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Summary. We consider a variant of the classical one-dimensional bin-packing 
problem: The number of bins is fixed and the object is to maximize the 
number of pieces packed from some given set. Both problems have applica- 
tions in processor and storage allocation in computer systems in addition to 
a broad application in operations research. 

It can easily be shown that both problems are NP-complete; our approach 
will be to propose and analyze very fast heuristics. We consider a class of 
algorithms and bound the performance of an arbitrary algorithm in that 
class. Finally we propose an algorithm, the first-fit-increasing algorithm, and 
analyze its running time and relative performance. 

I. Introduction 

In the classical bin-packing problem [3, 4] one is concerned with minimizing 
the number of equal capacity bins necessary for the placement (storage) of a 
fixed set of pieces. A related problem is based on a fixed set of bins in which 
one attempts to maximize the number of pieces packed from some given set. 
It is this latter problem that we shall study in this paper. It is readily verified 
that both problems are NP-complete;  as in [-4] our approach will be to propose 
and analyze very fast heuristics. Although there is an apparent duality between 
the above problems, this view does not appear to carry one very far, as the sequel 
will indicate. 

The problem we have posed is a fundamental one for which a broad applica- 
tion in operations research is easily envisioned. On the other hand, our immediate 
motivation stems from storage allocation in computer systems. Consider for 
example the problem of storing variable-length records in a multiple level storage 
system. Assume that the device at a given level is organized into logically disjoint 
"bins";  i.e. sectors, cylinders, tracks, etc. If we have no a priori way to distinguish 
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records on the basis of access probability, then maximizing the number of records 
stored at a given level (minimizing the number stored on slower devices) con- 
stitutes our particular bin packing problem and leads to minimum average 
access times. 

In the next section we shall introduce notation and define classes of packing 
heuristics. In Section III, the main body of the paper, worst case bounds are 
derived for what we consider to be the simplest, reasonable packing algorithms. 
In Section IV other algorithms are considered and open problems discussed. 

II. Definitions and Notation 
Given a set of m equal capacity bins B 1 . . . .  , B,, and a set of pieces organized 
into a list L = ( p l ,  P2, ..., P,), we consider the problem of packing into the bins 
a maximum subset of L such that no bin capacity is exceeded. Without loss of 
generality we assume unit bin capacities and hence the following constraint 
on piece sizes: 0 < size (p) < 1 for all p. 

It is intuitively clear that any algorithm having reasonable worst-case per- 
formance relative to an optimization algorithm must attempt to pack a maximum 
subset of smaller pieces. That is, if s ize(p0<size(p2)<. . .<size(p,)  then the 
algorithms to be considered are those which attempt to pack a maximum prefix 
of L into the given, fixed set of bins. With the above ordering of L it is obvious 
that for every sublist E _ L that can be packed into m bins there is a prefix of L 
having at least as many pieces which can also be packed into the m bins. Thus, 
we shall restrict ourselves to algorithms which assume (or initially perform) 
an ordering of the list L such that size(pl)<size(pi+ O, l < i < n .  Figure 1 shows 
examples of packings that can be produced by such algorithms. 

The symbol P(L) denotes a given packing of some prefix of L into m bins, 
where m is understood. Frequently, L will also be understood by context, in 
which case the dependence on L may also be suppressed. In addition to its use 
as a bin name, Bi also denotes the set of pieces contained in the ith bin according 
to a given packing. Thus, a packing can be represented as the corresponding 
sequence of bins B1,  B 2 . . . .  , Bm. We define v i as the level of bin B i (v  i = E size(p)), 

and k i = IBL the number of pieces in B i. p~B, 

We let nA(L ) denote the number of pieces packed from L by algorithm A 
into m bins. L will be suppressed when clear by context, and no(L ) will denote 
the maximum number of pieces that can be packed, i.e., the number achieved 
by an optimization algorithm applied to L in rn bins. 

Suppose that for some list L = ( p l , p 2  . . . . .  Pn) and some t < n  the pieces 
packed in P(L) are p~ . . . . .  Pt. Suppose further that t < n  implies that for each 
i, 1 <__ i<m,  p~+ 1 > 1 -  v~; i.e., no unpacked piece will fit into any bin. Then P(L) 
will be called a prefix packing. Consistent with earlier assumptions, all algorithms 
that we consider produce prefix packings of given (ordered) lists. 

As a specific algorithm consider the SPF (smallest-piece-first) rule which 
at each point in a left-to-right scan of L places the next (larger) piece into a lowest- 
level bin into which it will fit. If there is more than one lowest-level bin the piece 
is placed into that one having lowest index. When the algorithm first encounters 
a piece which will not fit into any bin, the algorithm terminates. Figure 1 shows 
an example of SPF packings. 
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The packing rule whose analysis is the principal contribution of the next 
section is called the FFI (first-fit-increasing) rule. As in the SPF rule the pieces 
are packed in the sequence Px,P2,P3, ..., and the algorithm terminates when 
it first fails to pack a piece. However, with the FFI rule each successive piece 
is placed into the lowest indexed bin into which it will fit. Figure 2 gives the 
FFI packing for the list of Figure 1. 

FFI packings clearly have a great deal of structure. In particular, suppose 
Ba, . . . ,  B~ is an FFI  packing of L. Then no piece in Bi, ..., B,~ will fit into any 
of the bins B1, ..., Bz_ 1. The cardinality of the bins is non-increasing (ki+ 1 <=ki, 
1 <_ i < m - 1 ) ,  and any sub-sequence of the bins B 1, ..., B,, is a valid packing for 
a sub-sequence of L. In view of this structure the apparent difficulty of the FFI  
analysis may seem somewhat surprising. 

III. Performance Bounds 

In this section we bound the performance of an arbitrary algorithm producing 
prefix packings, and the performance of the FFI algorithm in particular. 

Theorem 1. Let P be a prefix packing and let k=min{kl} be the least number 
of pieces stored in any bin of P. Then if n k denotes the number of pieces packed 
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in P, we have 

n o < k + l  1 
n k k mk" (1) 

Moreover, this bound is achievable for all m > 1 and k > 1. 

Proof Since the total capacity is m, an optimization algorithm can not pack 
more than m - 1  (necessarily larger) pieces beyond those packed by a prefix 
algorithm. Thus, letting d = n o - n k we have d < m - 1. By definition of k we have 
nk >=km , and hence no/nk= 1 +(n o --nk)/nk <= 1 +(m-- 1)/mk=(k + 1 ) / k -  1/mk. 

To verify that (1) is achievable one uses the example n = m ( k + l ) - i  and 
size(pi)=l/mk, l<_i<_mk, and size(pi)=l, m k + l < _ i < _ m ( k + l ) - l .  [] 

Since no/nk> 1 implies k>  1, we see from (1) that 2 - 1 / m  is a best bound, 
as a function only of m. It is also readily verified that 2 -  1/m is a best bound as 
a function of both m and the maximum piece size. Note also from the above 
example that (1) must be a best bound on no/nsa v. 

We turn now to bounds on the performance of the FFI rule. First, it will 
be convenient to introduce the following notation. We let Pv denote an FFI 
packing, and n F the number of pieces in PF. We define Po and n o similarly for 
an optimum packing. In the remainder of this section Bi and k~ will always refer 
to an FFI packing; ~ and k ~ will refer to a corresponding optimum packing. 
We define the index r as the largest integer such that kr>km=min{ki} in an 
FFI packing. We shall continue with the notation d = n o - n  r. 

Theorem 2. For  any list L packed into any number, m, of bins we have 

no< 4 (21 
n e 3 

Moreover, for every even m there exists a list which achieves the bound. 

Proof The proof is based on the following four claims. The first follows from 
simple capacity arguments. 

Claim 1. For any list packed into m bins we must have d<rkm. 

Proof The pieces in Po-  Pv are all at least as large as those in PF, and no piece in 
U B~ w (Po - Pv) will fit into a bin along with all of the pieces in Br+ 1- Thus, 

r+2<i<=m 

it follows that no k,, + 1 pieces in S -  Q) B i w (Po-PF) will fit into a single 
r+ l <=i<m 

bin. Hence, since [SI = d + (m - r) k m and IS[ < mk., must hold, we have d + (m - r) k,, 
< m k , , a n d h e n c e d < r k  m. [] 

By definition of the FFI packing the smallest piece in B~+ 1 must be larger 
than the unused capacity in Bi. This simple property is instrumental in the 

proof of J 

Claim 2. In an FFI packing let x j =  ~ v~. If for some k > l  we have IB~+ll=k 

and v i<k/ (k+l) ,  then v j>k / (k+l ) ,  l < j < i ,  v i + v i + l > 2 k / ( k + l )  and xi+ 1 
>(i+ 1) k/(k + 1). 
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Proof. From the properties of FFI  packings, if v i <= k/(k + 1) then LB i+ 11= k implies 
vi+vi+l>vi+k(1-vi)=k- (k-1)vl,  and hence vi+v~+l>k-k(k-1)/(k+l)= 2k(k+ 1). 
Clearly, the smallest piece in B i has a size no greater than v]k < 1/(k + 1). From 
the FFI rule it must therefore be true that ( 1 - v j ) <  1/(k+ 1), 1 <=j<i, and hence 
vj>k/(k+l), l<j<i .  From this last observation and the inequality vi+v~+~ 
>2k/(k+l) we obtain x~+l>(i+l)k/(k+l ) directly. [] 

Using Claim 2 we may next prove 

Claim 3. For  a given list L packed into m bins suppose d>0 ,  and let 

x )=~v i+  ~ size(p). 
i= j  p e P o -  PF" 

Then for all s=r, r +  1, ..., m we have x;>(m-s+ 1)km/(km+ 1)+d/(km+ 1). 

Proof. Since size(p)> 1/(kin+ 1) for each of the d pieces in Po-PF,  the result is 
manifest when v i > km/(k m + 1), i = s, s + 1, ..., m. Moreover, from Claim 2 and the 
additional fact that k~ = k,., r + 1-<iN m, we know that only B, or Br+ 1, but not 
both, can possibly have a level exceeding km/(k,, + 1). Thus, the result is immediate 
when s > r + l .  Using Claim 2, the result still follows easily in the remaining 
cases, except when r = m - 1  and v,.<k,J(km+l). In this last case we use the 
argument of Claim 2 and write 

x:>v,,+d(l_vm)+{;~/(k,,+ 1), s=m,S=m-1 

O n  u s i n g  d > 0 we get 

x:>k,/(km+ 1)+d/(km+ 1)+~k, m/(km+ 1), s=m-1  
(u,  S~---m 

which accounts for the claim when s = m - 1  and s = m. []  
Note that x~+x'~+~<_m must hold, since the cumulative size of the pieces 

in Po can not exceed the capacity, m, of m bins. A key result for this and the 
following theorem is given next. 

Claim 4. Suppose list L is packed into m bins such that 

no/n F > f  (km) - (km + 1)2/(k 2 q- k m + 1). 

Suppose further that there is no shorter list E c L for which a packing into m' < m 
bins is such that n'o/n'F>f(km,). Then we must have k~>km, 1 <=i<=m, and either 
no>=(km+2 ) m-k,, ,  or r>_m-km+ 1 (and hence nv>=mkm+r>=(km+ 1) m -  (kin-l)). 

Proof. In Po suppose k ~ = k m and let S be the set of k,? largest pieces in Po. It is 
easily seen that the packings Po and P~ of the list E = L - S  into m'= m - 1  bins 

' ' k provide a smaller example for which no/nv>f( m,)--a contradiction. 
For the second part, suppose both n o < (k m+2) m - k  m and r < m -  k m + 1. 

Note that these inequalities and k ~ > kin, 1 __< i =< m, imply that Po has at least k~ + 1 
bins with exactly k m + 1 pieces, and Pv has at least k~ bins with exactly k~ pieces. 
It is not difficult to verify that the packings Po and P~ of the list/2 = L - B ,  into 
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m ' = m - ( k , ~ + l )  bins again provide  us with a smaller example  for which 
n'o/n'F > f (k,,,). [] 

We m a y  now proceed with a p roof  of  the theorem. We distinguish three 
principal  cases. 

Case 1 (km > 3). Since nv > 3 m we have immedia te ly  f rom d < m -  1, no/n F = 1 
+ d / n v <  1 + ( m -  1)/3m < 4, m >  1. 

C a s e 2  (kin=2). Suppose  L is such that  n o / n F > 4 > ( k ' + l ) 2 / ( k 2 + k ' + l ) = - ~ .  If  
n o < 4 m - 2  and r < m - 1  then f rom the a rguments  in Claim 4 there must  be a 
shorter  list, E, violating 4 in m'< m bins. Moreover ,  we can not, according to 
Case i, assume that  the packing of E is such that  k m, > 3. Thus, if we assume, 
as we may,  that  L is the shortest  list for which k"  = 2, then we require that  either 
n o > 4 m - 2  or r > m - 1  and hence n v > 3 m - 1 .  But if n o > 4 m - 2  then for all 
m > 1, no/n v = no/(n o - d) < (4 m - 2)/((4 m - 2) - (m - 1)) < 4, and if n F > 3 m - i then 
for all m >  i, no/nv= 1 + d / n f <  1 + ( m - -  1)/(3m-- 1)< 4. We obtain  a contradic t ion 
in either case. 

Case 3 ( k ' =  1). Suppose  we have a shortest  list L such that  k ' =  1 and no/nv> 4. 
We consider two sub-cases based on the level of B,. 

Case 3a  ( v r>Z=(k , ,+ l ) / ( km+2) ) .  Since the cumulat ive  size of  the pieces in 19 o 
must  not  exceed the total  capaci ty  m, we must  have m>xr+x ' r+  1 (see Claims 2 
and 3). F r o m  v r > ~ and Claims 2 and 3 we get x r > 2 r/3 and x' r + 1 > ( m -  r)/2 + d/2. 
Hence,  m > 2 r / 3 + ( m - r + d ) / 2 .  On using d < r k ' = r  f rom Claim 1, we obtain  
d < 3 m / 4  or d < ( 3 m -  1)/4. 

Next,  we get a lower bound  on n v. First, we note  that  for k , ,=  1, r <  m - k , ,  
is always true. Hence,  if n o < m(k m + 2 ) -  k m = 3 m - 1 we can always find a shorter  
list E violating the 4 bound  according to the t rans format ion  in Claim 4. Moreover ,  
since we have already shown that  no/n v <4  for all lists such that  k m > 2, the shorter  
list would have to be such that  k ' ,  = 1. By our  assumpt ions  no such list can 
exist, and therefore n o > 3 m -  1 must  hold. 

Using these last two bounds  on d and n o we have 

no/n F = no/(n o - d) < (3 m - 1)/(3 m - 1) - (3 m - 1)/4) = ~, 

the desired contradict ion.  

C a s e 3 b  (v,<~). In this case every piece in B1, . . . ,Br_~ has a size no greater  
than �89 Hence,  k~_>_3, l _ < i _ < r - 1 ,  and a count  of  the pieces in Pv must  give 
n v > 3 ( r - 1 ) + 2 + ( m - r ) = m + 2 r - 1 .  On applying Cla im l we obtain  no /ne=l  
+ d/n v < 1 + r/(m + 2 r -  1) < 1 + ( m -  1)/(3 m -  3) = 4. This contradict ion completes  
the p roof  of the bound  4- 

To  show that  no cons tant  smaller  than 4 will suffice for all m, we consider 
the examples  where m is even, n = 2m, and the piece sizes are given by size(p~) 
- i - e  l < i < m ,  and s ize(pl )=�89 m + l < i < 2 m ,  where 0 < e < ~ .  It  is readily 
verified that  n o = 2m, n v = 3 m/2 and hence no/n v =4-  Figure 3 with km= 1 shows 
the general  case. [ ]  

Theorem 3. For  a given list L packed into m bins we have 
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m(km + l ) 
no< m k m + l  nv, m < k , , + l ,  (3) 

(k,,+ 1) z 
no<k2 +k, ,  n F + l '  re>kin+l" (4) 

The bound in (3) is best in the sense that there are examples for all 1 < m < k,, + 1 
such that (3) is achieved. The bound in (4) is asymptotically best in the sense 
that there exist examples for every multiple of m > k,. + 1 such that the coefficient 
of n v is equal to no/n e. 

Proof  From Claim 1 we must have r > 1 in order for d > 0, and hence no/n F > 1. 
By definition of r we have n F > mk,. + r. Thus, using d < m - 1  we get no/n v = 1 
+ d/ne < 1 + (m-- 1)/(mkr. + r) < m(km + 1)/(mk,. + 1). The examples, n = m(k,, + 1), 
size (Pi) = 1~(kin + 2) + ~, 1 < i < k m 4-1, and size (pi) = 1/(k,. + 1) + e, k,. + 2 < i <_ m(k,, + 1), 
are readily seen to achieve (3) for all m < k , , + l  and 0 < e <  1/(k,,+ 1)2(k,,+2). 

For m >= k m 4-2 we may restrict ourselves to k m > 2, for Theorem 2 establishes 
(4) when k m = 1. The pieces packed in Po can not have a cumulative size exceeding 
the total capacity, m. Thus, from the definitions of xj and xj in Claims 2 and 3 

, k m + 1 k . , +  1 
WeHence,have usi~gm > x rClaimsl + xr. 2N~ if3 vr -k in+ < 2 then using Claim 2 we have v,_ 1 > k., + 2" 

k m + 1 km , d 
m > k ~ ( r -  1 ) + k ~  [ m -  r + l) +km + - ~  ~ 
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from which one derives 

d < m -  r/(k m + 2). 

If km + 1 v, > - -  then we must have from Claims 2 and 3 
kin+2 

km+l , k m d km+l k m + - -  d 
m > : r  + ( m - r ) - - + - - > - - ( r - 1 ) + ( m - r  + l) 

km+2 km+l  k m + l  kin+2 km+l km+l 

so that we must still have d < m - r / ( k , ,  + 2). 
Next, suppose L is the shortest list for which (4) is violated for some m and km. 

According to Claim 4 we need only consider the following two cases. 

Case I (n o > (km + 2) m -  km). In this case we have from d < m -  r/(k m + 2) and 
using r>_d/k,, from Claim 1, d<mkm(km+2) / ( k , ,+  1) 2. Hence, we have 

no no < (km+2) m - k m  

n r n o - d  = (kin+2) m -  km-rnk , . ( k , ,+2) / (k , ,+  1) 2 

from which (4) follows routinely for all m > k m + 2, k m > 2. 

C a s e 2  ( r > m - k m + l ) .  From d < m - r / ( k m + 2  ) we have 

no/n F = 1 + d/n v < 1 + (m - r/(k m + 2))/(m k m + r), 

whereupon substitution of r > m -  km + 1 gives after some manipulation 

( k m + l ) m + ( k m - 1 )  no<l_ ~ 
n F -  ( k m + 2 ) ( ( k , , , + l ) m - ( k m - 1 ) )  

from which (4) again follows routinely for all m > k,,+ 2 and km_> 2. This contradic- 
tion completes the proof of (4). 

To show that no/nF=(km+ 1)2/ (k2+k, ,+ 1) can be achieved we consider any m 
a multiple of kin+l, n = m ( k m + l  ), and the piece sizes s i ze (p l )=l / (km+2)+e ,  
1 <-i<m, and size(pi) = 1/(k,, + 1)+~, m+  1 < i < n ,  for any 0 < ~ <  1/(kin + 1)2(kin+ 2). 
Figure 3 pictures the general example. []  

Theorem 3 may be easily re-stated as a function of the maximum piece-size 
in PF, for if max{size(p~)} < 1/k, then k m > k  and the bounds of Theorem 3 may 
be used with k m replaced by k. The statement in Theorem 3 is more informative, 
however, since it is clearly possible that kin> k, even though max{size(p~)} > 1/k. 

IV. Discussion 

Note that Theorem 3 reveals the not unexpected result that as k,. increases nJn  v 
approaches unity approximately as ! + 1/k m. 

At moderate costs in complexity it is not difficult to fix up the FFI algorithm 
so that worst-case performance is likely to be improved. However, the new 
algorithms normally become very hard to analyze. A good example, motivated 
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by classical bin-packing algorithms [4], is constructed as follows from the so- 
called first-fit-decreasing (FFD) rule. 

Given a list L=  (PI, '.., P,) in non-decreasing order of piece-size, the FFD rule 
t l  

first finds the maximum-length prefix L,tl)= (Pl . . . . .  P,1) ~ L such that ~ size(pl)< m. 
i=1 

The algorithm then packs L (1) into as many, say m', bins as required, by scanning 
right-to-left, and placing the next smaller piece into that bin with lowest index 
into which it will fit. The algorithm terminates successfully if 131) has been packed 
into m ' < m  bins. Otherwise, the algorithm constructs L(2)~/31) by discarding 
the largest piece in /31), and then proceeds as above to pack /3 2). This process 
is repeated until for some j,/3 s) has been packed into m'< m bins. 

The above use of the FFD rule is obviously more time-consuming than the 
FFI rule. In particular, there are examples showing that the FFD rule can require 
as many as m passes. (Consider the example list of 2m pieces each of size �89 
for some small e>0.) Thus, the worst-case time complexities of the FFI and 
FFD algorithms are respectively O(n log 2 n) and at least O(n log 2 n + m n  log 2 m). 

These observations may be of little moment, however, if the expected per- 
formance of the FFD rule is significantly better than that of the FFI rule. In 
this regard we have been able to prove only that the FFD rule always packs 
at least as many pieces as the FFI rule (and hence the bounds of Theorem 2 and 3 
also apply to FFD packings 1). On the other hand, we have been unable to come 
up with examples violating the inequality n o <-~ nFF D + 1. In view of the difficulties 
experienced with earlier analyses of the FFD rule in connection with other 
bin-packing problems [1-4], the prospects for proving the ~ asymptotic bound 
would not appear very encouraging. 
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