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Summary. A procedure for genetic evaluation with field 
data is proposed for situations in which there is mixed 
major gene and polygenic inheritance and the major 
genotype membership of some or of all individuals is un- 
known. Location parameters (fixed environmental, major 
genotype and polygenic effects), major genotype frequen- 
cies and variance components are estimated by the modal 
values of joint and marginal posterior distributions. The 
method is described for continuous and discontinuous 
data as well as for univariate and multivariate evalu- 
ations. Results from a simulation study are presented. 
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Introduction 

In animal breeding, mixed linear (Henderson 1973) and 
nonlinear (e.g., Gianola and Foulley 1983; Harville and 
Mee 1984; Foulley et al. 1987) model methodology is a 
powerful and widely used tool for estimating breeding 
values of candidates for selection. This methodology is 
based on multifactorial models that include environ- 
mental factors such as herd-year-season, age and sex, and 
polygenic breeding values. Breeding values are usually 
considered to be the sum of the effects of many genes all 
having "small" effects. This model of polygenic inher- 
itance satisfactorily fits data on important traits such as 
milk and fat yield. 
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However, this does not mean that genes with "large" 
effects (i.e., single loci that account for an appreciable 
amount of genetic variation) do not exist. Such loci have 
been called major loci (Hanset 1982; Roberts and Smith 
1982), and evidence for the coexistence of one or few 
major loci and polygenic effects has been found. Some 
examples are the muscle hypertrophy in cattle and pigs, 
the Booroola gene in sheep, the recessive dwarf gene in 
beef cattle and the rapid postweaning growth gene in 
mice. Other traits considered as potential candidates for 
mixed major gene and polygenic inheritance include 
twinning, calving ease and liability to certain diseases. 

In segregation analysis (e.g., Elston and Stewart 1971; 
Morton and McLean 1974; Bonney 1986) used to inves- 
tigate the mode of inheritance of a trait, polygenic effects 
and polygenic heritability are either assumed to not exist 
or are not separately distinguished. 

Data resulting from mixed major gene and polygenic 
inheritance require statistical methods for detecting ma- 
jor genotypes and for genetic evaluations including ma- 
jor genotypes and polygenic breeding values. This paper 
presents a method for genetic evaluation with partly or 
fully unknown major genotype membership of individu- 
als. It requires evidence for the existence of a major locus 
and for the number of major genotypes. Detection of 
major genotypes is addressed in a different communica- 
tion (Hoeschele 1988). 

Methodology 
Model 

Consider the mixed linear model 

Yik = W'ikg + X'ifl + Z'IU + eik (1) 

where Ylk is an observation on the i th individual, g is an 
m x 1 vector of major genotypic means, fl is a (p • 1) 
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vector of systematic environmental  factors and u is a q x 1 
vector of polygenic breeding values or sire and dam ef- 
fects; w' i k is a row vector having a one in column k if the 
individual has the k th major  genotype and zero elsewhere, 
x'  i and z'i are the i th rOWS of the incidence matrices X and 
Z and eik is a residual with var (elk) = aft. Denote known 
major  genotype membership  (i.e., known W'ik ) by I i = k, 
k ~ {1, 2 . . . . .  m}, and let W'ik g = gk" Then, assuming nor- 
mality 

t 2 2 N(gk+x,ifl+ZiU, ae) Yil Ii = k,g,/], u, a e 

and 

COV ( y i ,  y i ,  [ I i = k , I  i, ---- k', g, r ,  u, a 2) = 0. (2) 

The density function of y~ conditional on the genotype 
membership  and on the parameters  0' = [g', fl', u'] and a 2 
will be denoted by f(y~]I i = k, 0, a2). 

If the major  genotype membership I~ is unknown, Yi 
has an m-component  mixture distribution with mean 

Eh (Yi [P, 0, a 2) = ~ p (Ii = k) gk + X'i ff + Z'i U (3) 
k = l  

and variance 

varh(y~lp, 0, a2)- -  - ~. p ( I i = k ) ( g k - - # g ) z  + a  2 (4) 
k = l  

where p is an m x 1 vector with elements p(I~ = k), the 
probabilities that  the i th individual has major  genotype 

membership  k ~ ( k = l  . . . . .  m) and pg= ~ p ( I i = k ) g  k. 
k = l  

Also, h denotes expectation and variance with respect to 
the density of Yi marginal with respect to the uncertain 
genotype membership  

h(yilp,0,  a 2 ) =  ~ p ( I i = k ) f ( y i l l i = k , 0 , t r 2 ) .  (5) 
k = l  

In (5), h (.) is called an m-component  mixture density and 
f( .)  a component  density (Titterington et al. 1985). 

Statistical inference 

Prior information. Prior information on 0 and p will be 
used by specifying Normal  priors for the location param- 
eters and a Dirichlet prior for the unknown probabilities 
of major  genotype membership,  so 

g ~ N(1 pg,Xg), gk ~ ( - -  ct3, ~ )  k = l  . . . . .  m 

/~ ~ N (1 #p, ,~p) ,  ]~i ~ ( - -  oo, oo) i = l  . . . . .  p 

u ~ N ( 0 ,  G),  ui E ( - -  Go, o(3 ) i = l  . . . . .  q 

p ~ D (at) Pk ~ [0, 1] k = 1 . . . . .  m 

where N and D denote Normal  and Dirichlet distribu- 
tions. It is convenient to assume that g, p, u, and p are 
independent a priori and that prior knowledge about  g, 
/~, and p is vague, implying X g ~ ,  X a ~  or equiva- 
lently, ~g  t ~ 0, XS.~ ~ 0, and atk = 1 for all k ~ {1, 2 . . . . .  m}. 

Then we can write the prior density function as 

1 (0, p) = l (g )  1 (]l) 1 (u) l (p)  (6) 

= c l ( u )  

1 = C* exp { - ~ u' A -  1 u a~- z} (7) 

where C and C* represent appropriate  constants. In (7), 
A is a matrix of known additive genetic relationship be- 

2 is polygenic variance and tween the elements in u, a u 
2 is known. G = A cry. We will assume first that a u 

Likelihood. Using (5) and assuming a~ is known, the joint 
likelihood of all observations is 

h(yl 0,p, ~r 2) = S~p(I = K) f (y l I  = K ,0 , a  2) (8) 
K 

where K is a particular N x I vector of major  genotype 
memberships, N is the total number  of observations, 

the summation Z represents a nested sum of the form 
K 

~ { ~ { . . . {  ~ , a n d p ( I = K )  is the joint proba-  
k l = l  k 2 = l  k N = l  

bility of N particular genotype memberships in K. This 
form of the likelihood is difficult to handle, and simplifi- 
cations are required. 

Assume that the data consist of records on unrelated 
parents and their progeny. Given the major  genotype 
memberships of the sire and dam, the genotype member-  
ships of the progeny are conditionally independent. If 
there is no assortative mating with respect to the major  
genotype, those of the sire and dam are also independent. 
Then, simplified forms of the likelihood can be found and 
are presented in Appendices 1 and 2. 

Inferences. Using Bayes theorem, the product of the like- 
lihood in (A 1.3) and the prior density in (7) is propor-  
tional to the joint posterior density of the location pa- 
rameters 0 and the major  genotype frequencies p, 

h(0,pty,  a) = constant h(y I 0, p, a2). l(ul a2) l(p) (9) 

with o'  = [a 2, a 2 ] assumed known. Inferences about  0 and 
p may be obtained from (9). An alternative approach is to 
consider the marginal posterior densities of 0 and p: 

t (0[y,a) = ~ h(0,p[y,a)  dp 
Rp 

= ~ f(01p, y, a) t (ply, tr) dp (10) 
Rp 

where t (01 y, a) is the marginal posterior density of 0, 
taking into account uncertainty about  p, and t (PLY, a) is 
the marginal posterior density of p obtained from 

t (ply, a ) =  Sh(0,ply ,  a) dO 
R 0 

= ~ f (p l0 ,y ,a)  t(01y,~r) d0. (11) 
R 0 
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If t(Ol y, a) were reasonably peaked, integrating 0 out 
could be approximated by evaluating the conditional 
density ofp at the mode 0 of t  (0ly, a) (Box and Tiao 1973) 
so that 

t (PLY, a) - f(Pl/j, Y, a). (12) 

Also, we have 

f (p[ ~, y, ~r) = g(ylp,~,~r) l(p) constant. 

Combining (12) and (10) then provides an approximation 
to the marginal posterior density of 0: 

t(01y,~r) - ~ f(0lp, y,a) f(pl~7,y,a) dp. (13) 
Rp 

Inferences about the unknown parameters in 0 and p 
will be made by point estimation using the joint (0, p) 
mode of(9) or approximating the marginal 0 and p modes 
of (113) and (11), respectively. The mode represents the 
most likely vector of values for 0 and p, given the data, 
and with "large" sample sizes, the posterior mode is close 
to the posterior mean (Berger 1985). This approach will 
be referred to as Maximum A-Posteriori Estimation 
(MAPE). A similar approach has been developed by 
Foulley et al. (1986) for genetic evaluation with uncertain 
paternity. 

Algorithms of computation 

First, consider estimating the unknown location parame- 
ters and major genotype frequencies by the mode of the 
joint posterior distribution of 0 and p, h(0, PlY, a)- The 
vector of modal values is found by using an iterative 
algorithm that converges to a maximum of (9). However, 
because (9) cannot be assumed to have a single maximum 
(Titterington et al. 1985), this requires using starting val- 
ues close to its global maximum. The logarithm of (9) 
using (A 1.3) is: 

N~ LFm 1 log h (0, PlY, r = s~l log/k~l  p (Is = k) f(Yslls = k, 0, cry) 

ND F m 0"2) 7 ] 
+D~= 1log ~,~lp (ID = 1)f(yD[ID = 1, 0, 

F NS ND 
+log  ~ ~ [ Ip(Is=kslYs)  1-I p(ID=kDIYD) 

LKs KD S = 1 D = 1 

)1 �9 1-I ~ P (I i  = r l Is(i) = ks( i ) ,  ID(i) = kD(1) ) f(Yil Ii = r, 0, a 2 
i=1  r = l  

- 1/2 u' G -  x u + constant (14) 

assuming 1 (p)= constant. An iterative algorithm can be 
obtained by differentiating (14) with respect to 0 and p 
and setting the derivatives equal to zero. Because of the 
nested summation, differentiation of (14) is very difficult. 
However, derivatives of the logarithms of (A 2.1), (A 2.2), 
(A2.3), (A2.4) and (A2.5) are given in Appendix 3. 

The derivatives of the log posterior density (14), using 
the derivatives of the log likelihoods in Appendix 3, have 

the general form 
N} 

~ log h (0, p I Y, a) Z p (Ii k l y) (yi ' -2 = = - - A i k  0) O" e Ai  k 
~0 i=1 k=l 

-- FOdim ("  + dirn(lll)7 (15)  
L# 2 A-1 u ] 

where N is now the total number of individual with 
records. Equating (15) to zero and rearranging gives a 
nonlinear system of equations in 0: 

/#tl+:tJ / /X'y / (16) X '  0 [1] X '  X X '  Z 

Z 'Q tH z ' x  Z ' Z + A - 1 2  I_u t'+11] LZ'y / 
where 

D ~ = Diag (Ii = k[ym• 
i 

Qm = {pro (Is -- k [ YN• 

and the p~  values are those given in Ap- 
pendix 3 evaluated at #u and ptl; In relation to Baye- 
sian classification, p(I i = k ly) represents the posterior 
probability that the i th individual has major genotype 
membership k (Geysser 1982) if 0 were known, and with 

p(I~= kly) =1. 
k = l  

Also, G -  2 2 2 -A*%,  and 2 = ae I tru. The unknown un- 
conditional probabilities of major genotype membership 
p(Ii = k) are estimated by 

1 
'~ ptlt (Ii (17) [~tl] (i i = k) = ~ = k ly) k = 1 ..... m. 

i = l  

The estimator (17) can be derived by differentiating 
log h (0, p I Y, or) with respect to p and equating the deriva- 
tive to zero. For estimating 0 and p, (16) and (17) are 
combined in an iterative scheme. Iteration starts with a 
set of initial guesses 0 t~ and pt0; and stops when a con- 
vergence criterion such as {[/~tl+ at _/~01] [/~tl+ 1; _ ~[1]]/ 

dim(0)} ~ <e  is satisfied, e being an arbitrarily small 
number. 

An alternative iteration scheme can be obtained using 
Newton's method (Kennedy and Gentle 1980) requiring 
second derivatives of (14)�9 This algorithm converges 
rapidly even for nonlinear functions not quadratic in the 
parameters. 

The second approach consists of estimating 0 by the 
corresponding marginal posterior mode. The vector of 
first derivatives of the logarithm of the marginal posterior 
density of 0 in (10) is 

8-o-l~ i~ [8 log 1 t (0l y,a) = ply,~ L - ~ -  h (0, pl y, ~) 

= 2 E [p(Ii=kly)](y~--A~kO)a22Aik 
i=1  k = l  p [y ,a  

- -  [ 0 d i m  (g) + dim (ll)7 (18)  
La~-2 A - 1  u _[ 
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where E denotes expectation with respect to the densi- 
p [ y , o  

ty t (p t Y, a). Based on (1 8), 0 is estimated by iterating with 
(16) and replacing the p(I~ = kl y) values in D and Q by 

E p ( I  i ---- k I Y). This approach is more demanding com- 
p[y,~  

putationally because it requires calculating, for each 
record and in each round of iteration, the quantity 

1 1 

I== [p(Ii = kly)] - ~ . . .  ~p(Ii = k ly  ) 
PlY, ~r 0 0 

�9 f (p[ 0tl], y, o) dpl  ... dPm_ 1. (19) 

Also, the 0-mode of h (0, p I Y, a) may often closely approx- 
imate the mode of t (01y, a). It can be shown that the 
posterior density of p in (12) is a mixture of Dirichlet 
densities, f(pl dm,y,a)  = 52 WK D (nl + ~l . . . . .  n m +  ~Xm) , 

K 

where the w K are appropriate weights, n k (k = 1 .... , m) is 
the number of observations with major genotype- 
membership k, and the summation goes over all sets of 

positive integers (n~ . . . . .  n k )  with ~ n k : N. 
k = l  

Partly known genotype membership 

Determination of the major  genotype membership by 
biochemical methods can be expensive and complicated 
and, therefore, is not performed for all individuals. Stud- 
ies on mixture distributions (Titterington et al. 1985) have 
shown that it is clearly worthwhile to include unclassified 
observations in discriminant analyses. If selection based 
on functions of the data is ongoing, unclassified records 
should not be discarded to avoid selection bias. Using 
Titterington et al. (1985), the appropriate log posterior 
density for partly known major genotype membership is 

in n k 
log h (0, PlY, a) = (14) + 52 52 log f(y, I I~ = k, 0, a 2) 

k = l  i = l  

m 
+ Z nk log p (I = k) - �89 u' G -  a u + constant (20) 

k = l  

where Na = Ns + ND + Np is the number of individuals 
with unknown genotype membership, n k is the number of 
individuals with known genotype membership k, and 

~ n  k = N z is the total number of individuals with known 
k = l  
genotype membership. 

Based on (20), the following equations to estimate 0 
and p are obtained: 

N1 
Z ptU(Ii = kl y) + nk 

15m (I = k) = ~= ~ k = 1 . . . . .  m (22) 
N~+N~ 

where 

D1 = Diag{  ~ p(Ii = kly) } i =  N, xm ' 

and 

Q~ = {p(Ii = kly)}N~ • 

indices 1 and 2 refer to individuals with unknown and 
known genotype memberships, and W2 is the known part 
of the incidence matrix of g. 

Estimation of variance components and heritability 

The estimation equations in (16) and (21) require know- 
ing the polygenic and residual variances, i.e., a 2 and a 2. 
Usually these are unknown and replaced by estimates. 
Gianola et al. (1986)justify the use of REML (Restricted 

2 and a 2 in place of Maximum Likelihood) estimates of a u 
the true values, and Hoeschele et al. (1987) suggest esti- 

2 and 2 by "Marginal Maximum Likelihood", mating au ae 
which reduces to REML under normality. "Marginal 
Maximum Likelihood" estimation consists of finding the 
mode of the marginal posterior density of the variances 
and employing flat prior densities, i.e., f(a 2) = constant, 
and f(a 2) = constant (Gianola and Fernando 1986). This 
is done by equating the derivatives of the log posterior 
density to zero: 

Slog [ ~ l ~  1 ~-2  t ( a l y ) =  ~ ~ ~ (a,0,ply) h(0,ply,  a) dpd0 
R 0 Rp 

--  (0, pEI y' o) V~ l o g  h '  " l y) l  " p (23) 

whereai  2 -  2 _ 2 = au, or ai 2 = a~. Because h (0, p[ y, a) is not in 
the form of a normal density and dim (0) is usually large, 
the integration (23) is difficult computationally. Berger 
(1985) suggests normal approximations to non-normal 
posterior densities and gives a heuristic proof based on 
"large" sample size, implying a sharply concentrated pos- 
terior density that is approximately normal. Here, we 
might consider the approximations 

(O[y,a)~N(Oh,Ch) or (01y, o) ,~N(~t ,Ct)  (24) 

where 0h and Ch [~t and Ct] are solution and inverted 
coefficient matrix of [16] at convergence derived from the 
joint posterior h (0, PlY, a) [marginal posterior t (01y, a)]. 

[ D~ 1~ + W~ W 2 

xl Q~J + xl  w= 
zl Q['J+ z~ w~ 

Q'I m x 1 + w~ x 2 

x~ x1 + x~ Xz 

z ~ x l + z [ x 2  

Xtl Z 1 -t- X2  Z 2 

Z ]  Z I + Z ~ Z 2 + A  1)~ 

0+11 [Q]tU yl + w ~  y2] 

=/X'ayl  +X~ y2 [ 

Lz] y l + z ~  y2 J 

(21) 



Because asymptotic normality does not hold on the 
boundary of the parameter space, h (0, P l Y, a) will not be 
approximately normal if the true parameter Pk is zero 
for some k E {1,2 . . . . .  m}. For  al 2 =o-~, Hoeschele et al. 
(1987) showed that 

E F~ log I 2 l OOor21og t (a ly)  =/. i , , . ) [ --~- 2 (ultr ,)J .  (25) 

Using (7), (24) and equating (25) to zero gives the estima- 
2, tor  of oru. 

^211+ 11 I'~' [!] A -  1 ~[I] 
oru ~--- q tr (A- 1 ,-,tu 2m (26) - -  ~'-'u tl) 

where fi and Ca, are either il h and Cuu~h) or fit and Cu. o), 
C ~  is the q x q  part  of C referring to u, and 2 m =  
-2[q _~2[tl 

or e / 0  u �9 

For  tri 2 = or2 and 1 (a) = constant, (23) becomes 

01o  . . . .  ] 
00.2 t[~rly)-- (O, ply,~')~ h(yl0,p,  or~) . (27) 

Using the likelihood functions (A2.1), (A2.2), (A2.3), 
(A2.4) and (A2.5), 

1 
--_r=---1 exp ~_ T2_~_2 (yl _/l~k 0)2~ ' f(YilIi = k '0 '  or~) = x /2  ~ or _ I. ztr~ j 

and following Gianola et al. (1986) and Foulley et al. 
(1986) lead to the estimator 

~, ~ 15m(Ii = kly) ~2tu 
~2[1+ 11 i = 1  k = l  

or, = (28) 
N - dim (0) + tr (A- ~ C,,)tl] 2v] 

where 8~k = Y~- Zt;U ~, and 0 is 6~ or ~,, respectively. 
a and 2 four nonlinear systems of For  unknown ore oru, 

equations have to be solved simultaneously, namely, (16), 
(17), or (21), (22), (26) and (28). 

"Polygenic heritability" (h2), i.e., heritability within 
major  genotype, and the relative contribution of the vari- 
ance explained by the major  genotypes to phenotypic 
variance (h2L) are defined as 

2 or2 L (29, 30) 2 __ OrU h2ML - -  2 2 h p  - -  2 2 ~ 
oru "31- ore 0"2 L "31- oru "~ ore 

m 
where 0"2 L = ~. Pk (gk - -  lag) 2 and #g = ~ Pk gk" 

k = l  k=l 

An estimate of or2 L may be obtained from 

d2L = ~- 15k (gk --/2g) 2 + constant (31) 
k = l  

where the constant is a correction factor given in Searle 
(1971, p. 476) for the two-way nested classification with, 
e.g., nj. being progeny group size of sire j and nj k replaced 

nj. 
by Pj k with Pi k = ~ 15 (Ii = k I Y)- 

i = l  
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Genotype-environment interaction 

A given environmental difference may have more effect 
on some genotypes than on others, i.e., the major  geno- 
types differ in their environmental sensitivity. Conse- 
quently, the model needs to account for environment and 
major genotype interaction and for heterogeneous resid- 
ual variance. Similarly, interactions with the polygenic 
background of different lines or breeds are possible (Ro- 
berts and Smith 1982). This can be achieved by imple- 
menting the following modifications. First, replace (2) by 

(YilI i = k ,  gp, u, or2) ~ N ( x i k g / / +  ziu, or2) (32) 

where g/] = {(g fl)ik } and (g fl)ik is the joint effect of the k th 
major genotype (k = 1,... ,  m) and the i th "fixed" effect in 
/~ (i = 1 . . . . .  p). Secondly, the vector of first partial deriva- 
tives of the log posterior density using normal compo- 
nent densities becomes 

0 log h "0 ~-~ t ,PlY, or) = ~ ~ p( I i=kly) (y i - -A ' ik0)ork2Aik  
i = l  k = l  

- - [  0dim'#' 1 (33) 

where zl'ik = [Xik:Zi], and 0'= [gp',u'l. Equating (33) to 
zero and solving for 0 gives the following nonlinear sys- 
tem of equations to estimate g/I and u: 

[ o,,, Q,'"z IV T FQ'"'yl (34)  
Z,Q[ll Z , R - t t l ] z + G - , I L  fi ] =L Z,y j 

where 

g{  k 2 jnt_~ 1 D tl] = Dia or 

Qttl = {or~- 215Ol ( i i j  = 

{ k  =~10. k 2 
R -  ltq _- Diag 

13 Ill (Iij = k I Y)}mp • rap' 

kl Y)}N x rap, 

15(Iu = klY}N• ' 

n i. is the number of observations in the i ih level of/~, and 

i j  i = l  . . . . .  p ; j = l  . . . . .  nl.; n i . = N  is used to identify 
i=  

an element in y instead of i (i = 1,. . . ,  N) employed else- 
2 may be estimated by approximately mod- where. Also, o k 

ifying (28). 

Large number of alleles at the major locus 

The number of alleles at a major  locus may be large with 
one allele having an outlier effect. In this situation, we 
have to distinguish between three major genotypes 
denoted by gl -- g.~, g2 ~ gaw and ga -- gww,. Let a be the 
outlier allele effect and w, w' 2 ,-~ N(0, orw)- Then, we can 
write p ~  = E(g~)  = g~ ,  #~w = E (g~,~) = # + a and #ww, 
---E(gww,) =/a with # being the mean genotypic value. 
One approach is to estimate [P~a,/~,w and/~] in place of 
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2 is small. Otherwise, hetero- g and proceed as before if a,, 
geneity of the polygenic variance requires an appropriate  
modification of the G matrix with 

var (u I p~, ) = var  (u) = a~, var (u [ p,  w) = var (u + w), 

and 

var(ul/~ww,) = var(u + w + w'). 

Extension to multivariate analyses 

The power of the proposed method may be increased by 
a multivariate analysis of correlated traits. Consider, for in- 
stance, two highly correlated traits. Then, the posterior 
probabilities of major  genoype membership p( I  i = k ly) 
will probably be less flat than those estimated in single- 
trait analyses because separating between m overlapping 
univariate normal  distributions is more difficult than be- 
tween m bivariate distributions. 

Suppose that Yi is the vector of observations on r 
continuous traits for the i th individual, and assume that 

YilIi  = k, 0, "~e ~ Nr (illik' '~e) (35) 

where 0' = [g', if, u'] is of dimension r x (m + p + q) (as- 
suming the same model for each trait), "~e is the r x r 
residual covariance matrix, N r denotes the r-variate 
normal  distribution, /l~k = (d~k | I r)0 (assuming equal 
incidence matrices for all traits), and | denotes the 
Kronecker product. The log posterior density of 0 and p is 

log h (0,p[ y, 2~e, Zu) 

= logh(y[0 ,  p,Zr - 1/2n '(A - I  | X~ ~) u. (36) 

The conditional densities of the data are replaced by the 
r-variate density fr (yilIi = k, 0, 2~), Z u is the r x r poly- 
genic covariance matrix and 0 is ordered by level. The 
gradient vector of (36) is 

log 
- -  h(O, pIy, Zr 

~0 
N 

= ~ ~ p( I~=kly) (A~k |174 
i=1 k = l  

- ( A -  1 | Zff 1) u (37) 

where p (I i = k I Y) is obtained by using the formulae given 
in Appendix 3 and replacing the densities f(.) by f~(.). 

With the data  ordered by individual and the parame- 
ters in 0 by level, the following system of equations is 

obtained: 

/ D ~ Q' X 
[I] 

~ [11 
Q X X 'X  

, m Z Z' X 

Or (m + p) x r(m +p) 

"~ \ O r q  x r(m+p ) 

r(Q,m | i r )y  ] 
= ( X ' |  I , ) y  | .  

( Z ' |  I r )y  J 

Q, [11 z 

X t Z  / ~ I r  
z ' z /  

0r(m+P) Xrq ~1 

A-' | :o::-UJ li[ 
[1 + 11 

(38) 

This approach can be extended to other situations of 
multitrait  analysis of continuous and discontinuous data 
(e.g., Foulley et al. 1982; Hoeschele et al. 1986; FouUey 
et al. 1987b). 

Application to s imulated data 

Generation of the data 

Phenotypic values were generated by using a mixed mod-  
el including herd-year-season effect (hysi), major  geno- 
type (g~), polygenic effect (Uk) and residual (eijkl), SO that 

Yijk l  : hysi + gj + u k + eijkl. (39) 

Dispersion assumptions were: 

2 2 v a r ( Y i j k l  ) = 0.2 = O.h2ys ..~ ~ pj (g~ -- #g)2 + au + 0-e' 
j = l  

{u~} "-~ N O, ! if the Uk'S were sire effects (sire model), 

0-u) if the Uk S were breeding values (animal { U k I ~ N ( 0 , A  2 .  , 
model), 

{hysl} ' -~N(0,I  0-2) and {eijkl} ~ N ( 0 ,  I 0.2). 

Discontinuous phenotypes were obtained by using (39) 
and 

1, if Y i j k l < ~ - l ( 0 . 7 )  (40) 
Yi jk l=  0, otherwise. 

where 0.7 is the frequency in the category coded by 1. 
The following parameter  values were used: 

z 2 h2% t/2 Data set p (A) 0 -2 0-2ys 0-2L 0-u tTe 

(l) 0.3 502 252 22.42=0.2 a 2 11.22 35.42 25 35.4 
(2) 0.3 502 252 18.02=0.13 0 .2 17.32 35.42 25 27.8 
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Major True Data set ~ 
genotype values 

I II III IV 

f~ s~ 15 sf, fi s o ~ s~ 

AA~I  0.09 0.074 0.010 0.064 0.005 0.082 0.011 
Aa ~2 0.42 0.412 0.017 0.397 0.007 0.412 0.015 
aa ~3 0.49 0.514 0.027 0.539 0.011 0.506 0.025 

0.125 
0.401 
0.474 

0.031 
0.026 
0.090 

a Estimates are averages of 10 replicates per data set 

Table 2. MAPE and BLUE estimates of the major genotypic values (~) and their empirical standard errors (st) 

Method M~or Data set ~ 
genotype 

I b II e III b IV b 

s~ ~ s~ ~ s i ~ s~ 

MAPE 

BLUE 

AA ~- 1 477.4 18.9 462.9 13.5 481.1 18.2 470.0 18.7 
Aa = 2 446.4 17.0 446.4 13.6 445.7 20.2 442.5 20.6 
aa - 3 417.9 20.5 427.3 13.9 413.3 19.4 426.7 21.6 
AA -= 1 486.6 19.7 479.0 15.1 485.2 19.6 472.4 16.8 
Aa =2 451.9 19.5 451.7 13.2 448.2 19.7 438.5 18.3 
aa = 3 414.8 19.9 422.8 14.3 412.9 19.4 405.9 19.5 

a Estimates are averages of 10 replicates per data set 
b True values are gl =486, g2=450 and g3=414 

True values are gl =478, g2 =450 and g3 =422 

where p(A) is the frequency of the allele A at the major  
locus with alleles A and a, h 2 is heritability with h 2 =  

+ a,)/(aML + a ,  + a~ + cr~ ), a~r  is the variance ac- 
counted for by the major  locus and t = gAA -- gaa is the 
displacement effect computed by assuming additive gene 
action. 

Using (39), 2500 progeny records in 200 herd-year- 
seasons and representing 50 sires were simulated. Also, a 
small sample of 150 parent  and progeny records was 
generated. The design was unbalanced in both cases. Five 
data sets were generated with ten replicates each. The 
data sets are described below: 

Results 

Major genotypic values, frequencies and polygenic sire 
effects or breeding values, respectively, were estimated by 
maximizing the joint  posterior density via (16) and (17) 
using formulae (A 3.1) and (A 3.3) in Appendix 3, for sire 
models (data sets, I, II, III, V) and (A3.10) for data set IV. 
This approach is referred to as Maximum-A-Poster ior i  
Estimation (MAPE). In Tables 1-4 ,  results averaged over 
ten replicates are reported for data sets I, II and III  only 
for the approximate formula (A3.3). With (A 3.1), taking 
into account dependencies between genotype member- 

Data set Phenotypes Sample size Model Unknown genotype 0"2ML/a 2 X 100% 
membership in % 

I continuous 2500 sire model 100% 20% 
II continuous 2500 sire model 100% 13% 

III continuous 2500 sire model 50% 20% 
IV continuous 150 animal model 100% 20% 
V binary 2500 sire model 100% 20% 



88 

ships of offspring of the same sire, convergence was very 
slow or not attained, probably because of increased mul- 
timodality of the posterior distribution in (A2.1). For  
iteration with (16) and (17), a set of starting values ob- 
tained by using techniques described by Hoeschele (1988) 
was employed. Estimates of the major genotype frequen- 
cies are presented in Table 1. With that particular set of 
starting values, the estimates were quite close to the true 
values, even for the small sample IV. The best estimates 
were obtained from data set I I I  with 50% known major 
genotype membership. 

Estimates of the major genotypic values are reported 
in Table 2. For  control, BLUE estimates for known geno- 
type membership were also computed. The true displace- 
ment effect: t = g~ - ga = 72.0 was estimated precisely by 
BLUE, whereas with 100% unknown genotype member- 
ship, t was underestimated by M A P E  for about  17% - 
40%. With 50% unknown genotype membership, t was 
only slightly underestimated. 

Estimation of polygenic breeding values was evalu- 
ated by comparing realized genetic response achieved 
with fully unknown (MAPE) and fully known (BLUE) 
major  genotype membership. Realized genetic response 
was computed as the mean true breeding value of the 

Table 3. Realized genetic responses (g) from selection using 
MAPE and BLUP estimates of polygenic effects and their em- 
pirical standard errors sa 

Method % of Data set a 
candidates 
selected I II 

ra sfi ~ s a 

MAPE 10 6.42 "~ 1.85 12.34 "~ 1.91 
20 4.21 "~ 1.35 9.63 ' '  1.52 

BLUP 10 7.09 1.51 10.57 1.81 
20 5.79 1.37 7.62 1.50 

candidates selected according to MAPE and BLUP es- 
timates. Table 3 shows that genetic response was reduced 
by unknown genotype membershisp. 

For  data set I, estimates of p and g and mean true 
breeding value of the 10% highest ranking sires obtained 
from the solutions to (16) and (17) at convergence by 
using different sets of starting values are presented in 
Table 4. Estimates of the major genotype frequencies 
were mostly affected by the choice of starting values. If 
the starting values for p were far away from the true 
values, so were the estimates, and this, of course, also 
influenced the estimates of g. Realized genetic response 
was practically unaffected by the starting values. Hoe- 
schele (1988) described techniques to obtain a set of start- 
ing values for fully unknown genotype membership. 

With data set I, variance components were estimated. 
2 1 2__ For  the sire model, true values were as = ~  a u -  31.4, 

O.2, = 43 O. s2 + 0 - 2  =1347.2, and 0-2 L = 500.0 Average es- 
2 _  65.3, A2, timates from (26), (28) and (31) were a s -  0-e = 

1366.0 and ~ L  = 336.6, indicating that polygenic vari- 
ance tends to be overestimated when major genotype 
membership is fully unknown. 

Two iterative schemes, (16) and Newton's method, 
were suggested to obtain estimates of location parame- 
ters maximizing the posterior density. With data set I, the 
set of starting values described by Hoeschele (1988) and 
the stopping rule , , /A 'A ld im(~  < 10 -4, (16) required 
12-20  (5-8) iterates. In 50% of the replicates, conver- 
gence was not attained with Newton's  method because 
iteration was stopped after round 30 or if the matrix 
[-  ~ZF/~ ~']~--~t,~ was not positive definite. Poor  perfor- 
mance of Newton's method when mixture components 
are not well separated has been reported by Titterington 
et al. (1985). 

Conclusions 

a Estimates are averages of 10 replicates per data set. 
.s: Difference between MAPE and BLUP not significant at 

= 0.05. 

The method proposed in this paper attempts to combine 
aspects of mixed model methodology and complex segre- 

Table 4. Effect of different sets of starting values on the MAPE estimates of the major genotype frequencies (15), effects (~) and realized 
genetic response (fi) 

Starting values a 151 152 t53 gl g2 g3 1] 

[IA, 2A, 3A] 0.100 0.448 0.452 177.0 450.9 425.7 6.53 
[1A, 2B, 3A] 0.035 0.461 0.504 486.8 455.7 426.6 6.53 
[1A, 2C, 3A] 0.066 0.419 0.515 481.0 454.3 427.3 6.53 
[1A, 2D, 3A] 0.342 0.347 0.311 462.5 439.6 421.5 6.53 
[IB, 2A, 3A] 0.100 0.418 0.482 477.1 451.4 426.9 6.53 
[1C, 2A, 3A] 0.100 0.609 0.291 478.1 446.4 420.5 6.53 
[1A, 2A, 3B] 0.082 0.427 0.490 478.6 452.8 426,7 6.53 

Triplet with starting values [pO, go, (fl, u)O] 
1A: g~ 450.0, 414.0], IB: g~ 450.0, 432.0], 1C: g~ 450.0, 350.0], 
2A: pO, =[0.09, 0.42, 0.49], 2B: p~ [0.03, 0.43, 0.54], 2C: p~ [0.058, 0.388, 0.554], 2D: p~ [0.33, 0.33, 0.34], 
3A: BLUP of u and BLUE of fl ignoring the major genotype, 3B: fl~ u~ 
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gation analysis. The BLUE of g and BLUP of n (Hender- 
son 1973) cannot be computed because parts of the X 
matrix (relating elements in g and y) are unknown, and 
the dispersion assumption v a r ( y ) = Z G Z ' + R  known 
with R = I a 2 does not hold because of [4]. Complex seg- 
regation analysis (Morton and McLean 1974; Bonney 
1984, 1986) does not account for or distinguish separately 
polygenic parameters and is computable only for small 
pedigrees. Distinction between major locus and poly- 
genic parameters and multitrait analyses are particularly 
useful when major genotypic effects are beneficial on 
some and harmful on other traits of interest. 

Results of the simulation study indicate that the pro- 
posed method can provide useful estimates of major locus 
and polygenic parameters, although with fully unknown 
genotype membership the precision of estimation is clear- 
ly reduced and will deteriorate with a degree of domi- 
nance not equal to 1/2 (implying the genotypic mean of 
the heterozygote being closer to that of the dominant 
homozygote) and a displacement effect smaller than con- 
sidered here. Precision of estimation also depends on the 
accuracy of approximating the marginal posterior means 
of g, p and u considered as the best estimators (Gianola 
et al. 1986) by their joint posterior mode. Multimodality 
of the surface of the posterior distribution in (A 1.3), how- 
ever, poses a difficult problem. The results obtained with 
sire models (data sets I, II and III) suggest that it is 
probably better to ignore dependencies between major 
genotype memberships. As an alternative, one could con- 
sider computing the marginal posterior mean E (01 y, a). If 
the distribution of the data conditional on major geno- 
type membership is normal, E (01 Y, a) = Z E (011 = K, y, tr) 
f(I = K I Y, a). Also, E (0 I I = K, y, a) = 6 is the vector of 
solutions to the mixed model equations (Henderson 
1973) given I = K ,  and f ( I = K l y ,  a) would have to be 
approximated by f(I = K I 0, y, a), so that iteration would 
be required. However, for application to large field data 
sets as considered here, computation of E (0 [ y, a) is prob- 
ably not feasible because of the large dimension of K and 
the necessity to solve the mixed model equations many 
times. 

If the data are categorial with threshold character 
(Falconer 1965), the likelihood function in (A1.3) with 
normal components is no longer adequate. Gianola and 
Foulley (1983) and Foulley et al. (1987a) suggested a 
method of estimating breeding values with categorial 
data based on the polygenic model of inheritance. In their 
approach, estimates of environmental and genetic effects 
in a hypothetical normal scale are obtained by maxi- 
mizing the posterior density proportional to a product 
bi-, multinomial, or poisson likelihood and the normal 
prior density in (7). This method was extended to mixed 
major gene and polygenic inheritance by specifying the 
likelihood as a mixture density of m bi- or multinomial 
components. The posterior density was maximized with 

respect to the unknown effects by using Fisher's scoring 
or the Newton-Raphson procedure (Gianola and Foulley 
1983). However, the bad performance of these algorithms 
experienced with continuous data was observed with cat- 
egorial data (data set V) and fully unknown major geno- 
type membership to an even larger extent. In the majority 
of trials, convergence was extremely slow or was not 
achieved because of a nonpositive definite inverted coeffi- 
cient matrix. These difficulties probably could be over- 
come by using alternative algorithms such as the method 
of steepest descent or robust nonlinear regression algo- 
rithms (Kennedy and Gentle 1980). 

For continuous data, the method assumes that the 
data are normally distributed conditionally on genotype 
membership and the parameters. Departures from nor- 
mality would require transformations such as the Box- 
Cox approach or estimation of the power transformation 
(Gianola et al. 1988). Analysis of field-collected data re- 
quires adjusting for a large number of environmental 
differences, nonadditive genetic effects and selection. This 
can be achieved by an appropriate choice of the mixed 
model in (1) and by making inferences from a posterior 
distribution under certain conditions unaffected by selec- 
tion (Gianola and Fernando 1986). In this situation, the 
proposed method and approaches suggested by Hoes- 
chele (1988) may be potentially useful for discriminating 
between purely polygenic and mixed major gene and 
polygenic inheritance and for estimating genetic parame- 
ters and breeding values under fully or partly unknown 
genotype membership. 
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Appendix 1 

Consider a vector y that consists only of records on one 
unrelated sire-dam pair (Ys, YD) and their nsD progeny 

(Yl ... . .  Y,so): 

h(ys, YD, Yl . . . . .  YnsDI0'P ~r2) 

= ~ ~ ~ f ( Is=ks , ID=kD,IsD=KsD,Ys,YD,  
k s = l  k D = l  KSD 

Yl . . . .  ,Y,~DI 0, a2 ) (A 1.1) 

with ISD = KSD standing for I 1 = k 1 ..., I,~ D = k,~i,. Based 
on the assumptions stated, the density in the right-hand 
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side of (A 1.1) becomes 
K 2 f(Is = ks, Ys, ID = kD, YD, ISD = SD, Yl . . . . .  YnsD I0, o'e) 

= f(Ys I 0, O'2) f(YD 10, O'2) f(Is = ks ] Ys) f(ID = kD l YD) 

�9 f(IsD = KSD[ Is = ks, ID = kD) 

" f(Yl . . . . .  YnsD list) = KSD, 0, o'2). 

Using this and (5) in (A 1.1) gives, after rearrangement 

h(ys, YD, Yl,. . . ,Y,sI, IO, p,O'~) 

= ~. P ( I s = k s ) f ( Y s l l s = k s , 0 ,  a~) 
ks= i 

p (ID = kD) f(Yo lip = ko, 0, o'2) 
k D = l  

~ {p(Is = kslYs) P(Io = kDIYD) 
k s = l  k D = l  

�9 ~ff ~ P (1i = ki I Is = ks, ID = ko)  f(y~ ]Ii = ki,  0, (rE)) 
i=1  k t : l  

where {. } indicates nested summation. (A 1.2) 
If all individuals appearing as parents but not as 

progeny in the data are unrelated, (A 1.2) generalizes to 
(A 1.3): 

h(yI0,p, a2) 
Ns 

= lq ~. p (Is = k) f(Ysl Is = k, 0, o'2) 
S=1 k = l  

ND 
" l-I ~ p ( ID=k)  f(yDIID=k, 0, O'2) 

D = I  k = l  

{'s0, " ~  
�9 2 Z p (Is = ks l Ys) Fl P (ID : kD l YD) 

KS KD = D = I  

Np m 

" I~ Y~ P (1i = kil I s ( i )  = k s ( i ) ,  ID(i) : kD(i)) 
i=1  k i : l  

f(yi I I~ = kj, 0, o'~)/ (A 1.3) 

where Ns, No and N p  a r e  the numbers of sires, dams and 
progeny, respectively, S(i) [D(1)] denotes the sire [dam] of 
t h e  k th progeny, the p(I i=ki l ls( i )=ks( i ) , Io( i )=ko(i))  
values are known constants found in the genetic transi- 
tion matrix (Elston and Stewart 1971), and {.} again 
indicates nested summation�9 In particular cases, some of 
which are shown in Appendix 2, the general likelihood 
(A 1.3) can be simplified. 

Appendix 2 

1) Sire model with N p ( s )  records available only on proge- 
ny of sire S assuming each offspring has a different dam. 

Ns { 
h l ( y l 0 , o ' 2 ) = l ~  ~ p ( I s =ks )  (A2.1) 

S=1 k s = l  

Np(S) t " I~ ~ p(Ii=ki]Is(i)=ks(i))f(yi[Xi=ki,O,o'2) �9 
i = l  k i = l  

An approximation to (A 2.1) would be to pretend that the 
probabilities of major genotype memberships of individ- 
uals having the same sire are independent: 

Np 
hl(yl0,p,  a 2 ) -  VI ~ p ( I i = k ) f ( y i [ I i = k ,  0, o'2). (A2.2) 

i=1  k = l  

2) Records are available on parents and N progeny, each 
sire is mated only to one dam, and N matings produce 
only one offspring each�9 

h2 (yl0,p, o'2) 
N 

= I~ ~ p ( I s=k) f (ys l I s=k ,0 ,o '2 )  
S=1 k = l  

N m 

�9 l-I Z P (ID = 1) f(Yo liD = 1, 0, (rE) (A 2.3) 
D = I  1=1 

�9 m F m I 
f i  Z ~ ZP(s(i)=k[ys(i))p(ID(1) = lJyD(i)) 

i=1  r = l  L k = l  I=1 
1 

p (It = r I Is( 0 = k, ID(i) = 1) I f(Yil I i = r, 0, O'2). 

3) As (2), but each of N matings can produce several (Ni) 
offspring�9 

h3 (yl0, p, o'2) 
N 

= I~ ~ p(Is=k)f(Yslk,0,o'2) 
S=1 k = l  

�9 f i  ~ p ( i D = l )  f(YDIID=l , O,O" z) (A2.4) 
D = I  I=1 

I ~  m I 
f i  ~P(s ( i )  = k [ Ys(0) P (ID(i) = 1 [ Yo(i)) 

L _ - -  

Ni )1 �9 17 ~ p(Ii j=r[Is0) =k,  ID(i) =1) f(Yijllij = r,0,o'~ . 
j = l  r = l  

4) Records are available on parents and progeny, dams 
have one offspring and are nested within sires. 

h4(yl0,p,o'2) 
Ns 

= V[ ~ p (Is = k) f(Ys ]Is = k, 0, o'~) 
S=1 k = l  

N D m 
" I~ 5Z p (I D = 1) f(YD lid = 1, 0, O'2) (A 2.5) 

D = I  1=1 

Ns { m = NDISI I ~  ~ 

- [ I  5Zlp(Is=klys) l-I p( ID=l lyo)  
S=1 k i = D = l  r = l  1=1 

. p(Ii = rlts = k, Io = 1)1 f(yilli = r, 0, o'2'}. 

Appendix 3 

First derivatives of log (A2.1) 

8 
~ log hi (yl0,p, a 2) (A3.1) 

NS Np(s) m 

: Z Z Z P ( I s i  = r I Y) (Ysi ' - 2 - -  Asi, r 0) O'e Asi,  r 
s=1  i=1  r = l  
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where 

p(Isi = r ly)  = 
k = l  

Np (S) m 

p (I s = k) I-I Z P (Isi = r l Is = k) f(Ys~ I Isi = r, 0, a 2) p (Is, = r I Is = k) f (Ys, I Is, = r, 0, a2) 
i = l  r = l  

Np (S) m 

p (Is = k) I-I ~ p (Isi = r I Is = k) f(Ys, [Isi = r, 0, a 2) ~ p (Isi = r I Is = k) f(Yst l Is, = r, 0, a 2) 
k = l  i = l  r = l  r = l  

t t , p and  Asi,~ = [W'r: Xsi"  Zs i ] -  

First  derivatives of  log (A 2.2): 

l o g h t  (yl0,  p, a2) Y~ p ( I i  k[y)(yi--A'ikO)ae2A,k 
~0 i=t k=l 

where  
Ns 

N : ~ N p ( s )  
s = l  

and  p ( I i = k l y  ) = 
p (I, = k) f(y, I I~ = k, 0, a~) 

in 

2E p(I ,  = k )  f(YilI i = k,O,a 2) 
k = l  

First  derivatives of log (A2.3): 

N ~ N 
i~ l ogh2 (y l0 ,  p,o.2 ) ~ p(is=kly)(ys_A,skO)a[2dsk + ~, 

~0 s=l k=l 

N m 

+ ~ Y:P(I,=rly)(Yi-A',rO)a22Air 
i = l  r = l  

where  

p (I s = k[ y) = 
p (I s = k) f(ysl I s = k, O, cry) 

p (I s = k) f(Ys I Is = k, 0, a 2) 
k = l  

p (ID = l ly) is defined analogously,  and  

p ( Io  = II Y) (YD - A'mO) O'e2 ADI 
D = I  I = 1  

(A3.2) 

(A 3.3) 

(A3.4) 

(A3.5) 

(A3.6) 

p ( I ~ = r l y ) =  ~ ~ p ( I s = k l Y s ) p ( I v = l l y v ) p ( I ' = r l I s = k ' I D = l ) f ( Y ' l I ~ = r ' 0 ' a ~ )  (A3.7) 

k = l  1=1 ~ ~ ~ p( l s  = klYs)p( iD = l lYD)p(i ,  = r l l s  = k, iD = 1) f(ytli~ = r, 0, a2) 
r = l  k = l  1=1 

First  derivatives of log (A2.4): 

N Ni 

~ - ~ l o g h a ( y l 0 , P , a ~ ) = - - . + . . . +  2 Z ~p(Iij=rly)(Y,j-A',jrO)a:2A,:,, (A3.8) 
i = l  j = l  r = l  

where the first two par ts  are as in (A 3.5), and  

p ( I i j =  r ~ )  { 
r Nt m 7 

2 2 I k I 1 f I r,0, a f I r,0,a ) P ( s ( i )  = lYs (1 ) )P (D( i )  = l Y o ( i ) ) l l q  ~--~Pr. kl (Yljl i j  = e ) l P r ,  kl (Yij[ ij = r 
L J = I  r = l  / 

m V rNi m 7 m 7 
I k I 1 ) f I r, 0, a Z f(y I r ,0 ,a )  P(  s(o = lYs(i))P(D(i) = lYD(i) Pr. kl (Y~jl i j  -'~ r r lPr.kl ijl i j  = e 

k = l  1 J r 

with pr. kl = P (Iij = r [Is0) = k, I vii) = 1). 

First  derivatives of (A2.5): 

(A3.9) 

Ns ND(S) 

~ log h4 (yl 0, p, 0"~2) = ... + . . .  + ~ ~ p(Ii=rly)(yi-dlrO)a~2Air (A 3.10) 
S = I  i = D = l  r = l  
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where 
ND(s) 

p ( I s = k l Y s )  1-[ ~ ~P(Io---- l lYD) Pr. klf(y, lI~----r, 0, a 2) 
P ( I i = r [ Y ) =  ~. i=D=l I=1 r=l 

ND(S) 

k=~ ~ p ( I s - k l y s )  2 ~ ~ p ( I D = I I y D )  P~.k,f(Y~II,=r, 0, a 2) 
k = l  i = D = l  I=1  r = l  

p(ID = 11YD) Pr'kl f(Yi IIi = rl 0' tr2) ] 

�9 ~=~ ~ ~.,P(Io=llyD)Pr.k~f(yilli=r,O,a~) 
1=1 r ~ l  

(A3.11) 

A suitable expression for p (I s = k lys) and p (I o = l lyo) required in (A3.7), (A 3.9) and (A 3.11) is that  obtained in (A 3.6). 
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