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Summary. This paper is devoted to developing and studying a precise notion 
of the "encoding" of a "logical data structure" in a "physical storage 
structure," that is motivated by considerations of computational efficiency. 
The development builds upon the notion of an encoding of one graph in 
another. The cost of such an encoding is then defined so as to reflect the 
structural compatibility of the two graphs, the (externally specified) costs of 
"implementing" the host graph, and the (externally specified) set of intended 
"usage patterns" of the guest graph. The stability of the constructed frame- 
work is demonstrated in terms of a number of results; the faithfulness of the 
formalism is argued in terms of a number of examples from the literature; 
and the tractability of the model is hinted at by several results and by further 
references to the literature. 

I. Introduction 

It is not uncommon for an algorithm that is optimally efficient in an idealized 
environment to have to be completely retailored in order to conform to the 
requirements of a given programming language or computing system. Perhaps 
the most painful (and ubiquitous) phase of this adaptation process is the re- 
outfitting of the algorithm with data structures that is often referred to as the 
translation from "logical data structures" to "physical storage structures." Since 
the transformed algorithm is (barring errors) behaviorally equivalent to the 
original, there must be compatibility between the "guest" data structures of the 
original algorithm and the "has t"  data structures of the transformed one. Of no less 
significance is the extent to which the source and target data structures match in 
terms of computational efficiency: one obviously has no desire to optimize an 
algorithm in an idealized environment, only to have the gains in efficiency 
evaporate in the course of implementation. One's chances of devising an efficient 
algorithm and transforming it into an efficient program are clearly enhanced if 
one understands the issues influencing the compatibility of the guest and host 
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data structures. It is our aim in this paper to propose and study a notion of data 
encoding that tries to capture at least certain aspects of this compatibility. 

In order to motivate the various features of the framework of our in- 
vestigation, let us discuss briefly a number of data encodings described in the 
literature. 

(1.1) In Section2.3.2 of [12], Knuth describes a technique for encoding an 
arbitrary tree in a binary tree. The main benefit of such an encoding is that the 
two-way "switches" at the nodes of a binary tree are rather easier to store in a 
two-pointer-per-word computer such as MIX than are more-than-two-way 
switches. 
(1.2) Of course not all data structures are trees. Accordingly, Pfaltz [17] has 
characterized those graphs that can be encoded in outdegree-two graphs using 
the obvious generalization of encoding (1.1). (Of course any graph can be 
encoded in an outdegree-two graph using other encoding techniques.) 
(1.3) In Section 6.2.3 of [13], Knuth discusses a variety of encodings of ordered 
sets in trees, that enhance the efficiency of various operations on the sets. 
Notable among the storage structures discussed are so-called B-trees, a paging- 
oriented variety of balanced search tree whose structure is designed to permit 
retrieval/insertion/deletion of stored keys without visiting too many nodes of the 
tree so as to keep low the danger of page faults engendered by edge traversals. 
(1.4) Standish [25, SectionV] describes encodings of both queues and finite 
sets in the leaves of trees, as examples of the kind of automatically/semi- 
automatically generated computer-palatable data representation that needs to 
be studied in order to render feasible the "abstract" specification of data types. 
(1.5) DeMillo, Eisenstat, and Lipton [2] describe an efficient encoding of 
arrays in the leaves of trees; Harper [8, 9] characterizes all optimally efficient 
encodings of cubes in lines; Iordansk'ii [11] derives lower bounds on the 
efficiency of encodings of trees in lines. In all three cases, the measure of 
efficiency is the average "dilation" of the edges of the guest structure. 
(1.6) Gotlieb and Tompa [6] describe a somewhat complicated procedure for 
choosing an efficient storage-encoding of a given data structure, given the 
intended use of the structure. Their most detailed example involves a depth-first 
search algorithm. 
(1.7) In Section 2.3.3 of [12], Knuth discusses encodings of trees in lines and in 
ring structures of various degrees of complexity. Each of the encodings described 
is intended to enhance ease of element-access and ease of structure-traversal 
simultaneously, given a particular class of intended uses of the trees. 

A detailed look at the encodings in (1.1)-(1.7) renders compelling the 
conclusion that there is a general notion of data encoding under whose aegis all 
the described encodings lie. It is our purpose to develop such a notion in the 
sections to follow. A number of features of the cited examples will serve as 
beacons in our quest for a general model. 

1) The aim of many data encodings is to accommodate the guest data 
structure to the exigencies of the architecture and/or memory layout of the host 
environment. 
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2) The general notion of encoding should reflect such exigencies and permit 
one to compare the relative merits of competing candidate host structures and 
encodings; that is, the notion of encoding should be accompanied by a notion of 
the cost of an encoding. 

3) The proposed notion of the cost of a data encoding must account for the 
intended layout in storage of the host structure. For example, traversal-moves 
that cross page boundaries (such as those between nodes of B-trees) must be 
assessed a higher cost than moves that stay within a page, hence within main 
memory (such as those within nodes of B-trees). 

4) The proposed notion of the cost of a data encoding must account for the 
intended patterns of using the guest structure. The "optimal" storage structure 
selected by Gotlieb and Tompa's procedure (1.6) for a depth-first search algo- 
rithm could turn out to be pessimal for a breadth-first search algorithm. 

The two features that characterize our investigation and distinguish it from 
the discursive treatments in [21,24] are our formulating our notion in a 
mathematical framework, emphasizing the mathematical implications of our 
various decisions, and our stressing the quantitative aspects of data encodings. 
Indeed, after introducing our formal notion in Section 2, we devote Section 3 to 
uncovering those basic results about the model that suggest its appropriateness, 
and we dedicate Section4 to the derivation of bounds on the costs of data 
encodings. 

2. A Framework for Studying Data Encoding 

A. Encodings 

Many issues concerning data structures are best dealt with in a graph-theoretic 
framework. Graph-oriented models can depict rather faithfully many of the 
features of data structures that one infers, from the "more practical" literature 
such as [12], to be essential to an understanding of data structures; such models 
have the further benefits of tractability-through-simplicity and a rich literature 
to drawn on for techniques, inspiration, and results. 

The simplest variety of graph that seems to be suitable for the study of data 
encodings is a finite, directed graph. More elaborate alternatives, which include 
edge-labels or root nodes, or which posit either the graph's acyclicity or strong 
connectivity (as but a few examples of embellishments that have appeared in 
graph models for data structures) contain features that are not germane to the 
issues we wish to study. On the other han d , further simplifying the model by 
studying undirected graphs would not allow us to make certain crucial distinc- 
tions: consider for a moment the encodings alluded to in (1.1). The motivation 
for replacing arbitrary-degree graphs by degree-two graphs (generalizing the 
encoding in (1.1)) is to accommodate one's graph to the fixed word length of the 
host computer. However, it is obviously only large outdegrees of nodes that 
require such accommodation; graphs such as the trees used in the M. Fischer- 
Galler equivalence-relation-processing algorithm [12, Section2.3.3, Algorithm 
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El, that have outdegree 1 at every node albeit potentially enormous indegrees, 
obviously require no such encoding. We therefore base our study on the 
following formalism. 

(2.1) A graph G=(V, E) consists of 

(a) a set Vof  vertices (or nodes); 
(b) a set E___ V x V of edges. 

Remarks. For convenience, we shall write "veG" instead o f " v e  V" to assert v's 
being a vertex of G. Similarly, we shall denote by "IGl", rather than by "IV[", the 
cardinality of G's vertex set. (In general, ISL denotes the cardinality of the set S.) 
We shall call v the source and v' the target of the edge (v,v')eE. The outdegree 
of veG is the number ({v} x V~EI of edges with source v; dually, the indegree of 
v is the number IVx {v}~EL of edges with target v. 

(2.2) A path in G=(V,,E) is a finite sequence 

P = (va, v2) (v2,1~3)'" "(Vn, "r 1) 
with all vi6G and all (vi, vi+l)~E. 

Remarks. Given the path p of (2.2), we designate-vl=source(p ) and v,+ 1 
=target(p); and we denote by IP] the length of P(Ipl--n in (2.2)). We call p a 
(vertex-)simple path if no two edges in p share either source or target. Finally, we 
denote by Paths(G) the set of all paths in G. 

With these preliminaries out of the way, we are prepared to present our 
formal notion of data encoding. 

(2.3) An encoding of the graph G=(V, E) in the graph H=(V', E') is an injection 
(=  one-to-one function) 

5: E ~ Paths(H) 

that induces an injection 

t: V ~ V' ;  

that is to say, source(e)= source(e')~ V if and only if source(~(e)) 
=source(r for all e,e'~E, and similarly for targets. 

Figure 1 depicts two simple graphs, a 5-vertex "ring" and a 3 • 3 "array." 
(The double-headed arrows in the array abbreviate separate single-headed 
arrows in opposing directions.) One possible encoding of the ring in the array is 
given in Table 1. Both the edge-injection r and the vertex-injection , are 
tabulated. 

A word about Definition (2.3) is in order. One might think at first blush that 
the vertex injection r should be the "encoding" of G in H. However, this 
injection is not adequately prescriptive. An encoding of one data structure in 
another should include a rule for "translating" walks in the guest structure into 
their equivalents (under the encoding) in the host structure; some such path- 
translation would seem to be prerequisite to assigning a meaningful cost to an 
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(a) 

Fig. 1. a A ring graph, b An array graph 

Table 1. a) An 
injection 

encoding of the ring of Figure l a  in the array of Figure lb.  b) The induced vertex- 

a) b) 

e e Eri~,g e (e) 6 Paths (Array) v ~ Vring ! (V) e ]/array 

(1, 2) (G, H) (H, I) 1 G 
(2, 3) (I, F) 2 I 
(3, 4) (F, E) (E, B) 3 F 
(4, 5) (B, A) 4 B 
(5, 1) (A, D) (D, 6) 5 a 

encoding; and we feel that an explicit path-correspondence, as e yields in (2.3), is 
preferable to any conventional alternative (such as "shortest pa th"  with some 
tie-breaking mechanism). 

B. The Cost of  an Encoding 

The "cost"  of a data encoding should reflect the consumption of resources 
engendered by executing one's algorithm on the "physical storage structure" H 
in an actual computer rather than on the "logical data structure" G in an 
idealized computer. We recall our conclusion in the Introduction that any 
meaningful assessment of cost must take into account both the costs engendered 
by the implementation of H, that is, how H is laid out in memory,  and the 
intended "usage patterns" for G. Before discussing each of these factors in turn, 
we remark that this assessment of cost need not be an a posteriori accounting 
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measure. A priori estimates of cost may aid one in accepting or rejecting 
proposed hosts or, given a host, may aid one in deciding how best to implement 
the host, all decisions being relative to the intended uses of the guest. 

Implementation Costs. Costs incurred because of computer architecture and/or 
storage layout can be represented faithfully and conveniently by weighting the 
edges of the host graph. 

(2.4) An edge-weighting function on the graph H=(V, E) is a function 

~o: E ~ (positive Reals). 

~o is extended to paths in H additively: 

co + : Paths(H) ~ (positive Reals) 

by 

~o+(el e2... e.) = ~ a~(ei). 
l ~ i<_n  

We shall henceforth identify ~ § with ~. 

We can best explain the intended use of the function ~ by illustration. Focus 
on the array of Figure lb, which is the host in the encoding of Table 1. 

1) Say that the array is stored by "sequential allocation" [12, Section 2.2.6] 
so that transitions from any node to any other node are easy to effect. One 
might reflect this ease of transition by having ~o =- 1 so that the only "penalty" 
incurred by the encoding is that caused by the "dilation" of G's (unit-length) 
edges into paths in H. This is the edge-weighting studied in the sources in 
example (1.5). 

2) Say next that the array is stored by sequential allocation but that it is so 
big that it must be segmented and allocated to more than one page of memory. 
Such a situation could be modeled by assigning a unit weight ~o(e)= 1 to those 
edges whose termini both reside in the same page, and a large weight, say re(e) 
= 1000, to those edges that cross page boundaries and so whose traversal would 
cause a page swap. A deeper memory hierarchy would be modeled analogously. 

3) Say that the array's rows are stored sequentially, but its columns are 
stored as linked lists. One might reflect such an implementation by assigning 
og(e)= 1 to each horizontal edge and, say, ~o(e)= 1.5 to each vertical edge, in 
order to reflect the overhead of accessing and following a pointer. 

4) Finally, say that the array is stored as an "orthogonal list" [12, 
Section 2.2.6] so that both rows and columns are linked. If one's host computer 
accommodates only two pointers per word, one might set 

(2.5) m(e)=[log 2 outdegree source(e)] 

to represent the cost of implementing an (outdegree source(e))-way switch. 
Variations on this theme will readily occur to the reader. 

Usage Patterns. Let us say that the ring of Figure la, which is the guest in the 
encoding of Table I, is always processed by entering at node 1 and proceeding 
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thence to some other node, all termini being equally likely. This pattern of usage 
of the graph is described by the following four paths and the fact that they are 
equally likely. 

(2.6) Path Probability 

(1,2) 1/4 
(1, 2) (2, 3) 1/4 
(1, 2) (2, 3) (3,4) 1/4 
(1, 2) (2,3) (3,4) (4, 5) 1/4 

What one infers from (2.6) is that edge (5, 1) of the ring will never be used, that 
edge (1,2)  is four times more likely to be traversed than edge (4, 5), and so on. 
This information can be encapsulated most usefully, for the purposes of cost 
assessment, in terms of probabilities that reflect the relative frequencies of the 
guest graph's edges in the anticipated pattern of traversing the guest. The 
pattern (2.6) translates to the following probabilities. 

(2.7) Edge Probability 

(1,2) 2/5 
(2, 3) 3/10 
(3, 4) 1/5 
(4,5) 1/10 
(5,1) 0 

We generalize from this example to the following formalism. 

(2.8) A usage pattern for the graph G=(V,E) is a function 

n: E ~ { x : O < x < l }  

such that 

E ~(e)= 1. 
e e E  

In fact, a data structure is seldom used in just one way. It is more usual that 
a computer application will process a data structure by using it according to 
pattern A part of the time, according to pattern B some other part of the time, 
and so on. Such composite usage patterns are modeled quite naturally in the 
framework of (2.8). 

(2.9) An application of the graph G =(V, E) is a s e t / / =  {re} of usage patterns for 
G, which is convex in the following sense. For any subset {rei} _~H and associated 
positive reals {~i} with Xcq= 1, the function 

n(e) = ~ ~, rei(e) 
i 

is i n / / .  
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The convexity of H in (2.9) corresponds to allowing G to be shared among 
the usage patterns in/7.  

The Cost of an Encoding. In informal terms, the cost of a data encoding should 
reflect the amount of additional resource consumption required to effect an 
"average move" in the host structure rather than in the guest structure. The 
framework of (2.4), (2.8), and (2.9) affords us a simple expression for this cost. 
The benefits that accrue from this simplicity are discussed in Section 3. 

(2.10) The cost of the encoding ~ of the graph G=(V,E) in the graph H, under the 
edge-weighting function ~o (for H) and the application/7 (of G) is the function 

Cost(e;/7; 09)= max ~ n(e)~o(e(e)). 
~ e l l  e~E 

To complete our running example, we note that the cost of the encoding e of 
Table 1 under the singleton application rc of (2.7) and the edge-weighting 
function o~ of (2.5) is 

Cost (e; {T t} ; co) = 2.5. 

C. The Cost of "Doing Business" 

We would anticipate two uses for the model developed in this section. On the 
one hand, the model affords one a vehicle for studying data encodings within a 
mathematical framework. On the other hand, the model affords one a simple 
vehicle for estimating the costs of specific encodings. With regard to both uses of 
the model, one must be concerned with the "accuracy" of the model, the extent 
to which it mirrors reality; these concerns are addressed in Section3. With 
regard to the latter use of the model, one must be concerned also with how hard 
the model is to use; we discuss these latter concerns now. 

Estimating Probabilities. There is no algorithm for converting a natural- 
language description of a program's path on a data structure to a usage pattern 
in the sense of (2.8). But perhaps a few examples will point the reader in the right 
direction. 

Let our guest be an n-node line (=  doubly-linked linear list), that is, a graph 
with vertices V={1,2 . . . . .  n} and edges E = { ( i , i + l ) , ( i + l , i ) : l < i < n } .  We 
shall use the line as though it were the tape of a Turing machine and describe a 
number of algorithms using the tape. We shall call each node of the line a tape 
square. 

I) Tape-Folding. P. Fischer et al. [3] describe a "tape-folding" algorithm that 
engenders the following head trajectory on the Turing machine's tape. At stage 
k, the head proceeds from square 2 k- 1 to square 2 k, returns to square 2 k- 1, and 
completes the stage by going to square 2 k; each of these three motions comprises 
a straight sweep; see Figure 2a. Now, in the described trajectory, each rightgo- 
ing (leftgoing) edge of our line is crossed precisely two (resp., one) times. 
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(o) 

(b) 

~ O 

(c) 

Fig. 2a-c. A schematic view of the head trajectories for a tape folding, b oblivious computation, and 
e palindrome recognition when n =8 

Accordingly, after appropriate normalization, we find that for 1 < i < n, 

2 1 
(2.11) 7tty((i,i+l))=3(n_l------- ~ and rc, f(( i+l, i))=3(n_l) .  

2) Oblivious Computation. Pippenger and M. Fischer [16] discuss Turing ma- 
chines whose head trajectories are independent of the input. One possible 
trajectory for such an "oblivious" m a c h i n e -  albeit not the most efficient o n e -  is 
to have its head move in stages: at stage k, the head moves from square 1 to 
square k + 1 and returns thence to square 1, each motion being a straight sweep; 
see Figure2b. After stage n - 1  (which is as far as one can go on our length n 
line), the head will have traversed a total of n(n-1) edges. Each edge (i, i+  1) 
will have been crossed n - i  times, as will its mate ( i +  1, i). Accordingly, for 
l<i<n,  

n - i  
(2.12) ~zo~((i,i+ 1))=Troc((i+ 1, i ) )=  

n(n - 1)" 

3) Palindrome Recognition. Hennie [103 studies the efficiency of one-tape Turing 
machines that test whether their input is a palindrome, that is a string that reads 
the same in either direction. He shows that no algorithm on such a machine is 
materially better than the following naive one. At stage k, the head proceeds 
from square k to square n - k + l ,  and returns thence to square k + l ;  see 
Figure 2c. The described trajectory traverses a total of n(n-1)/2 edges. Each 
edge ( i , i + l )  is crossed either i or n - i  times, according as i<n/2 or not 
(assume for simplicity that n is even); each edge ( i +  1, i) is traversed i - 1  or n 
- i  times, according as i< n/2 or not. Converting these frequencies to probabili- 
ties, we have: 
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(2.13) for l<_i<n/2, 

r t p , ( ( i , i + l ) ) = ( i  ) and 7 t p r ( ( i + l , i ) ) = i i i "  

for n/2 < i < n, 

n - i  
~tpr((i, i+ 1 ) )=%, ( ( i+  1, i ) ) = - -  

Determining Costs of Encodings. Given an encoding ~ of a graph G in a graph H, 
together with a weighting function co for H and a usage pattern ~ for G, a 
patently simple computation will determine Cost(~; {~};~o): one needs only 
compute the inner product of the "vectors" re(e) and m(e(e)). 

Computing the cost of e is only slightly harder if one is presented with any 
finite set of usage patterns for G from which to generate (via convex com- 
bination) an application for G. Indeed, inequality (3.1) of Proposition 3.3 com- 
bines with the textbook algorithm for inner products and the obvious algorithm 
for computing the maximum of n numbers to establish the following. 

Let ~(~1,.. . ,  7t.) denote the convex closure of the usage patterns 1tl .... , re,. 

Proposition 2.1. Given the encoding ~ of G=(V,E) in H, the edge-weighting o9 for 
H, and the usage patterns ~1 . . . .  ,ft, for G, one can determine in IE[n multipli- 
cations, (1EL- 1) n additions, and n -  1 comparisons the cost 

Cost(~ ; ff.(rtl . . . . .  ~z,); co). 

Optimizing Encodings. If one is given only the graphs G and H, an application H 
for G, and a weighting m of H, the problem of finding a corresponding minimal- 
cost encoding of G in H is computationally intractable (to be precise, NP- 
complete), even when H, H, and co are very simple. 

Proposition 2.2. Given graphs G = (V, E) and H, an application 11 for G, an edge- 
weighting 09 for H, and a constant k, the problem of determining whether or not 
there is an encoding ~ of G in H with 

Cost(e ;11; o)) < k 

is N P-complete. 
This remains true even under one or more of the simplifying assumptions: (a) 

H is a line; (b) ~o is the constant function ~o(e)=l; (c) 17 is the application 
~(Tz~, ..., n~EI), where the rt* are the "characteristic" usage patterns, 

�9 ~fl, if e=e  i 
(2.14) 

(e) = [0 ,  if e~=el 
rtl 

and E =  {e 1 .... ,elEt}. (This application is designated AL L  later.) (d) 11 is as in 
part (c), and G is a tree. (e) 11 is the singleton application {rt6}, where 7~ 6 is the 
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"average-case" usage pattern 

1 
(2.15) g~(e) =~E ] 

for all eEE. 

Proof The general assertion follows from the various simplified cases which in 
turn follow from the NP-completeness of either the Bandwidth Minimization 
Problem (assumptions (a, b, c) [15]), the Simplified Bandwidth Minimization 
Problem (assumptions (a, b, c, d) [4]), or the Simple Optimal Linear Arrange- 
ment Problem (assumptions (a, b, e) [5]). [] 

Deciding Encodability. In the preceding two subsections, we have assumed, first, 
that we are given an encoding of G in H (Proposition 2.1) and, next, that we 
know that G is encodable in H and we have only to find a good encoding 
(Proposition 2.2). However, the fact that we are modeling data structures by 
directed graphs renders problematical the issue of whether G is encodable in H 
at all. In fact, even this apparently simple question turns out to be NP-complete. 
(This is trivially not the case if either strongly connected graphs or undirected 
graphs are used to model "physical storage structures;" Propositions 2.1 and 2.2 
would be unaffected by these changes to the model, which would not be 
unreasonable ones given our intended interpretation.) 

Proposition 2.3. Given graphs G and H, the problem of determining the existence of 
an encoding of G in H is NP-complete. 

Proof The following simple proof was suggested by N. Pippenger. Let us be 
given n disjunctive clauses C1, C2, ..., C,; and let L denote the set of literals 
occurring in the clauses. Construct the graph H as follows. 

Vertices. If the literal leL occurs in clause Ck, then the pair (l, k) is a vertex of 
H. If (ll ,k~) and (12,kz)~L x {1, ...,n} are vertices of H, then the quadruple 
(11, kl, l 2, k2) is a vertex of H. These pairs and quadruples exhaust the vertices 
of H. 

Edgfs. For all pairs of vertices ( l l ,k  1) and (12,k2)eL x {1,...,n} such that 
k t #:k 2 and I t ~e ~12 (the negation of lz), there are two directed edges in H, both 
having source (ll,k~,12,kz), one having target (l~,k~), and the other having 
target (12, k2). These are all the edges of H. 

We let our proposed guest graph G be the graph with vertices 

{1,... ,n}tJ{(i,j): l <=i<j<=n} 

and edges 

{((i , j) ,  i), ( ( i , j ) , j ) :  1 <i<j<n}.  

One verifies easily that G is encodable in H iff G is isomorphic to a subgraph of 
H iff the conjunction of the n clauses C~,... ,C, is satisfiable. The NP- 
completeness of the Encodability Problem thus follows from the well-known 
completeness of the Satisfiability Problem [1]. [] 
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3. Basic Properties of the Framework 

Any proposed formalization of a "real" notion must be tested for four proper- 
ties: the formal notion must be faithful in the sense of agreeing with observations 
about its real counterpart; the formal notion must be elucidative in the sense of 
rendering transparent observations that are not otherwise easily understood; the 
formal notion must be stable in the sense of not magnifying slight perturbations 
in the input data; the formal notion must be tractable in the sense of being a 
vehicle for the in-depth study of its real counterpart. This section is devoted to 
justifying our claim that the formal notions of data encoding and cost of an 
encoding developed in Section 2 enjoy the first three of these properties. The last 
property, tractability, can be tested only over a period of time; we allege, 
however, that the initial "returns," as exemplified, say, by [2, 11, 14, 20, 23] all 
of which studies fall directly into the framework proposed here, are encouraging. 

A. Faithfulness of the Model 

We note just three instances of the model's agreeing with "reality." With this 
sampler in mind, the reader can easily carry on with other tests of faithfulness. 
We leave to the reader the simple proofs of the following propositions. 

Proposition 3.1. For any encoding e of a graph G in a graph H and any edge- 
weighting co of H, if II and II' are applications of G, and if II ~_ [1', then 

Cost (e; [1; co) ~ Cost (e; H'; o~). 

In particular, for all applications I1 of G, 

Cost(z; [1; r Cost(~; ALL;  o~) 

where ALL  is the set of all usage patterns for G (cf. Proposition 2.2c). 

Proposition 3.1 asserts that asking a data structure to do less can never raise 
the cost of any encoding of the structure. 

The next proposition asserts the equally expected fact that employing non- 
simple paths as images of edges under an encoding is self-defeating in the sense 
that it increases costs. 

Proposition 3.2. Let e encode the graph G =(V, E) in the graph H. Let e' be another 
such encoding with the property that, for all e~E, the path e'(e)~Paths(H) is a 
simplification of ~(e) ~Paths (H): e' (e) is obtained from e (e) by removing loops (paths 
with the same source and target). For all applications II of G, and all weightings ~o 
of H, 

Cost(e' ; 17; o~) < Cost(e; [1; o~). 

The final "test of faithfulness" asserts that various ways of combining usage 
patterns and/or applications of guest graphs yield the expected costs. 
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X22a 
Fig. 3. The encoding e 3 of the line L 3 in the leaves of the tree T 3. Thin lines represent tree edges; 
thick lines represent line edges 

Proposition 3.3. Let e encode the graph G in the graph H, and let co be a weighting 
of H. For any applications 17, 17' of G, 

Cost (e; 17 w 17'; co) = max [ Cost (e; 17; co), Cost (e; 17'; co)], 

and 

Cost (e; 17 ~ / / ' ;  co) < min [  Cost (e; 17; co), Cost (e; 17'; co)]. 

For any convex combination ~z = ~ct i rr i of  usage patterns ~i for G (Z ~i = 1), 

(3.1) Cost(t; {rc} ; co) __< max Cost(t; {rci}; co). 
i 

B. Nonobvious Equivalences Exposed by the Model 

The elucidative qualities of  our  model  will be illustrated by an analysis of one 
family of encodings. 

Let e. (n = 1, 2 . . . .  ) encode the 2"-node line L.  in the leaves of  the depth n full 
binary tree T., in natural  order :  node I ~ L .  is placed at T.'s leftmost leaf and so 
on; see F igu re3  for clarification: as in Figure 1, double-headed arrows ab- 
breviate opposing single-headed arrows. For  simplicity, we weight the edges of 
T 3 with the function coo-1,  so that COo (e(e)) -= [e(e)[, whence coo(e((l, 2))) 
= coo(e((2, 1) ) )=2 ,  COo(e((2, 3) ) )=coo(e( (3 ,2) ) )=4  , and so on. 

Recalling the usage patterns rc~y, rcoc, and rCp, for L,  from (2.11), (2.12) and 
(2.13), respectively, we claim the following nonobvious  equivalences. 

Proposition 3.4. 
a) Cost (e.; {rCoc};coo)= Cost(e.; {~,s};coo)" 
b) Cost(e.; {lrp.} ; coo)=(1- 2-") Cost(a.; {~ztf} ; coo). 

Now, Cost(e.; {~zty } ; coo)"~ 4 [20] ; hence, Cost(e.; {row}; COo) ~ Cost(e.; {sty } ; coo), 
both asymptotic equalities holding as n--* ~ .  

Proof Since coo(e.((i, i+ 1)))=coo(e.((i  + 1, i))) for all i, we find that 

Cost(e, ;{~};coo)= ~ [ ~ ( ( i , i + l ) ) + ~ ( ( i + l , i ) ) ] c o o ( e , ( ( i , i + l ) ) )  
l < i < 2  n 

for any usage pat tern 7r for L, .  As a consequence,  if we let m = 2", then 

1 
(3.2) Cost(en;{Tctf};coo)=2n l Z [e,((i,i+l))[; 

l < i < m  
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(3.3) Cost(e,; {rtoc}; e%) = 

(3.4) Cost(e.; {rear } ;~oo) = 

m - i  
~. ( ~  le.((i, i+  1))[; 

l <__i <m 

2 i - 1  
~, - - ] e , ( ( i ,  i+  1))1 

,~,~m/2 (2) 
+ ~ 2(m -j)[e.(d.j,j + 1 ))[. 

Now, it is a straightforward matter to verify that, for all 1 ~ i < 2"- 1, 

(3.5) le,((i, i + 1))l = le,((2" - i, 2 " - i +  1))l; 

(3.6) le,((i,i+l))l=[e,((2"-l +i, 2"-l +i+l))l ,  

a fortuitous coincidence as we shall now see. Using either of the equalities (3.5) 
or (3.6), we transform (3.2) to 

2 2n 
(3.7) Cost(e.; le,((i, i + 1 })1 + 2.---~-, {rt 's};~176 1 lNi<m/2 

where the "dangling" term 2n/(2"-1)  is the contribution of edge ( 2 " - 1  2"-1 
+ 1) to the cost. Using Equation (3.5) in a similar way, we transform (3.3) to 

2 2n 
Y~ le.((i, i+  1))[ + - - -  (3.8) Cost(e,; {~Zoc } ; 09o) = 2 "  - -  1 1 <i  < m/2 2"-- 1" 

Equations (3.7) and (3.8) prove part (a) of the Proposition. 
Now we use equation (3.6) in the same manner to transform (3.4) to 

1 n 
(3.9) Cost(e,; {zcv,};coo)=~-~ ~ [e,((i, i+  1)){ + 2._ ~ 

1 <i <m/2 

= (1 - 2- ") Cost (e.; { rq y} ; coo), 

proving part (b) of the Proposition. []  
While there is obviously no way to argue that the formulation of Section 2 is 

indispensable to rendering the equivalences of Proposition 3.4 transparent, we 
believe that the proof just presented does establish at least that the formulation 
does elucidate those nonobvious equivalences. 

C. Stability of the Model 

The stability of our model evidences itself both in the model's graceful accom- 
modation of errors or misestimates in usage patterns or in implementation costs 
and in the way data encodings compose. 
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Misestimates. The bilinearity of  our  expression (2.10) for the cost of  a data  
encoding guarantees stability in the face of  per turbat ions  of  either of  the cost 
variables. 

Proposition 3.5. Let e encode the graph G = (V, E) in the graph H-= (V', E'). 
(a) I f  the usage patterns re, r( for G satisfy 

(3.10) Ire(e)- r((e)[ < ft. ~(e) 

for some 3 > 0  and all eeE, then, for all edge-weightings o) of H, 

]Cost(e; {r~}; co) -  Cost(e; {Td} ; co)l < 3. Cost(e; {~z} ; co). 

(b) I f  the edge-weightings co, co' for H satisfy 

[co(e) - of(e)[ < 3'. co(e) 

for some b ' > 0  and all eeE', then, for all usage patterns ~ for G, 

I Cost(e; {re} ; co) - Cost(e; {~z}; co )l = 6 �9 Cost(e; {Tz} ; co). 

Proof We prove only part  (a), part  (b) then following by similar reasoning. Let  
and ~' stand in relation (3.10) to one another.  We then find, for arbi t rary co, 

[Cost(e; {~}; co) -  Cost(e; {r(}; co)l = I ~ (~ ( e ) -  g'(e)) co(e(e))[ 
e s E  

< ~ jg(e) - ~' (e)] co(e(e)) 
e~E 

< ~ 3.n(e)co(e(e)) 
e~E 

=3.Cost(e; {~}; o)). [] 

In informal terms, Proposi t ion 3.5 asserts that any relative error  in estimat- 
ing either a usage pat tern or  an edge-weighting engenders a relative error  of  like 
magni tude  in the est imation of the cost of  the data  encoding. 

Compositions of Encodings. If GI=(V1,EO, G2=(V2,E2), and G3=(V3,E3) are 
graphs, and if e t and e z encode, respectively, G 1 in G z and G 2 in G3, then the 
composi te  function e 1 e 2 encodes G 1 in G 3. What,  however, is the cost of this 
composi te  encoding? We proceed now through a natural  development  to an 
answer to this question. 

Let rt be a usage pat tern  for the graph G 1. When G 1 is encoded in G 2 (by el), 
7t induces a pat tern of  use on the edges of Gz. The induced pat tern can be 
derived as follows. 

Let e l , e  2 . . . .  ,e ,  be the edges of G 1. In a natural  way, the encoding el 
t ransforms the (real number)-(Gl-edge ) sequence 

~(el), el,  re(e2), e2 . . . . .  rc(en), e~ 
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into the (real number)-(Ga-path ) sequence 

n(e 1), 81 (el), 7c (e2), el (ez) .....  u(e,), el (e,). 

The import of this translation is that when the edge e i of G l is crossed with 
probability n(ei), then, under encoding el, the path e l(e~) in G 2 is traversed with 
precisely this probability also. What this means for the edges of G 2 is clear: 
under encoding e 1 and usage pattern n, each edge e' of G 2 is traversed with 
frequency (relative to the other edges of G2) 

(3.11) (p(e')= ~ n(e).~(e';el(e)) 
eEE1 

where :~(e';el(e)) is the number of occurrences of edge e' in the path el(e ). Now, 
if one sums these frequencies in preparation for normalizing them to probabili- 
ties, one finds that 

(3.12) ~ q~(e)=Cost(el;{n}; ~o) 
e~E2 

where, as in Section 3B, mo is the constant edge-weighting mo(e)=-i for G 2. 
Combining (3.11) and (3.12), we arrive at the desired natural notion of the usage 
pattern n (~) for G 2 induced under encoding e 1 by the usage pattern n for G1, 
namely, 

(3.13) for eeE2, n(~l)(e)=qo(e)+Cost(al;{n};O9o). 

Proposition 3.6. Let G 1, G2, G3, ~1, and ~2 be as before. Let n be a usage pattern 
for G1, and let o3 be an edge-weighting of G 3. Then 

Cost(el ~2; {n} ; co) = Cost(e 1 ; {n} ; COo). Cost(e 2 ; {re (~')} ; 09). 

Proof We proceed by direct calculation. 

Cost(~, e2; {n};o))= ~ n(e)o~(el e2(e)) 
e~E1 

= ~ n(e) ~ ~(e';el(e))o~(Sz(e')) 
eEE1 e' ~E2 

= ~ q~(e')cO(ez(e')) 
e' EE2 

=Cost(e 1 ; {n} ; c%). Cost(e2; {n(~')} ; ~o). 

Here we used (3.11) to proceed from the double summation to the single sum, 
and we invoked (3.12) and (3.13) to obtain the desired expression. []  

Basically, Proposition 3.6 asserts that the cost of the composite encoding is 
the cost of the second encoding magnified by just that dilation caused by the 
first encoding, an eminently reasonable allocation of costs. We conclude that 
our model is stable under composition of encodings. 
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4. Bounds on Costs of Eneodings 

The analysis of an encoding, with an eye toward obtaining an exact or an 
asymptotic expression for its cost, can be an arduous task. If one is willing to 
settle for a bound on the cost of the encoding, easier techniques will often 
suffice. 

Throughout  this section, let e encode the graph G = ( E E )  in the graph H 
=(V',E'),  l e t /7  be an application and n a usage pattern for G, and let ~o be an 
edge-weighting function for H. 

A. Generally Applicable Bounds 

Our first bound verifies that a natural candidate for "worst-case" usage pattern 
for a data encoding does in fact fill precisely that role. 

Proposition 4.1. Cost(e; H; o)) < max co(e(e)). 
e~E 

Equality holds whenever H = A L L  (cf. Proposition 2.2c). 

Proof Cost(e;/7; oJ)=max ~ n(e) (o(e(e)) 
~r~Fl e~E 

<max  ~. n(e). max co(e(e)) 
7rEH e~E eEE 

= max (o(e(e)) 
e~E 

since each n e l I  is a probability function, so that Ze n(e)= 1. 
The fact that equality holds when H = A L L  is immediate from the fact that 

A L L  contains the "characteristic" probability functions on E, as defined in 
(2.14). []  

Proposition 4.1 lends special import and interest to studies of "worst-case" 
cost of data encodings as in [9, 14, 18, 19, 20, 22]. 

Our second result bounds the cost of e both above and below, but differs 
from Proposition 4.1 in that the bounding quantities may not bear any relation 
to the encoding e. 

Let n l , u  z . . . .  ,hie L be, in nondecreasing order, the elements of the set n(E); 
and let ~o1,~o 2 .. . .  ,~olE I be the similarly ordered sequence of elements of the set 
o~(~(E)). 

Proposition 4.2. ~ ni~le[_~+ ~ < Cost(e; {n} ; co)< ~ nz(o~. 
l <=i<~lE] l ~i<~[EI 

Proof The result, which appears as Theorem 368 of [7, Section 10.2], is proved 
easily by noting that, given nonnegative a, b, ct, fl, the sum 

ab + (a + ~)(b + fl) 

exceeds the sum 
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a(b§ fi)+(a+a)b 

by the quantity e ft. [] 
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B. Bounds for Special Circumstances 

When n and/or co have special properties, then the bounds of Section 4A can be 
supplemented by often finer counterparts. 

The first bounds we find depend on how well the usage pattern n "fits" the 
encoding e and the implementation costs c9. 

(4.1) The usage pattern n is well-suited for the encoding e and edge-weighting co 
if n(E) and co(e(E)) are oppositely ordered: for all e,e'sE, 

n(e)<_n(e') implies co(e(e))>=co(e(e')); 

n is ill-suited for e and o) if n(E) and co(e(E)) are similarly ordered: 

7~(e)<=n(e') implies o)(e(e))=<cg(e(e')). 

Proposition 4.3. I f  n is well-suited for e and co, then 

Cost(e; {n} ; o) < Cost(e; {nG}; ~); 

if n is ill-suited for e and e), then 

Cost(~; {n} ; co) ~Cost(e; {n~} ; o) ,  

where n a is the all-edges-equally-likely usage pattern of(2.15). 

Proof. Immediate from Tchebyshefs inequalities [7, Section 2.17] and the fact 
that n is a probability function, so that Z n(e) = 1. [] 

Just as Proposition 4.1 accentuated the importance of the "worst-case" cost 
of a data encoding, so does Proposition 4.3 focus attention on the special role of 
the "average-case" or "all-edges-equally-likely" cost of a data encoding, as 
studied in [2, 8, 11, 20, 23]. 

The final bounds we present are of interest only because of the method of 
generating them, namely, by focussing attention not on the individual edges of G 
but rather on the equivalence classes of edges induced by the function e o). 

(4.2) For eeE, denote by [e] the set 

[e] = {e'~E: ~(e(e))= ~o(e(e'))}. 

Let E*= {I-el: eeE}, and for each usage pattern n for G, define the probabili- 
ty function n* on E* by 

n*([e])= Y: ~(e'). 
e'e[e] 

The transformation (4.2) can be useful in analyzing data encodings because 
the probability function n* can be more tractable than n, as the following shows. 
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Let og(e(e0)<co(e(e2))<... <co(e(e,)), each c i t E ,  comprise, in the indicated 
order, all the distinct values of co(e(E)). 

Proposition 4.4. I f  e co increases subari thmet ical ly ,  that  is, f o r  some c > O, 

co (e (e i + 1)) < co (e (el)) + c, 

and i f  7r* decreases  geometr ical ly ,  that  is, f o r  some p > O, ~ > 1, 

r~*([el]) < p c~-', 

then 

o~ 
Cost(e; {re}; co) __< co(e(e 0) - c + c p (~ _ 1 ) - - - -  ~ .  

P r o o f  Immediate by direct calculation, since 

Cost(e;{z~};co)= ~ n*([e])co(e(e)). [] 
[e]eE* 

This technique can be used to estimate the cost 

Cost(e . ;  {r~,:); coo) 

of Section 3B. To remind the reader, ~, encodes the 2"-node line in the depth n 
full binary tree as in Figure 3; 7rt: is the usage pattern (2,11) for the line; coo is 
the identically 1 edge-weighting for the tree. It is not hard to verify that 

co(e,(E)) = {2, 4, 6, ..., 2n} 

so that 

co(e,(e O ) = c =  2. 

Moreover (and here is where the technique pays off), 

~*:([ei]) = (1 _~12~,) 2 - '  �9 

By Proposition 4.4, then, the estimate 

4 
Cost(e,; {~,:}; coo) < 1 - 2  -" '~  4 

is direct. The determination in [20] of the exact value of this cost is just a more 
detailed application of this technique. 

It goes without saying that the specific growth rates of co and n* in 
Proposition 4.4 were for illustration only and have no bearing on this technique 
of cost estimation. 
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