Tz ~ , v=0 ,  1,2 . . . . .  (23) 

A stationary solution of (23) or (22) is a solution 
z (') -- z, thus z = Tz. Therefore the stationary solutions 
of (22) correspond to the solutions of Eq. (5), Hence 
we have the following results. 

T h e o r e m  3. The difference Eq. (22) has a stationary 
solution. 

T h e o r e m  4. I f  the spectral radius of B satisfies 
r(B) < 1 then there is a unique stationary point. 

Theorem 5. I f  r(B) < 1 then the unique stationary 
solution is asymptotically stable. 

Proof. If z is a stationary point and z iv) any other 
solution of (23) then 

IIZ (v)- Z[[ ~r  [Iz (v+ 1 ) - - z l [  _<_r ~ I[z(~ z[]. (24) 

Now let z be a positive stationary solution. In a 
neighborhood of z the system (22) is exactly linear, 

Z(y+ 1) , = , 

k 

hence the sufficient and necessary condition for 
asymptotic stability is that all eigenvalues of the 
linear transformation lie in the interior of the unit 
circle, i.e. r(B) < 1. 

This observation leads to a result of Reichardt 
and MacGinitie (1962): If a positive and a non- 
positive stationary point exist then the positive solu- 
tion is not asymptotically stable. 

Let z 4:0 be a nonpositive stationary point. By 
an appropriate reordering we can achieve z~ . . . . .  z,, > 0, 
z,.+l . . . . .  z , = 0 .  Let z + e  (~) be a solution with 
e(o~ sufficiently small. If the obvious inequalities (20), 

yj=2fljkZk~O, j ----m+l . . . . .  n 

are strictly satisfied, then from 

Zj-'[-g(;+l)~-O(yj--~kflJk(Z k Arl~(kV))) 

follows zj + e~ ~ = e~ ~ = 0 for j = m + 1 . . . . .  n and small 
v > l .  

Since z j + e ~ ) > 0  for j = l  . . . . .  m and at least 
small v, the first m equations reduce to 

g ( v  + i )  
j + l  = - -  2 flJ kl~(kv)" 

k = l  

Therefore we have the following theorem. 

Theorem 6.A nonpositive stationary solution, defined 
by relation (20), is asymptotically stable if the relations 

r(B1) < 1, B2~ > v (25) 

are satisfied. 

. 

In a recent paper (Morishita and Yajima, 1972) 
a similar model with continuous time dependence 
has been investigated. A single unit of the network 
consists of a "lowpass filter" and the nonlinearity 0. 
The lowpass transforms the input yj into vj and v 
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transforms vj into zj. The outputs Zk, k . j ,  act 
inhibiting on yj. Hence we have 

fJj + Vj = yj -- EfljkZk , Z k = ~(Vk) . (26) 
k 

Since/)  is not a continuously differentiable function, 
it is reasonable to choose v~ as the system variable, 

Vj q- Vj : yj  -- 2 flJk ~(vk)' j = 1 . . . . .  n .  (27) 
k 

Again the fl~k are nonnegative, flj~ = 0 for j = 1 . . . . .  n 
and the input yj is constant. 

Theorem 7. Every solution of  (27) exists for  all 
t > t o and is bounded. 

Proof. Suppose v is a solution for t ~ [to, q] .  Then 

(Jj + vj < y j, (vj -- y j)' < -- (vj -- y j).  

The function u = v j - y j  satisfies the differential ine- 
quality 

< - u. (28) 

If U(to)<O then u( t )<O for t e [ t o ,  tl]. If u( t0)>0 
then u(t)<U(to) exp ( t o - t ) < U ( t o )  for t e [ t o ,  tl]. 
Therefore 

Vj <: yj + tg(U(to) ) = yj -t- tg(Vj(to) -- y j) ,  

O(vj) < max (vj(to), y j, 0).  

Again from (27) 

f~j + vj>_ zj, • = yj - ~ f l j k m a x  (vj(to), yj, 0). 
k 

The function m = x j - v j  satisfies (28). We conclude 
~o(t) =< ~O(to) exp (to - t) < ~o(t0), if ~O(to) > 0, thus 

vj > z j  - ~ ( ~  - vj(to)) > min (zj, v~(to)) . 

The solution remains, as for as it exists, in the 
compact se t  

{v:min(zj, vj(tO)) < vj < max (vj(to), y j, 0)}. 

Thus if the solution has been continued to any 
t l > t o  then it can be continued to t l + e ,  where 
e > 0 does not depend on q .  Therefore the solution 
can be continued to every t> to .  The solution is 
unique since the function 9 [see (8)] and the right 
hand side of (27) are lipschitz-bounded. 

If v = (v j) is a stationary solution of (27) then 

Vj ~- y j -  Zfl jktg(Vk),  j = 1 . . . . .  n .  (29) 
k 

Lemma 8. The Eqs. (5) and (29) are equivalent in 
the sense that there is a one-to-one correspondence 
between the solution sets for  every f i xed  y and B. 

Proof. We define a mapping from the solution 
set of (29) into the solution set of (5) by O(vj)=zj .  

Apply ~9 to both sides of (29), then (5) follows, 

Zj= O(Vj) :  O(Yj-- ~k fljkZj) " 

Suppose u and v are two solutions of (29) which agree 
in all positive components, Then ~(u~)=O(vj), 
j = 1 . . . . .  n, and u = v in view of (29). Hence if u =~ v 
then there is at least one component where uj ~ vj 
and v j > 0 ,  say. But then O(uj)+-O(v~) and the cor- 
responding solutions of (5) are distinct. 

On the other hand for a solution z of (5) define 

vj : y j -  ~fljkZk . 
k 

Then 

and v satisfies (29). z is the image of v under the 
mapping v~--* 0(vj.) = zj. 

It follows 

Theorem 9. The Eq. (29) have a solution. I f  
r(B) < 1 then they have a unique solution. 

In Morishita and Yajima (1972) it is asserted 
that the solution of Eq. (29) is unique without any 
further condition. This statement is obviously in- 
correct. 

We investigate the stability of the stationary 
solutions. 

Theorem 10. I f  r(B) < 1 then the unique solution is 
asymptotically stable for  all y. 

Proof. If v is a positive stationary solution and 
vj + ej is a neighboring solution then for t close to to 

~j = - e j -  Sflj~ek. 

The solution v is asymptotically stable if all eigen- 
values of ( - f l j k -  6jk) are located in the half-plane 
Re2 < 0, i.e. if all eigenvalues of I + B are in the half- 
plane Re). > 0. Sufficient for B to have this property 
is r(B) < 1. 

If v is not positive, say v 1 . . . . .  vm > 0, vm + 1 . . . . .  v, < 0 
then the situation becomes more complicated, the 
system for the ej is 

k=l  k=m+l  

Define a matrix 

B4P] 

where P = (pj6ik) is any diagonal matrix with diagonal 
entries 1 or 0 and pj = 0 if vj < 0. The condition for 
asymptotic stability is now that all these matrices 
have their eigenvalues in the right half plane. 

Again r(B)< 1 is sufficient. In Morishita and 
Yajima (1972) an example with nonconstant periodic 
solutions is exhibited. 
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~ 

A natural generalization of Eq. (5) is the following. 
Suppose G is an open bounded domain in IR d 
(in applications we have d = 2) and fl is a nonnegative 
continuous function on G x G. Let y be a continuous 
function on (~. Then 

z(s) = 0 y(s) - ~ fl(s, a) z(a) da (30) 
G 

is a nonlinear integral equation similar to (5). The 
Eq. (30) defines a set of continuous outputs z to 
every continuous input y. Define a linear integral 
operator B by 

(Bz)(s) = ~ fl(s, a) z(a) da (31) 
O 

and a nonlinear integral operator Tby 

(Tz)(s)=O(y(s)- !f(s,a)z(a)da). (32) 

In an appropriate space [say L2(t~)] T is compact 
and maps the set 

D={z:O<z(s)<O(y(s) for all seG} 

into itself. By the Schauder fixed point theorem Thas 
a fixed point, Eq. (30) has a solution. If fl is positive, 
then B has a positive left eigenvector. As in the 
proof of Theorem 1 one can show: If the spectral radius 
of B satisfies r(B) < 1 then (30) has a unique solution. 

The stability theory can be extended to the equa- 
tions 

z ̀~+ 1)(s)= O(y(s)- !fl(s, a)z(~'(a)da) (33) 

and 

dt 
- -  v(t, s) + v(t, s) = y(s) - ~ fl(s, a) ~(v (t, a)) d a .  (34) 

G 

Walter (1971) has investigated integral equations 
similar to (30), where the linear operator (31) is 
replaced by a nonlinear integral operator. 

Appendix 

Nonlinear systems of the type considered in (5), (22), (27) 
or (29) arise in a natural way from models for the optical 
perception in vertebrates and insects. The socalled Hartline- 
Ratliff-model was investigated by Reichardt and others (see 
Reichardt, 1961; Reichardt and MacGinitie, 1962; Varjfl, 1962; 
Varjti, 1965). In this model the units A i are ommatidia of an 
insect eye, located on a (plane, spherical or other) surface. In the 
optical axis of each ommatidium A t is a light source L~ of 
intensity x t. The intensities Xk generate potentials yj in the retinual 
cells of the ommatidia A t according to 

Yt = at log ~ ~jkXk, (34) 
k 

where the nonnegative coefficients O~jk may depend on the distance 
between L k and A t and on the angle between the axes of A t and A k. 

The hypothesis of a logarithmic dependence can be supported by 
experimental evidence. 

The ommatidium Aj generates an impulse sequence with 
frequency zj. If yj is greater than the rest potential yj then zj 
is proportional to y j - y  j, otherwise zero. Thus the output is 
necessarily nonnegative. 

To every input y=(y~) (potential distribution) corresponds 
(for sufficiently small inhibition coefficients) a frequency distribu- 
tion z = (zj). The transformation y ~ z  is of interest in at least two 
respects: 1) To a certain extent the transformation y ~ z  can 
compensate for the loss in acuity of image in the transformation 
x--*y (see Reichardt, 1962: Walter, 1971). 2) If only a finite set of 
possible intensity patterns y is given - e.g. all possible distributions 
of ones and zero then in the absence of inhibition (all fljk =0) 
the functional Sz  t will distinguish only inputs with a different 
number of zeros, while a system with inhibition leads to a better 
discrimination of patterns (Reichardt and MacGinitie, 1962). Thus 
the system (5) leads to a model for pattern recognition. 

The aim of the present paper is to provide some mathematical 
theory for systems with lateral inhibition. We have shown: For 
arbitrary inhibition coefficients and an arbitrary input y the 
system has at least one possible output. In general the output is not 
unique. The output is unique for arbitrary inputs if the spectral 
radius of the inhibition matrix B is less than unity. This condition 
is less stringent than certain conditions in Reichardt and Mac 
Ginitie (1962) on the row sums of B. The condition is optimal, if 
no further information on B is provided. For arbitrary B it is a 
necessity to consider a nonstationary problem. The notion of 
stability (see Reichardt and MacGinitie, 1962) does make sense 
only for a nonstationary system. Etability conditions are derived. 
Similar results can be obtained for systems with continuous time 
dependence and for integral equations. 
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