
Acta Informatica 9, 263-271 (1978)

�9 by Springer-Verlag 1978

Bin Packing: Maximizing the Number of Pieces Packed*

E.G. Coffman, J r)** , J. Y-T. Leung z, and D.W. Ting 3

1 Department of Electrical Engineering and Computer Science, Columbia University,
New York, NY 10027, USA
2 Computer Science Department, Virginia Polytechnic University, Blacksburg, VA 24060, USA
3 Bell Laboratories, Holmdel, NJ 07733, USA

Summary. We consider a variant of the classical one-dimensional bin-packing
problem: The number of bins is fixed and the object is to maximize the
number of pieces packed from some given set. Both problems have applica-
tions in processor and storage allocation in computer systems in addition to
a broad application in operations research.

It can easily be shown that both problems are NP-complete; our approach
will be to propose and analyze very fast heuristics. We consider a class of
algorithms and bound the performance of an arbitrary algorithm in that
class. Finally we propose an algorithm, the first-fit-increasing algorithm, and
analyze its running time and relative performance.

I. Introduction

In the classical bin-packing problem [3, 4] one is concerned with minimizing
the number of equal capacity bins necessary for the placement (storage) of a
fixed set of pieces. A related problem is based on a fixed set of bins in which
one attempts to maximize the number of pieces packed from some given set.
It is this latter problem that we shall study in this paper. It is readily verified
that both problems are NP-complete; as in [-4] our approach will be to propose
and analyze very fast heuristics. Although there is an apparent duality between
the above problems, this view does not appear to carry one very far, as the sequel
will indicate.

The problem we have posed is a fundamental one for which a broad applica-
tion in operations research is easily envisioned. On the other hand, our immediate
motivation stems from storage allocation in computer systems. Consider for
example the problem of storing variable-length records in a multiple level storage
system. Assume that the device at a given level is organized into logically disjoint
"bins"; i.e. sectors, cylinders, tracks, etc. If we have no a priori way to distinguish

* This research was supported in part by NSF Grant No. 28290
** To whom offprint requests should be sent

0001-5903/78/0009/0263/$01.80

264 E.G. Coffman, Jr., et al.

records on the basis of access probability, then maximizing the number of records
stored at a given level (minimizing the number stored on slower devices) con-
stitutes our particular bin packing problem and leads to minimum average
access times.

In the next section we shall introduce notation and define classes of packing
heuristics. In Section III, the main body of the paper, worst case bounds are
derived for what we consider to be the simplest, reasonable packing algorithms.
In Section IV other algorithms are considered and open problems discussed.

II. Definitions and Notation
Given a set of m equal capacity bins B 1 , B,, and a set of pieces organized
into a list L = (p l , P2, ..., P,), we consider the problem of packing into the bins
a maximum subset of L such that no bin capacity is exceeded. Without loss of
generality we assume unit bin capacities and hence the following constraint
on piece sizes: 0 < size (p) < 1 for all p.

It is intuitively clear that any algorithm having reasonable worst-case per-
formance relative to an optimization algorithm must attempt to pack a maximum
subset of smaller pieces. That is, if s ize(p0<size(p2)<. . .<size(p,) then the
algorithms to be considered are those which attempt to pack a maximum prefix
of L into the given, fixed set of bins. With the above ordering of L it is obvious
that for every sublist E _ L that can be packed into m bins there is a prefix of L
having at least as many pieces which can also be packed into the m bins. Thus,
we shall restrict ourselves to algorithms which assume (or initially perform)
an ordering of the list L such that size(pl)<size(pi+ O, l < i < n . Figure 1 shows
examples of packings that can be produced by such algorithms.

The symbol P(L) denotes a given packing of some prefix of L into m bins,
where m is understood. Frequently, L will also be understood by context, in
which case the dependence on L may also be suppressed. In addition to its use
as a bin name, Bi also denotes the set of pieces contained in the ith bin according
to a given packing. Thus, a packing can be represented as the corresponding
sequence of bins B1, B 2 , Bm. We define v i as the level of bin B i (v i = E size(p)),

and k i = IBL the number of pieces in B i. p~B,

We let nA(L) denote the number of pieces packed from L by algorithm A
into m bins. L will be suppressed when clear by context, and no(L) will denote
the maximum number of pieces that can be packed, i.e., the number achieved
by an optimization algorithm applied to L in rn bins.

Suppose that for some list L = (p l , p 2 Pn) and some t < n the pieces
packed in P(L) are p~ Pt. Suppose further that t < n implies that for each
i, 1 <__ i<m, p~+ 1 > 1 - v~; i.e., no unpacked piece will fit into any bin. Then P(L)
will be called a prefix packing. Consistent with earlier assumptions, all algorithms
that we consider produce prefix packings of given (ordered) lists.

As a specific algorithm consider the SPF (smallest-piece-first) rule which
at each point in a left-to-right scan of L places the next (larger) piece into a lowest-
level bin into which it will fit. If there is more than one lowest-level bin the piece
is placed into that one having lowest index. When the algorithm first encounters
a piece which will not fit into any bin, the algorithm terminates. Figure 1 shows
an example of SPF packings.

Bin Packing: Maximizing the Number of Pieces Packed 265

1/3 ~/6 1/6 ~/4 1/4

�9 . 1/3 1/3

1/3
1/2 1/2

3/4 3/4

B I B 2 B 3 B 4 B 5

An Optimum Packing of L

�9 =5, L = (116,116,114,~f4,113,113,1/3,1/3,~/3,
1 / 2 , 1 / 2 , 3 / 4 , 3 / 4)

1/2 ~ ~ (/ / I / 2

1/3 ~/3 113 1/3.

,, 1/3
1/6 1/6 1/4 1/4

~1 ~2 ~3 ~4 ~s
An SPF Packing of L

Fig. 1. Illustrative prefix packings

114 1 Iz

114 113 113
3/4

116 1/3 113 112
116

m=5, L as in Figure I

Fig. 2. An example FFI packing

n F = 12

n o = 13

The packing rule whose analysis is the principal contribution of the next
section is called the FFI (first-fit-increasing) rule. As in the SPF rule the pieces
are packed in the sequence Px,P2,P3, ..., and the algorithm terminates when
it first fails to pack a piece. However, with the FFI rule each successive piece
is placed into the lowest indexed bin into which it will fit. Figure 2 gives the
FFI packing for the list of Figure 1.

FFI packings clearly have a great deal of structure. In particular, suppose
Ba, . . . , B~ is an FFI packing of L. Then no piece in Bi, ..., B,~ will fit into any
of the bins B1, ..., Bz_ 1. The cardinality of the bins is non-increasing (ki+ 1 <=ki,
1 <_ i < m - 1) , and any sub-sequence of the bins B 1, ..., B,, is a valid packing for
a sub-sequence of L. In view of this structure the apparent difficulty of the FFI
analysis may seem somewhat surprising.

III. Performance Bounds

In this section we bound the performance of an arbitrary algorithm producing
prefix packings, and the performance of the FFI algorithm in particular.

Theorem 1. Let P be a prefix packing and let k=min{kl} be the least number
of pieces stored in any bin of P. Then if n k denotes the number of pieces packed

266 E.G. Coffman, Jr., et al.

in P, we have

n o < k + l 1
n k k mk" (1)

Moreover, this bound is achievable for all m > 1 and k > 1.

Proof Since the total capacity is m, an optimization algorithm can not pack
more than m - 1 (necessarily larger) pieces beyond those packed by a prefix
algorithm. Thus, letting d = n o - n k we have d < m - 1. By definition of k we have
nk >=km , and hence no/nk= 1 +(n o --nk)/nk <= 1 +(m-- 1)/mk=(k + 1) / k - 1/mk.

To verify that (1) is achievable one uses the example n = m (k + l) - i and
size(pi)=l/mk, l<_i<_mk, and size(pi)=l, m k + l < _ i < _ m (k + l) - l . []

Since no/nk> 1 implies k> 1, we see from (1) that 2 - 1 / m is a best bound,
as a function only of m. It is also readily verified that 2 - 1/m is a best bound as
a function of both m and the maximum piece size. Note also from the above
example that (1) must be a best bound on no/nsa v.

We turn now to bounds on the performance of the FFI rule. First, it will
be convenient to introduce the following notation. We let Pv denote an FFI
packing, and n F the number of pieces in PF. We define Po and n o similarly for
an optimum packing. In the remainder of this section Bi and k~ will always refer
to an FFI packing; ~ and k ~ will refer to a corresponding optimum packing.
We define the index r as the largest integer such that kr>km=min{ki} in an
FFI packing. We shall continue with the notation d = n o - n r.

Theorem 2. For any list L packed into any number, m, of bins we have

no< 4 (21
n e 3

Moreover, for every even m there exists a list which achieves the bound.

Proof The proof is based on the following four claims. The first follows from
simple capacity arguments.

Claim 1. For any list packed into m bins we must have d<rkm.

Proof The pieces in Po- Pv are all at least as large as those in PF, and no piece in
U B~ w (Po - Pv) will fit into a bin along with all of the pieces in Br+ 1- Thus,

r+2<i<=m

it follows that no k,, + 1 pieces in S - Q) B i w (Po-PF) will fit into a single
r+ l <=i<m

bin. Hence, since [SI = d + (m - r) k m and IS[< mk., must hold, we have d + (m - r) k,,
< m k , , a n d h e n c e d < r k m. []

By definition of the FFI packing the smallest piece in B~+ 1 must be larger
than the unused capacity in Bi. This simple property is instrumental in the

proof of J

Claim 2. In an FFI packing let x j = ~ v~. If for some k > l we have IB~+ll=k

and v i<k/ (k+l) , then v j>k / (k+l) , l < j < i , v i + v i + l > 2 k / (k + l) and xi+ 1
>(i+ 1) k/(k + 1).

Bin Packing: Maximizing the Number of Pieces Packed 267

Proof. From the properties of FFI packings, if v i <= k/(k + 1) then LB i+ 11= k implies
vi+vi+l>vi+k(1-vi)=k- (k-1)vl, and hence vi+v~+l>k-k(k-1)/(k+l)= 2k(k+ 1).
Clearly, the smallest piece in B i has a size no greater than v]k < 1/(k + 1). From
the FFI rule it must therefore be true that (1 - v j) < 1/(k+ 1), 1 <=j<i, and hence
vj>k/(k+l), l<j<i . From this last observation and the inequality vi+v~+~
>2k/(k+l) we obtain x~+l>(i+l)k/(k+l) directly. []

Using Claim 2 we may next prove

Claim 3. For a given list L packed into m bins suppose d>0 , and let

x)=~v i+ ~ size(p).
i= j p e P o - PF"

Then for all s=r, r + 1, ..., m we have x;>(m-s+ 1)km/(km+ 1)+d/(km+ 1).

Proof. Since size(p)> 1/(kin+ 1) for each of the d pieces in Po-PF, the result is
manifest when v i > km/(k m + 1), i = s, s + 1, ..., m. Moreover, from Claim 2 and the
additional fact that k~ = k,., r + 1-<iN m, we know that only B, or Br+ 1, but not
both, can possibly have a level exceeding km/(k,, + 1). Thus, the result is immediate
when s > r + l . Using Claim 2, the result still follows easily in the remaining
cases, except when r = m - 1 and v,.<k,J(km+l). In this last case we use the
argument of Claim 2 and write

x:>v,,+d(l_vm)+{;~/(k,,+ 1), s=m,S=m-1

O n u s i n g d > 0 we get

x:>k,/(km+ 1)+d/(km+ 1)+~k, m/(km+ 1), s=m-1
(u, S~---m

which accounts for the claim when s = m - 1 and s = m. []
Note that x~+x'~+~<_m must hold, since the cumulative size of the pieces

in Po can not exceed the capacity, m, of m bins. A key result for this and the
following theorem is given next.

Claim 4. Suppose list L is packed into m bins such that

no/n F > f (km) - (km + 1)2/(k 2 q- k m + 1).

Suppose further that there is no shorter list E c L for which a packing into m' < m
bins is such that n'o/n'F>f(km,). Then we must have k~>km, 1 <=i<=m, and either
no>=(km+2) m-k,, , or r>_m-km+ 1 (and hence nv>=mkm+r>=(km+ 1) m - (kin-l)).

Proof. In Po suppose k ~ = k m and let S be the set of k,? largest pieces in Po. It is
easily seen that the packings Po and P~ of the list E = L - S into m'= m - 1 bins

' ' k provide a smaller example for which no/nv>f(m,)--a contradiction.
For the second part, suppose both n o < (k m+2) m - k m and r < m - k m + 1.

Note that these inequalities and k ~ > kin, 1 __< i =< m, imply that Po has at least k~ + 1
bins with exactly k m + 1 pieces, and Pv has at least k~ bins with exactly k~ pieces.
It is not difficult to verify that the packings Po and P~ of the list/2 = L - B , into

268 E.G. Coffman, Jr., et al.

m ' = m - (k , ~ + l) bins again provide us with a smaller example for which
n'o/n'F > f (k,,,). []

We m a y now proceed with a p roof of the theorem. We distinguish three
principal cases.

Case 1 (km > 3). Since nv > 3 m we have immedia te ly f rom d < m - 1, no/n F = 1
+ d / n v < 1 + (m - 1)/3m < 4, m > 1.

C a s e 2 (kin=2). Suppose L is such that n o / n F > 4 > (k ' + l) 2 / (k 2 + k ' + l) = - ~ . If
n o < 4 m - 2 and r < m - 1 then f rom the a rguments in Claim 4 there must be a
shorter list, E, violating 4 in m'< m bins. Moreover , we can not, according to
Case i, assume that the packing of E is such that k m, > 3. Thus, if we assume,
as we may, that L is the shortest list for which k" = 2, then we require that either
n o > 4 m - 2 or r > m - 1 and hence n v > 3 m - 1 . But if n o > 4 m - 2 then for all
m > 1, no/n v = no/(n o - d) < (4 m - 2)/((4 m - 2) - (m - 1)) < 4, and if n F > 3 m - i then
for all m > i, no/nv= 1 + d / n f < 1 + (m - - 1)/(3m-- 1)< 4. We obtain a contradic t ion
in either case.

Case 3 (k ' = 1). Suppose we have a shortest list L such that k ' = 1 and no/nv> 4.
We consider two sub-cases based on the level of B,.

Case 3a (v r>Z=(k , ,+ l) / (km+2)) . Since the cumulat ive size of the pieces in 19 o
must not exceed the total capaci ty m, we must have m>xr+x ' r+ 1 (see Claims 2
and 3). F r o m v r > ~ and Claims 2 and 3 we get x r > 2 r/3 and x' r + 1 > (m - r)/2 + d/2.
Hence, m > 2 r / 3 + (m - r + d) / 2 . On using d < r k ' = r f rom Claim 1, we obtain
d < 3 m / 4 or d < (3 m - 1)/4.

Next, we get a lower bound on n v. First, we note that for k , ,= 1, r < m - k , ,
is always true. Hence, if n o < m(k m + 2) - k m = 3 m - 1 we can always find a shorter
list E violating the 4 bound according to the t rans format ion in Claim 4. Moreover ,
since we have already shown that no/n v <4 for all lists such that k m > 2, the shorter
list would have to be such that k ' , = 1. By our assumpt ions no such list can
exist, and therefore n o > 3 m - 1 must hold.

Using these last two bounds on d and n o we have

no/n F = no/(n o - d) < (3 m - 1)/(3 m - 1) - (3 m - 1)/4) = ~,

the desired contradict ion.

C a s e 3 b (v,<~). In this case every piece in B1, . . . ,Br_~ has a size no greater
than �89 Hence, k~_>_3, l _ < i _ < r - 1 , and a count of the pieces in Pv must give
n v > 3 (r - 1) + 2 + (m - r) = m + 2 r - 1 . On applying Cla im l we obtain no /ne=l
+ d/n v < 1 + r/(m + 2 r - 1) < 1 + (m - 1)/(3 m - 3) = 4. This contradict ion completes
the p roof of the bound 4-

To show that no cons tant smaller than 4 will suffice for all m, we consider
the examples where m is even, n = 2m, and the piece sizes are given by size(p~)
- i - e l < i < m , and s ize(pl)=�89 m + l < i < 2 m , where 0 < e < ~ . It is readily
verified that n o = 2m, n v = 3 m/2 and hence no/n v =4- Figure 3 with km= 1 shows
the general case. []

Theorem 3. For a given list L packed into m bins we have

Bin Packing: Maximizing the Number of Pieces Packed 269

P?
~ - / / / . , , / . , ' / / / / /

a a b b

km+l

pieces

a a b b

. ~ Bm/(km§ t k m pieces

Po
/ / i 1 / / / / / /

a a ~ i

b b b

.,

b b b

B 1 B 2 B m

a = I/(~+2) + E b = I/(~§ + *

Fig. 3. An example achieving (k,. + 1)2/(k~ + k,. + 1)

m(km + l)
no< m k m + l nv, m < k , , + l , (3)

(k,,+ 1) z
no<k2 +k, , n F + l ' re>kin+l" (4)

The bound in (3) is best in the sense that there are examples for all 1 < m < k,, + 1
such that (3) is achieved. The bound in (4) is asymptotically best in the sense
that there exist examples for every multiple of m > k,. + 1 such that the coefficient
of n v is equal to no/n e.

Proof From Claim 1 we must have r > 1 in order for d > 0, and hence no/n F > 1.
By definition of r we have n F > mk,. + r. Thus, using d < m - 1 we get no/n v = 1
+ d/ne < 1 + (m-- 1)/(mkr. + r) < m(km + 1)/(mk,. + 1). The examples, n = m(k,, + 1),
size (Pi) = 1~(kin + 2) + ~, 1 < i < k m 4-1, and size (pi) = 1/(k,. + 1) + e, k,. + 2 < i <_ m(k,, + 1),
are readily seen to achieve (3) for all m < k , , + l and 0 < e < 1/(k,,+ 1)2(k,,+2).

For m >= k m 4-2 we may restrict ourselves to k m > 2, for Theorem 2 establishes
(4) when k m = 1. The pieces packed in Po can not have a cumulative size exceeding
the total capacity, m. Thus, from the definitions of xj and xj in Claims 2 and 3

, k m + 1 k . , + 1
WeHence,have usi~gm > x rClaimsl + xr. 2N~ if3 vr -k in+ < 2 then using Claim 2 we have v,_ 1 > k., + 2"

k m + 1 km , d
m > k ~ (r - 1) + k ~ [m - r + l) +km + - ~ ~

270 E.G. Coffman, Jr., et al.

from which one derives

d < m - r/(k m + 2).

If km + 1 v, > - - then we must have from Claims 2 and 3
kin+2

km+l , k m d km+l k m + - - d
m > : r + (m - r) - - + - - > - - (r - 1) + (m - r + l)

km+2 km+l k m + l kin+2 km+l km+l

so that we must still have d < m - r / (k , , + 2).
Next, suppose L is the shortest list for which (4) is violated for some m and km.

According to Claim 4 we need only consider the following two cases.

Case I (n o > (km + 2) m - km). In this case we have from d < m - r/(k m + 2) and
using r>_d/k,, from Claim 1, d<mkm(km+2) / (k , ,+ 1) 2. Hence, we have

no no < (km+2) m - k m

n r n o - d = (kin+2) m - km-rnk , . (k , ,+2) / (k , ,+ 1) 2

from which (4) follows routinely for all m > k m + 2, k m > 2.

C a s e 2 (r > m - k m + l) . From d < m - r / (k m + 2) we have

no/n F = 1 + d/n v < 1 + (m - r/(k m + 2))/(m k m + r),

whereupon substitution of r > m - km + 1 gives after some manipulation

(k m + l) m + (k m - 1) no<l_ ~
n F - (k m + 2) ((k , , , + l) m - (k m - 1))

from which (4) again follows routinely for all m > k,,+ 2 and km_> 2. This contradic-
tion completes the proof of (4).

To show that no/nF=(km+ 1)2/ (k2+k, ,+ 1) can be achieved we consider any m
a multiple of kin+l, n = m (k m + l), and the piece sizes s i ze (p l)=l / (km+2)+e ,
1 <-i<m, and size(pi) = 1/(k,, + 1)+~, m+ 1 < i < n , for any 0 < ~ < 1/(kin + 1)2(kin+ 2).
Figure 3 pictures the general example. []

Theorem 3 may be easily re-stated as a function of the maximum piece-size
in PF, for if max{size(p~)} < 1/k, then k m > k and the bounds of Theorem 3 may
be used with k m replaced by k. The statement in Theorem 3 is more informative,
however, since it is clearly possible that kin> k, even though max{size(p~)} > 1/k.

IV. Discussion

Note that Theorem 3 reveals the not unexpected result that as k,. increases nJn v
approaches unity approximately as ! + 1/k m.

At moderate costs in complexity it is not difficult to fix up the FFI algorithm
so that worst-case performance is likely to be improved. However, the new
algorithms normally become very hard to analyze. A good example, motivated

Bin Packing: Maximizing the Number of Pieces Packed 271

by classical bin-packing algorithms [4], is constructed as follows from the so-
called first-fit-decreasing (FFD) rule.

Given a list L= (PI, '.., P,) in non-decreasing order of piece-size, the FFD rule
t l

first finds the maximum-length prefix L,tl)= (Pl P,1) ~ L such that ~ size(pl)< m.
i=1

The algorithm then packs L (1) into as many, say m', bins as required, by scanning
right-to-left, and placing the next smaller piece into that bin with lowest index
into which it will fit. The algorithm terminates successfully if 131) has been packed
into m ' < m bins. Otherwise, the algorithm constructs L(2)~/31) by discarding
the largest piece in /31), and then proceeds as above to pack /3 2). This process
is repeated until for some j,/3 s) has been packed into m'< m bins.

The above use of the FFD rule is obviously more time-consuming than the
FFI rule. In particular, there are examples showing that the FFD rule can require
as many as m passes. (Consider the example list of 2m pieces each of size �89
for some small e>0.) Thus, the worst-case time complexities of the FFI and
FFD algorithms are respectively O(n log 2 n) and at least O(n log 2 n + m n log 2 m).

These observations may be of little moment, however, if the expected per-
formance of the FFD rule is significantly better than that of the FFI rule. In
this regard we have been able to prove only that the FFD rule always packs
at least as many pieces as the FFI rule (and hence the bounds of Theorem 2 and 3
also apply to FFD packings 1). On the other hand, we have been unable to come
up with examples violating the inequality n o <-~ nFF D + 1. In view of the difficulties
experienced with earlier analyses of the FFD rule in connection with other
bin-packing problems [1-4], the prospects for proving the ~ asymptotic bound
would not appear very encouraging.

References

1. Coffman, E.G., Garey, M.R., Johnson, D.S.: An application of bin-packing to multiprocessor
scheduling. SIAM J. Comput. (to appear)

2. Coffman, E.G., Jr., Leung, J.Y-T., Ting, D.: Bin-packing: Maximizing the number of pieces packed.
Technical Report, Computer Science Dept., The Pennsylvania State Univ., 1976

3. Graham, R.L.: Bounds on the performance of scheduling algorithms. In: Computer and job-shop
scheduling theory (E.G. Coffman, ed.). New York:Wiley 1976

4. Johnson, D.S., Demers, A., Ullman, J.D., Garey, M.R., Graham, R.U: Worst-case performance
bounds for simple one-dimensional packing algorithms. SIAM J. Comput. 3 299-326 (1974)

Received August 11, 1976

1 From Theorem 2 and the example in Figure 3 it follows also that I<~nFFD/nFFI~ and both
bounds are achievable

