
Acta Informatica 9, 273- 292 (1978)

�9 by Springer-Verlag 1978

Data Encodings and Their Costs

Arnold L. Rosenberg

Mathematical Sciences Department, IBM Thomas J. Watson Research Center,
Yorktown Heights, NY 10598, USA

Summary. This paper is devoted to developing and studying a precise notion
of the "encoding" of a "logical data structure" in a "physical storage
structure," that is motivated by considerations of computational efficiency.
The development builds upon the notion of an encoding of one graph in
another. The cost of such an encoding is then defined so as to reflect the
structural compatibility of the two graphs, the (externally specified) costs of
"implementing" the host graph, and the (externally specified) set of intended
"usage patterns" of the guest graph. The stability of the constructed frame-
work is demonstrated in terms of a number of results; the faithfulness of the
formalism is argued in terms of a number of examples from the literature;
and the tractability of the model is hinted at by several results and by further
references to the literature.

I. Introduction

It is not uncommon for an algorithm that is optimally efficient in an idealized
environment to have to be completely retailored in order to conform to the
requirements of a given programming language or computing system. Perhaps
the most painful (and ubiquitous) phase of this adaptation process is the re-
outfitting of the algorithm with data structures that is often referred to as the
translation from "logical data structures" to "physical storage structures." Since
the transformed algorithm is (barring errors) behaviorally equivalent to the
original, there must be compatibility between the "guest" data structures of the
original algorithm and the "has t" data structures of the transformed one. Of no less
significance is the extent to which the source and target data structures match in
terms of computational efficiency: one obviously has no desire to optimize an
algorithm in an idealized environment, only to have the gains in efficiency
evaporate in the course of implementation. One's chances of devising an efficient
algorithm and transforming it into an efficient program are clearly enhanced if
one understands the issues influencing the compatibility of the guest and host

0001-5903/78/0009/0273/$04.00

274 A.L. Rosenberg

data structures. It is our aim in this paper to propose and study a notion of data
encoding that tries to capture at least certain aspects of this compatibility.

In order to motivate the various features of the framework of our in-
vestigation, let us discuss briefly a number of data encodings described in the
literature.

(1.1) In Section2.3.2 of [12], Knuth describes a technique for encoding an
arbitrary tree in a binary tree. The main benefit of such an encoding is that the
two-way "switches" at the nodes of a binary tree are rather easier to store in a
two-pointer-per-word computer such as MIX than are more-than-two-way
switches.
(1.2) Of course not all data structures are trees. Accordingly, Pfaltz [17] has
characterized those graphs that can be encoded in outdegree-two graphs using
the obvious generalization of encoding (1.1). (Of course any graph can be
encoded in an outdegree-two graph using other encoding techniques.)
(1.3) In Section 6.2.3 of [13], Knuth discusses a variety of encodings of ordered
sets in trees, that enhance the efficiency of various operations on the sets.
Notable among the storage structures discussed are so-called B-trees, a paging-
oriented variety of balanced search tree whose structure is designed to permit
retrieval/insertion/deletion of stored keys without visiting too many nodes of the
tree so as to keep low the danger of page faults engendered by edge traversals.
(1.4) Standish [25, SectionV] describes encodings of both queues and finite
sets in the leaves of trees, as examples of the kind of automatically/semi-
automatically generated computer-palatable data representation that needs to
be studied in order to render feasible the "abstract" specification of data types.
(1.5) DeMillo, Eisenstat, and Lipton [2] describe an efficient encoding of
arrays in the leaves of trees; Harper [8, 9] characterizes all optimally efficient
encodings of cubes in lines; Iordansk'ii [11] derives lower bounds on the
efficiency of encodings of trees in lines. In all three cases, the measure of
efficiency is the average "dilation" of the edges of the guest structure.
(1.6) Gotlieb and Tompa [6] describe a somewhat complicated procedure for
choosing an efficient storage-encoding of a given data structure, given the
intended use of the structure. Their most detailed example involves a depth-first
search algorithm.
(1.7) In Section 2.3.3 of [12], Knuth discusses encodings of trees in lines and in
ring structures of various degrees of complexity. Each of the encodings described
is intended to enhance ease of element-access and ease of structure-traversal
simultaneously, given a particular class of intended uses of the trees.

A detailed look at the encodings in (1.1)-(1.7) renders compelling the
conclusion that there is a general notion of data encoding under whose aegis all
the described encodings lie. It is our purpose to develop such a notion in the
sections to follow. A number of features of the cited examples will serve as
beacons in our quest for a general model.

1) The aim of many data encodings is to accommodate the guest data
structure to the exigencies of the architecture and/or memory layout of the host
environment.

Data Encodings and Their Costs 275

2) The general notion of encoding should reflect such exigencies and permit
one to compare the relative merits of competing candidate host structures and
encodings; that is, the notion of encoding should be accompanied by a notion of
the cost of an encoding.

3) The proposed notion of the cost of a data encoding must account for the
intended layout in storage of the host structure. For example, traversal-moves
that cross page boundaries (such as those between nodes of B-trees) must be
assessed a higher cost than moves that stay within a page, hence within main
memory (such as those within nodes of B-trees).

4) The proposed notion of the cost of a data encoding must account for the
intended patterns of using the guest structure. The "optimal" storage structure
selected by Gotlieb and Tompa's procedure (1.6) for a depth-first search algo-
rithm could turn out to be pessimal for a breadth-first search algorithm.

The two features that characterize our investigation and distinguish it from
the discursive treatments in [21,24] are our formulating our notion in a
mathematical framework, emphasizing the mathematical implications of our
various decisions, and our stressing the quantitative aspects of data encodings.
Indeed, after introducing our formal notion in Section 2, we devote Section 3 to
uncovering those basic results about the model that suggest its appropriateness,
and we dedicate Section4 to the derivation of bounds on the costs of data
encodings.

2. A Framework for Studying Data Encoding

A. Encodings

Many issues concerning data structures are best dealt with in a graph-theoretic
framework. Graph-oriented models can depict rather faithfully many of the
features of data structures that one infers, from the "more practical" literature
such as [12], to be essential to an understanding of data structures; such models
have the further benefits of tractability-through-simplicity and a rich literature
to drawn on for techniques, inspiration, and results.

The simplest variety of graph that seems to be suitable for the study of data
encodings is a finite, directed graph. More elaborate alternatives, which include
edge-labels or root nodes, or which posit either the graph's acyclicity or strong
connectivity (as but a few examples of embellishments that have appeared in
graph models for data structures) contain features that are not germane to the
issues we wish to study. On the other han d , further simplifying the model by
studying undirected graphs would not allow us to make certain crucial distinc-
tions: consider for a moment the encodings alluded to in (1.1). The motivation
for replacing arbitrary-degree graphs by degree-two graphs (generalizing the
encoding in (1.1)) is to accommodate one's graph to the fixed word length of the
host computer. However, it is obviously only large outdegrees of nodes that
require such accommodation; graphs such as the trees used in the M. Fischer-
Galler equivalence-relation-processing algorithm [12, Section2.3.3, Algorithm

276 A.L. Rosenberg

El, that have outdegree 1 at every node albeit potentially enormous indegrees,
obviously require no such encoding. We therefore base our study on the
following formalism.

(2.1) A graph G=(V, E) consists of

(a) a set Vof vertices (or nodes);
(b) a set E___ V x V of edges.

Remarks. For convenience, we shall write "veG" instead o f " v e V" to assert v's
being a vertex of G. Similarly, we shall denote by "IGl", rather than by "IV[", the
cardinality of G's vertex set. (In general, ISL denotes the cardinality of the set S.)
We shall call v the source and v' the target of the edge (v,v')eE. The outdegree
of veG is the number ({v} x V~EI of edges with source v; dually, the indegree of
v is the number IVx {v}~EL of edges with target v.

(2.2) A path in G=(V,,E) is a finite sequence

P = (va, v2) (v2,1~3)'" "(Vn, "r 1)
with all vi6G and all (vi, vi+l)~E.

Remarks. Given the path p of (2.2), we designate-vl=source(p) and v,+ 1
=target(p); and we denote by IP] the length of P(Ipl--n in (2.2)). We call p a
(vertex-)simple path if no two edges in p share either source or target. Finally, we
denote by Paths(G) the set of all paths in G.

With these preliminaries out of the way, we are prepared to present our
formal notion of data encoding.

(2.3) An encoding of the graph G=(V, E) in the graph H=(V', E') is an injection
(= one-to-one function)

5: E ~ Paths(H)

that induces an injection

t: V ~ V' ;

that is to say, source(e)= source(e')~ V if and only if source(~(e))
=source(r for all e,e'~E, and similarly for targets.

Figure 1 depicts two simple graphs, a 5-vertex "ring" and a 3 • 3 "array."
(The double-headed arrows in the array abbreviate separate single-headed
arrows in opposing directions.) One possible encoding of the ring in the array is
given in Table 1. Both the edge-injection r and the vertex-injection , are
tabulated.

A word about Definition (2.3) is in order. One might think at first blush that
the vertex injection r should be the "encoding" of G in H. However, this
injection is not adequately prescriptive. An encoding of one data structure in
another should include a rule for "translating" walks in the guest structure into
their equivalents (under the encoding) in the host structure; some such path-
translation would seem to be prerequisite to assigning a meaningful cost to an

Data Encodings and Their Costs 277

(a)

Fig. 1. a A ring graph, b An array graph

Table 1. a) An
injection

encoding of the ring of Figure l a in the array of Figure lb. b) The induced vertex-

a) b)

e e Eri~,g e (e) 6 Paths (Array) v ~ Vring ! (V) e]/array

(1, 2) (G, H) (H, I) 1 G
(2, 3) (I, F) 2 I
(3, 4) (F, E) (E, B) 3 F
(4, 5) (B, A) 4 B
(5, 1) (A, D) (D, 6) 5 a

encoding; and we feel that an explicit path-correspondence, as e yields in (2.3), is
preferable to any conventional alternative (such as "shortest pa th" with some
tie-breaking mechanism).

B. The Cost of an Encoding

The "cost" of a data encoding should reflect the consumption of resources
engendered by executing one's algorithm on the "physical storage structure" H
in an actual computer rather than on the "logical data structure" G in an
idealized computer. We recall our conclusion in the Introduction that any
meaningful assessment of cost must take into account both the costs engendered
by the implementation of H, that is, how H is laid out in memory, and the
intended "usage patterns" for G. Before discussing each of these factors in turn,
we remark that this assessment of cost need not be an a posteriori accounting

278 A.L. Rosenberg

measure. A priori estimates of cost may aid one in accepting or rejecting
proposed hosts or, given a host, may aid one in deciding how best to implement
the host, all decisions being relative to the intended uses of the guest.

Implementation Costs. Costs incurred because of computer architecture and/or
storage layout can be represented faithfully and conveniently by weighting the
edges of the host graph.

(2.4) An edge-weighting function on the graph H=(V, E) is a function

~o: E ~ (positive Reals).

~o is extended to paths in H additively:

co + : Paths(H) ~ (positive Reals)

by

~o+(el e2... e.) = ~ a~(ei).
l ~ i<_n

We shall henceforth identify ~ § with ~.

We can best explain the intended use of the function ~ by illustration. Focus
on the array of Figure lb, which is the host in the encoding of Table 1.

1) Say that the array is stored by "sequential allocation" [12, Section 2.2.6]
so that transitions from any node to any other node are easy to effect. One
might reflect this ease of transition by having ~o =- 1 so that the only "penalty"
incurred by the encoding is that caused by the "dilation" of G's (unit-length)
edges into paths in H. This is the edge-weighting studied in the sources in
example (1.5).

2) Say next that the array is stored by sequential allocation but that it is so
big that it must be segmented and allocated to more than one page of memory.
Such a situation could be modeled by assigning a unit weight ~o(e)= 1 to those
edges whose termini both reside in the same page, and a large weight, say re(e)
= 1000, to those edges that cross page boundaries and so whose traversal would
cause a page swap. A deeper memory hierarchy would be modeled analogously.

3) Say that the array's rows are stored sequentially, but its columns are
stored as linked lists. One might reflect such an implementation by assigning
og(e)= 1 to each horizontal edge and, say, ~o(e)= 1.5 to each vertical edge, in
order to reflect the overhead of accessing and following a pointer.

4) Finally, say that the array is stored as an "orthogonal list" [12,
Section 2.2.6] so that both rows and columns are linked. If one's host computer
accommodates only two pointers per word, one might set

(2.5) m(e)=[log 2 outdegree source(e)]

to represent the cost of implementing an (outdegree source(e))-way switch.
Variations on this theme will readily occur to the reader.

Usage Patterns. Let us say that the ring of Figure la, which is the guest in the
encoding of Table I, is always processed by entering at node 1 and proceeding

Data Encodings and Their Costs 279

thence to some other node, all termini being equally likely. This pattern of usage
of the graph is described by the following four paths and the fact that they are
equally likely.

(2.6) Path Probability

(1,2) 1/4
(1, 2) (2, 3) 1/4
(1, 2) (2, 3) (3,4) 1/4
(1, 2) (2,3) (3,4) (4, 5) 1/4

What one infers from (2.6) is that edge (5, 1) of the ring will never be used, that
edge (1,2) is four times more likely to be traversed than edge (4, 5), and so on.
This information can be encapsulated most usefully, for the purposes of cost
assessment, in terms of probabilities that reflect the relative frequencies of the
guest graph's edges in the anticipated pattern of traversing the guest. The
pattern (2.6) translates to the following probabilities.

(2.7) Edge Probability

(1,2) 2/5
(2, 3) 3/10
(3, 4) 1/5
(4,5) 1/10
(5,1) 0

We generalize from this example to the following formalism.

(2.8) A usage pattern for the graph G=(V,E) is a function

n: E ~ { x : O < x < l }

such that

E ~(e)= 1.
e e E

In fact, a data structure is seldom used in just one way. It is more usual that
a computer application will process a data structure by using it according to
pattern A part of the time, according to pattern B some other part of the time,
and so on. Such composite usage patterns are modeled quite naturally in the
framework of (2.8).

(2.9) An application of the graph G =(V, E) is a s e t / / = {re} of usage patterns for
G, which is convex in the following sense. For any subset {rei} _~H and associated
positive reals {~i} with Xcq= 1, the function

n(e) = ~ ~, rei(e)
i

is i n / / .

280 A.L. Rosenberg

The convexity of H in (2.9) corresponds to allowing G to be shared among
the usage patterns in/7.

The Cost of an Encoding. In informal terms, the cost of a data encoding should
reflect the amount of additional resource consumption required to effect an
"average move" in the host structure rather than in the guest structure. The
framework of (2.4), (2.8), and (2.9) affords us a simple expression for this cost.
The benefits that accrue from this simplicity are discussed in Section 3.

(2.10) The cost of the encoding ~ of the graph G=(V,E) in the graph H, under the
edge-weighting function ~o (for H) and the application/7 (of G) is the function

Cost(e;/7; 09)= max ~ n(e)~o(e(e)).
~ e l l e~E

To complete our running example, we note that the cost of the encoding e of
Table 1 under the singleton application rc of (2.7) and the edge-weighting
function o~ of (2.5) is

Cost (e; {T t} ; co) = 2.5.

C. The Cost of "Doing Business"

We would anticipate two uses for the model developed in this section. On the
one hand, the model affords one a vehicle for studying data encodings within a
mathematical framework. On the other hand, the model affords one a simple
vehicle for estimating the costs of specific encodings. With regard to both uses of
the model, one must be concerned with the "accuracy" of the model, the extent
to which it mirrors reality; these concerns are addressed in Section3. With
regard to the latter use of the model, one must be concerned also with how hard
the model is to use; we discuss these latter concerns now.

Estimating Probabilities. There is no algorithm for converting a natural-
language description of a program's path on a data structure to a usage pattern
in the sense of (2.8). But perhaps a few examples will point the reader in the right
direction.

Let our guest be an n-node line (= doubly-linked linear list), that is, a graph
with vertices V={1,2 n} and edges E = { (i , i + l) , (i + l , i) : l < i < n } . We
shall use the line as though it were the tape of a Turing machine and describe a
number of algorithms using the tape. We shall call each node of the line a tape
square.

I) Tape-Folding. P. Fischer et al. [3] describe a "tape-folding" algorithm that
engenders the following head trajectory on the Turing machine's tape. At stage
k, the head proceeds from square 2 k- 1 to square 2 k, returns to square 2 k- 1, and
completes the stage by going to square 2 k; each of these three motions comprises
a straight sweep; see Figure 2a. Now, in the described trajectory, each rightgo-
ing (leftgoing) edge of our line is crossed precisely two (resp., one) times.

Data Encodings and Their Costs 281

F,12131o1516171 1

(o)

(b)

~ O

(c)

Fig. 2a-c. A schematic view of the head trajectories for a tape folding, b oblivious computation, and
e palindrome recognition when n =8

Accordingly, after appropriate normalization, we find that for 1 < i < n,

2 1
(2.11) 7tty((i,i+l))=3(n_l------- ~ and rc, f((i+l, i))=3(n_l) .

2) Oblivious Computation. Pippenger and M. Fischer [16] discuss Turing ma-
chines whose head trajectories are independent of the input. One possible
trajectory for such an "oblivious" m a c h i n e - albeit not the most efficient o n e - is
to have its head move in stages: at stage k, the head moves from square 1 to
square k + 1 and returns thence to square 1, each motion being a straight sweep;
see Figure2b. After stage n - 1 (which is as far as one can go on our length n
line), the head will have traversed a total of n(n-1) edges. Each edge (i, i+ 1)
will have been crossed n - i times, as will its mate (i + 1, i). Accordingly, for
l<i<n,

n - i
(2.12) ~zo~((i,i+ 1))=Troc((i+ 1, i))=

n(n - 1)"

3) Palindrome Recognition. Hennie [103 studies the efficiency of one-tape Turing
machines that test whether their input is a palindrome, that is a string that reads
the same in either direction. He shows that no algorithm on such a machine is
materially better than the following naive one. At stage k, the head proceeds
from square k to square n - k + l , and returns thence to square k + l ; see
Figure 2c. The described trajectory traverses a total of n(n-1)/2 edges. Each
edge (i , i + l) is crossed either i or n - i times, according as i<n/2 or not
(assume for simplicity that n is even); each edge (i + 1, i) is traversed i - 1 or n
- i times, according as i< n/2 or not. Converting these frequencies to probabili-
ties, we have:

282 A.L, Rosenberg

(2.13) for l<_i<n/2,

r t p , ((i , i + l)) = (i) and 7 t p r ((i + l , i)) = i i i "

for n/2 < i < n,

n - i
~tpr((i, i+ 1))=%, ((i+ 1, i)) = - -

Determining Costs of Encodings. Given an encoding ~ of a graph G in a graph H,
together with a weighting function co for H and a usage pattern ~ for G, a
patently simple computation will determine Cost(~; {~};~o): one needs only
compute the inner product of the "vectors" re(e) and m(e(e)).

Computing the cost of e is only slightly harder if one is presented with any
finite set of usage patterns for G from which to generate (via convex com-
bination) an application for G. Indeed, inequality (3.1) of Proposition 3.3 com-
bines with the textbook algorithm for inner products and the obvious algorithm
for computing the maximum of n numbers to establish the following.

Let ~(~1,.. . , 7t.) denote the convex closure of the usage patterns 1tl , re,.

Proposition 2.1. Given the encoding ~ of G=(V,E) in H, the edge-weighting o9 for
H, and the usage patterns ~1 ,ft, for G, one can determine in IE[n multipli-
cations, (1EL- 1) n additions, and n - 1 comparisons the cost

Cost(~ ; ff.(rtl ~z,); co).

Optimizing Encodings. If one is given only the graphs G and H, an application H
for G, and a weighting m of H, the problem of finding a corresponding minimal-
cost encoding of G in H is computationally intractable (to be precise, NP-
complete), even when H, H, and co are very simple.

Proposition 2.2. Given graphs G = (V, E) and H, an application 11 for G, an edge-
weighting 09 for H, and a constant k, the problem of determining whether or not
there is an encoding ~ of G in H with

Cost(e ;11; o)) < k

is N P-complete.
This remains true even under one or more of the simplifying assumptions: (a)

H is a line; (b) ~o is the constant function ~o(e)=l; (c) 17 is the application
~(Tz~, ..., n~EI), where the rt* are the "characteristic" usage patterns,

�9 ~fl, if e=e i
(2.14)

(e) = [0 , if e~=el
rtl

and E = {e 1 ,elEt}. (This application is designated AL L later.) (d) 11 is as in
part (c), and G is a tree. (e) 11 is the singleton application {rt6}, where 7~ 6 is the

Data Encodings and Their Costs 283

"average-case" usage pattern

1
(2.15) g~(e) =~E]

for all eEE.

Proof The general assertion follows from the various simplified cases which in
turn follow from the NP-completeness of either the Bandwidth Minimization
Problem (assumptions (a, b, c) [15]), the Simplified Bandwidth Minimization
Problem (assumptions (a, b, c, d) [4]), or the Simple Optimal Linear Arrange-
ment Problem (assumptions (a, b, e) [5]). []

Deciding Encodability. In the preceding two subsections, we have assumed, first,
that we are given an encoding of G in H (Proposition 2.1) and, next, that we
know that G is encodable in H and we have only to find a good encoding
(Proposition 2.2). However, the fact that we are modeling data structures by
directed graphs renders problematical the issue of whether G is encodable in H
at all. In fact, even this apparently simple question turns out to be NP-complete.
(This is trivially not the case if either strongly connected graphs or undirected
graphs are used to model "physical storage structures;" Propositions 2.1 and 2.2
would be unaffected by these changes to the model, which would not be
unreasonable ones given our intended interpretation.)

Proposition 2.3. Given graphs G and H, the problem of determining the existence of
an encoding of G in H is NP-complete.

Proof The following simple proof was suggested by N. Pippenger. Let us be
given n disjunctive clauses C1, C2, ..., C,; and let L denote the set of literals
occurring in the clauses. Construct the graph H as follows.

Vertices. If the literal leL occurs in clause Ck, then the pair (l, k) is a vertex of
H. If (ll ,k~) and (12,kz)~L x {1, ...,n} are vertices of H, then the quadruple
(11, kl, l 2, k2) is a vertex of H. These pairs and quadruples exhaust the vertices
of H.

Edgfs. For all pairs of vertices (l l ,k 1) and (12,k2)eL x {1,...,n} such that
k t #:k 2 and I t ~e ~12 (the negation of lz), there are two directed edges in H, both
having source (ll,k~,12,kz), one having target (l~,k~), and the other having
target (12, k2). These are all the edges of H.

We let our proposed guest graph G be the graph with vertices

{1,... ,n}tJ{(i,j): l <=i<j<=n}

and edges

{((i , j) , i), ((i , j) , j) : 1 <i<j<n}.

One verifies easily that G is encodable in H iff G is isomorphic to a subgraph of
H iff the conjunction of the n clauses C~,... ,C, is satisfiable. The NP-
completeness of the Encodability Problem thus follows from the well-known
completeness of the Satisfiability Problem [1]. []

284 A.L. Rosenberg

3. Basic Properties of the Framework

Any proposed formalization of a "real" notion must be tested for four proper-
ties: the formal notion must be faithful in the sense of agreeing with observations
about its real counterpart; the formal notion must be elucidative in the sense of
rendering transparent observations that are not otherwise easily understood; the
formal notion must be stable in the sense of not magnifying slight perturbations
in the input data; the formal notion must be tractable in the sense of being a
vehicle for the in-depth study of its real counterpart. This section is devoted to
justifying our claim that the formal notions of data encoding and cost of an
encoding developed in Section 2 enjoy the first three of these properties. The last
property, tractability, can be tested only over a period of time; we allege,
however, that the initial "returns," as exemplified, say, by [2, 11, 14, 20, 23] all
of which studies fall directly into the framework proposed here, are encouraging.

A. Faithfulness of the Model

We note just three instances of the model's agreeing with "reality." With this
sampler in mind, the reader can easily carry on with other tests of faithfulness.
We leave to the reader the simple proofs of the following propositions.

Proposition 3.1. For any encoding e of a graph G in a graph H and any edge-
weighting co of H, if II and II' are applications of G, and if II ~_ [1', then

Cost (e; [1; co) ~ Cost (e; H'; o~).

In particular, for all applications I1 of G,

Cost(z; [1; r Cost(~; ALL; o~)

where ALL is the set of all usage patterns for G (cf. Proposition 2.2c).

Proposition 3.1 asserts that asking a data structure to do less can never raise
the cost of any encoding of the structure.

The next proposition asserts the equally expected fact that employing non-
simple paths as images of edges under an encoding is self-defeating in the sense
that it increases costs.

Proposition 3.2. Let e encode the graph G =(V, E) in the graph H. Let e' be another
such encoding with the property that, for all e~E, the path e'(e)~Paths(H) is a
simplification of ~(e) ~Paths (H): e' (e) is obtained from e (e) by removing loops (paths
with the same source and target). For all applications II of G, and all weightings ~o
of H,

Cost(e' ; 17; o~) < Cost(e; [1; o~).

The final "test of faithfulness" asserts that various ways of combining usage
patterns and/or applications of guest graphs yield the expected costs.

Data Encodings and Their Costs 285

X22a
Fig. 3. The encoding e 3 of the line L 3 in the leaves of the tree T 3. Thin lines represent tree edges;
thick lines represent line edges

Proposition 3.3. Let e encode the graph G in the graph H, and let co be a weighting
of H. For any applications 17, 17' of G,

Cost (e; 17 w 17'; co) = max [Cost (e; 17; co), Cost (e; 17'; co)],

and

Cost (e; 17 ~ / / ' ; co) < min [Cost (e; 17; co), Cost (e; 17'; co)].

For any convex combination ~z = ~ct i rr i of usage patterns ~i for G (Z ~i = 1),

(3.1) Cost(t; {rc} ; co) __< max Cost(t; {rci}; co).
i

B. Nonobvious Equivalences Exposed by the Model

The elucidative qualities of our model will be illustrated by an analysis of one
family of encodings.

Let e. (n = 1, 2) encode the 2"-node line L. in the leaves of the depth n full
binary tree T., in natural order : node I ~ L . is placed at T.'s leftmost leaf and so
on; see F igu re3 for clarification: as in Figure 1, double-headed arrows ab-
breviate opposing single-headed arrows. For simplicity, we weight the edges of
T 3 with the function coo-1, so that COo (e(e)) -= [e(e)[, whence coo(e((l, 2)))
= coo(e((2, 1)))=2 , COo(e((2, 3)))=coo(e((3 ,2)))=4 , and so on.

Recalling the usage patterns rc~y, rcoc, and rCp, for L, from (2.11), (2.12) and
(2.13), respectively, we claim the following nonobvious equivalences.

Proposition 3.4.
a) Cost (e.; {rCoc};coo)= Cost(e.; {~,s};coo)"
b) Cost(e.; {lrp.} ; coo)=(1- 2-") Cost(a.; {~ztf} ; coo).

Now, Cost(e.; {~zty } ; coo)"~ 4 [20] ; hence, Cost(e.; {row}; COo) ~ Cost(e.; {sty } ; coo),
both asymptotic equalities holding as n--* ~ .

Proof Since coo(e.((i, i+ 1)))=coo(e.((i + 1, i))) for all i, we find that

Cost(e, ;{~};coo)= ~ [~ ((i , i + l)) + ~ ((i + l , i))] c o o (e , ((i , i + l)))
l < i < 2 n

for any usage pat tern 7r for L, . As a consequence, if we let m = 2", then

1
(3.2) Cost(en;{Tctf};coo)=2n l Z [e,((i,i+l))[;

l < i < m

286 A.L. R o s e n b e r g

(3.3) Cost(e,; {rtoc}; e%) =

(3.4) Cost(e.; {rear } ;~oo) =

m - i
~. (~ le.((i, i+ 1))[;

l <__i <m

2 i - 1
~, - -] e , ((i , i+ 1))1

,~,~m/2 (2)
+ ~ 2(m -j)[e.(d.j,j + 1))[.

Now, it is a straightforward matter to verify that, for all 1 ~ i < 2"- 1,

(3.5) le,((i, i + 1))l = le,((2" - i, 2 " - i + 1))l;

(3.6) le,((i,i+l))l=[e,((2"-l +i, 2"-l +i+l))l ,

a fortuitous coincidence as we shall now see. Using either of the equalities (3.5)
or (3.6), we transform (3.2) to

2 2n
(3.7) Cost(e.; le,((i, i + 1 })1 + 2.---~-, {rt 's};~176 1 lNi<m/2

where the "dangling" term 2n/(2"-1) is the contribution of edge (2 " - 1 2"-1
+ 1) to the cost. Using Equation (3.5) in a similar way, we transform (3.3) to

2 2n
Y~ le.((i, i+ 1))[+ - - - (3.8) Cost(e,; {~Zoc } ; 09o) = 2 " - - 1 1 <i < m/2 2"-- 1"

Equations (3.7) and (3.8) prove part (a) of the Proposition.
Now we use equation (3.6) in the same manner to transform (3.4) to

1 n
(3.9) Cost(e,; {zcv,};coo)=~-~ ~ [e,((i, i+ 1)){ + 2._ ~

1 <i <m/2

= (1 - 2- ") Cost (e.; { rq y} ; coo),

proving part (b) of the Proposition. []
While there is obviously no way to argue that the formulation of Section 2 is

indispensable to rendering the equivalences of Proposition 3.4 transparent, we
believe that the proof just presented does establish at least that the formulation
does elucidate those nonobvious equivalences.

C. Stability of the Model

The stability of our model evidences itself both in the model's graceful accom-
modation of errors or misestimates in usage patterns or in implementation costs
and in the way data encodings compose.

Data Encodings and Their Costs 287

Misestimates. The bilinearity of our expression (2.10) for the cost of a data
encoding guarantees stability in the face of per turbat ions of either of the cost
variables.

Proposition 3.5. Let e encode the graph G = (V, E) in the graph H-= (V', E').
(a) I f the usage patterns re, r(for G satisfy

(3.10) Ire(e)- r((e)[< ft. ~(e)

for some 3 > 0 and all eeE, then, for all edge-weightings o) of H,

]Cost(e; {r~}; co) - Cost(e; {Td} ; co)l < 3. Cost(e; {~z} ; co).

(b) I f the edge-weightings co, co' for H satisfy

[co(e) - of(e)[< 3'. co(e)

for some b ' > 0 and all eeE', then, for all usage patterns ~ for G,

I Cost(e; {re} ; co) - Cost(e; {~z}; co)l = 6 �9 Cost(e; {Tz} ; co).

Proof We prove only part (a), part (b) then following by similar reasoning. Let
and ~' stand in relation (3.10) to one another. We then find, for arbi t rary co,

[Cost(e; {~}; co) - Cost(e; {r(}; co)l = I ~ (~ (e) - g'(e)) co(e(e))[
e s E

< ~ jg(e) - ~' (e)] co(e(e))
e~E

< ~ 3.n(e)co(e(e))
e~E

=3.Cost(e; {~}; o)). []

In informal terms, Proposi t ion 3.5 asserts that any relative error in estimat-
ing either a usage pat tern or an edge-weighting engenders a relative error of like
magni tude in the est imation of the cost of the data encoding.

Compositions of Encodings. If GI=(V1,EO, G2=(V2,E2), and G3=(V3,E3) are
graphs, and if e t and e z encode, respectively, G 1 in G z and G 2 in G3, then the
composi te function e 1 e 2 encodes G 1 in G 3. What, however, is the cost of this
composi te encoding? We proceed now through a natural development to an
answer to this question.

Let rt be a usage pat tern for the graph G 1. When G 1 is encoded in G 2 (by el),
7t induces a pat tern of use on the edges of Gz. The induced pat tern can be
derived as follows.

Let e l , e 2 ,e , be the edges of G 1. In a natural way, the encoding el
t ransforms the (real number)-(Gl-edge) sequence

~(el), el, re(e2), e2 rc(en), e~

288 A.L. Rosenberg

into the (real number)-(Ga-path) sequence

n(e 1), 81 (el), 7c (e2), el (ez) u(e,), el (e,).

The import of this translation is that when the edge e i of G l is crossed with
probability n(ei), then, under encoding el, the path e l(e~) in G 2 is traversed with
precisely this probability also. What this means for the edges of G 2 is clear:
under encoding e 1 and usage pattern n, each edge e' of G 2 is traversed with
frequency (relative to the other edges of G2)

(3.11) (p(e')= ~ n(e).~(e';el(e))
eEE1

where :~(e';el(e)) is the number of occurrences of edge e' in the path el(e). Now,
if one sums these frequencies in preparation for normalizing them to probabili-
ties, one finds that

(3.12) ~ q~(e)=Cost(el;{n}; ~o)
e~E2

where, as in Section 3B, mo is the constant edge-weighting mo(e)=-i for G 2.
Combining (3.11) and (3.12), we arrive at the desired natural notion of the usage
pattern n (~) for G 2 induced under encoding e 1 by the usage pattern n for G1,
namely,

(3.13) for eeE2, n(~l)(e)=qo(e)+Cost(al;{n};O9o).

Proposition 3.6. Let G 1, G2, G3, ~1, and ~2 be as before. Let n be a usage pattern
for G1, and let o3 be an edge-weighting of G 3. Then

Cost(el ~2; {n} ; co) = Cost(e 1 ; {n} ; COo). Cost(e 2 ; {re (~')} ; 09).

Proof We proceed by direct calculation.

Cost(~, e2; {n};o))= ~ n(e)o~(el e2(e))
e~E1

= ~ n(e) ~ ~(e';el(e))o~(Sz(e'))
eEE1 e' ~E2

= ~ q~(e')cO(ez(e'))
e' EE2

=Cost(e 1 ; {n} ; c%). Cost(e2; {n(~')} ; ~o).

Here we used (3.11) to proceed from the double summation to the single sum,
and we invoked (3.12) and (3.13) to obtain the desired expression. []

Basically, Proposition 3.6 asserts that the cost of the composite encoding is
the cost of the second encoding magnified by just that dilation caused by the
first encoding, an eminently reasonable allocation of costs. We conclude that
our model is stable under composition of encodings.

Data Encodings and Their Costs 289

4. Bounds on Costs of Eneodings

The analysis of an encoding, with an eye toward obtaining an exact or an
asymptotic expression for its cost, can be an arduous task. If one is willing to
settle for a bound on the cost of the encoding, easier techniques will often
suffice.

Throughout this section, let e encode the graph G = (E E) in the graph H
=(V',E'), l e t /7 be an application and n a usage pattern for G, and let ~o be an
edge-weighting function for H.

A. Generally Applicable Bounds

Our first bound verifies that a natural candidate for "worst-case" usage pattern
for a data encoding does in fact fill precisely that role.

Proposition 4.1. Cost(e; H; o)) < max co(e(e)).
e~E

Equality holds whenever H = A L L (cf. Proposition 2.2c).

Proof Cost(e;/7; oJ)=max ~ n(e) (o(e(e))
~r~Fl e~E

<max ~. n(e). max co(e(e))
7rEH e~E eEE

= max (o(e(e))
e~E

since each n e l I is a probability function, so that Ze n(e)= 1.
The fact that equality holds when H = A L L is immediate from the fact that

A L L contains the "characteristic" probability functions on E, as defined in
(2.14). []

Proposition 4.1 lends special import and interest to studies of "worst-case"
cost of data encodings as in [9, 14, 18, 19, 20, 22].

Our second result bounds the cost of e both above and below, but differs
from Proposition 4.1 in that the bounding quantities may not bear any relation
to the encoding e.

Let n l , u z ,hie L be, in nondecreasing order, the elements of the set n(E);
and let ~o1,~o 2 ,~olE I be the similarly ordered sequence of elements of the set
o~(~(E)).

Proposition 4.2. ~ ni~le[_~+ ~ < Cost(e; {n} ; co)< ~ nz(o~.
l <=i<~lE] l ~i<~[EI

Proof The result, which appears as Theorem 368 of [7, Section 10.2], is proved
easily by noting that, given nonnegative a, b, ct, fl, the sum

ab + (a + ~)(b + fl)

exceeds the sum

290

a(b§ fi)+(a+a)b

by the quantity e ft. []

A.L. Rosenberg

B. Bounds for Special Circumstances

When n and/or co have special properties, then the bounds of Section 4A can be
supplemented by often finer counterparts.

The first bounds we find depend on how well the usage pattern n "fits" the
encoding e and the implementation costs c9.

(4.1) The usage pattern n is well-suited for the encoding e and edge-weighting co
if n(E) and co(e(E)) are oppositely ordered: for all e,e'sE,

n(e)<_n(e') implies co(e(e))>=co(e(e'));

n is ill-suited for e and o) if n(E) and co(e(E)) are similarly ordered:

7~(e)<=n(e') implies o)(e(e))=<cg(e(e')).

Proposition 4.3. I f n is well-suited for e and co, then

Cost(e; {n} ; o) < Cost(e; {nG}; ~);

if n is ill-suited for e and e), then

Cost(~; {n} ; co) ~Cost(e; {n~} ; o) ,

where n a is the all-edges-equally-likely usage pattern of(2.15).

Proof. Immediate from Tchebyshefs inequalities [7, Section 2.17] and the fact
that n is a probability function, so that Z n(e) = 1. []

Just as Proposition 4.1 accentuated the importance of the "worst-case" cost
of a data encoding, so does Proposition 4.3 focus attention on the special role of
the "average-case" or "all-edges-equally-likely" cost of a data encoding, as
studied in [2, 8, 11, 20, 23].

The final bounds we present are of interest only because of the method of
generating them, namely, by focussing attention not on the individual edges of G
but rather on the equivalence classes of edges induced by the function e o).

(4.2) For eeE, denote by [e] the set

[e] = {e'~E: ~(e(e))= ~o(e(e'))}.

Let E*= {I-el: eeE}, and for each usage pattern n for G, define the probabili-
ty function n* on E* by

n*([e])= Y: ~(e').
e'e[e]

The transformation (4.2) can be useful in analyzing data encodings because
the probability function n* can be more tractable than n, as the following shows.

Data Encodings and Their Costs 291

Let og(e(e0)<co(e(e2))<... <co(e(e,)), each c i t E , comprise, in the indicated
order, all the distinct values of co(e(E)).

Proposition 4.4. I f e co increases subari thmet ical ly , that is, f o r some c > O,

co (e (e i + 1)) < co (e (el)) + c,

and i f 7r* decreases geometr ical ly , that is, f o r some p > O, ~ > 1,

r~*([el]) < p c~-',

then

o~
Cost(e; {re}; co) __< co(e(e 0) - c + c p (~ _ 1) - - - - ~ .

P r o o f Immediate by direct calculation, since

Cost(e;{z~};co)= ~ n*([e])co(e(e)). []
[e]eE*

This technique can be used to estimate the cost

Cost(e . ; {r~,:); coo)

of Section 3B. To remind the reader, ~, encodes the 2"-node line in the depth n
full binary tree as in Figure 3; 7rt: is the usage pattern (2,11) for the line; coo is
the identically 1 edge-weighting for the tree. It is not hard to verify that

co(e,(E)) = {2, 4, 6, ..., 2n}

so that

co(e,(e O) = c = 2.

Moreover (and here is where the technique pays off),

~*:([ei]) = (1 _~12~,) 2 - ' �9

By Proposition 4.4, then, the estimate

4
Cost(e,; {~,:}; coo) < 1 - 2 -" '~ 4

is direct. The determination in [20] of the exact value of this cost is just a more
detailed application of this technique.

It goes without saying that the specific growth rates of co and n* in
Proposition 4.4 were for illustration only and have no bearing on this technique
of cost estimation.

Acknowledgments�9 Conversations with N. Pippenger concerning "real" data encodings were of
inestimable value. Indeed, his contributions to the formulation in Section 2 were fully as substantive
as the author's. The comments, criticisms, and suggestions of L. Snyder and B. Shneiderman were
most helpful and are gratefully acknowledged.

292 A.L. Rosenberg

References

1. Cook, S.A.: The complexity of theorem-proving procedures. Proc. 3rd ACM Symp. on Theory
of Computing, 1970, pp. 151-158

2. DeMillo, R.A., Eisenstat, S.C., Lipton, R.E.: Preserving average proximity in arrays. Comm.
ACM (to appear)

3. Fischer, P.C., Meyer, A.R., Rosenberg, A.L.: Real-time simulation of multihead tape units. J.
Assoc. Comput. Mach. 19, 590-607 (1972)

4. Garey, M.R., Graham, R.L., Johnson, D.S., Knuth, D.E.: Complexity results for bandwidth
minimization. Unpublished typescript, 1977

5. Garey, M.R., Johnson, D.S., Stockmeyer, L.J.: Some simplified NP-complete graph problems.
Theoret. Comput. Sci. !, 237-267 (1976)

6. Gotlieb, C.C., Tompa, F.W.: Choosing a storage schema. Acta Informat. 3, 297-319 (1974)
7. Hardy, G.H., Littlewood, J.E., P61ya, G.: Inequalities. Cambridge Univ. Press 1967
8. Harper, L.H.: Optimal assignments of numbers to vertices. J. Soc. lndust. Appl. Math. 12, 131-

135 (1964)
9. Harper, L.H.: Optimal numberings and isoperimetric problems, J. Combinatorial Theory 1, 385-

393 (1966)
10. Hennie, F.C.: One-tape, off-line Turing machine computations. Information and Control 8, 553-

578 (1965)
11, Iordansk'ii, M.A.: Minimalnye numeratsii vershin derevyev [in Russian]. Problemy Kibernet.

31, 109-132 (1976)
12. Knuth, D.E.: The art of computer programming. L Fundamental algorithms. Reading, MA:

Addison-Wesley 1968
13. Knuth, D.E.: The art of computer programming. IIL Sorting and searching. Reading, MA:

Addison-Wesley 1973
14. Lipton, R.E., Eisenstat, S.C., DeMillo, R.A.: Space and time hierarchies for classes of control

structures and data structures. J. Assoc. Comput. Mach. 23, 720--732 (1976)
15. Papadimitriou, Ch. H.: The NP-completeness of the bandwidth minimization problem. Comput-

ing 16, 263-270 (1976)
16. Pippenger, N., Fischer, M.J.: Relations among complexity measures. IBM Report RC-6569, 1977
17. Pfaltz, J.L.: Representing graphs by Knuth trees. J. Assoc. Comput. Mach. 22, 361-366 (1975)
18. Rosenberg, A.L.: Preserving proximity in arrays. SIAM J. Comput. 4, 443--460 (1975)
19. Rosenberg, A.L.: Storage mappings for extendible arrays. IBM Report RC-5798, 1976. In:

Current trends in programming methodology. IV. Data structuring (R.T. Yeh, ed.). Englewood
Cliffs, N J: Prentice-Halt (to appear)

20. Rosenberg, A.L., Snyder, L.: Bounds on the costs of data encodings. Math. Systems theory (to
appear)

21. Scheuermann, P., Heller, J.: A view of logical data organization and its mapping to physical
storage. Proc. 3rd Texas Conf. on Computing Systems, 1974

22. Sekanina, M.: On an ordering of the set of vertices of a connected graph. Publ. Fac. Sci. Univ.
Brno, No. 412, 137-142 (1960)

32. Sheidvasser, M.A.: O dline i shirine razmeshchenii grafov v reshetkakh [in Russian]. Problemy
Kibernet. 29, 63-102 (1974)

24. Shneiderman, B., Shapiro, S.C.: Toward a theory of encoded data structures and data trans-
lation. Internat. J. Comput. Information Sci. 5, 33-43 (1976)

25. Standish, T.A.: Data structures-an axiomatic approach. In: Current trends in programming
methodology. IV. Data structuring (R.T. Yeh, ed.). Englewood Cliffs, NJ: Prentice-Hall (to appear)

Received May 2, 1977

