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Fig. 11 a and b. Proposed saccadic activation functions, a) De- 
duced from the current results, b) Proposed by Robinson (1964) 

spectral  analysis  da ta  would no t  necessarily dist inguish 
between the func t ion  in  Fig. 5 a and  a similar funct ion  
which decayed to a different level from the ini t ia l  
level. W i t h  regard to the second difference, however, 
the form of the impulse  in  Robinson ' s  model is no t  
consis tent  with the present  spectral  data.  I t  is worth 
no t ing  t h a t  the result  for the form of the saccade 
act ive i n p u t  is dependen t  only upon  the ratios of the 
observed saccade and  t remor  spectra and  so does no t  
depend upon  assumpt ions  abou t  the system response. 
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Abstract. A diffusion equation for the transition p.d.f, de- 
scribing the time evolution of the membrane potential for a 
model neuron, subjected to a Poisson input, is obtained, with- 
out breaking up the continuity of the underlying random 
function. The transition p.d.f, is calculated in a closed form 
and the average firing interval is determined by using the 
steady-state limiting expression of the transition p.d.f. The 
Laplace transform of the first passage time p.d.f, is then 
obtained in terms of Parabolic Cylinder Functions as solution 
of a Weber equation, satisfying suitable boundary conditions. 
A continuous input model is finally investigated. 

1. Introduction 

Since the impor t an t  cont r ibu t ion  given by  Hagi-  
wara in  1954, there has been a burs t  of publ ica t ions  
a iming at  a stat ist ical  in te rpre ta t ion  of electrophysio- 
logical traces, obta ined in  intrace]lular  recording ex- 
periments .  This task has usual ly  been unde r t aken  by  
formulat ing neural  models simple enough as to permit  
one to evaluate  features of the neuron ' s  output ,  sub- 
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sequent to an assigned input, in order to compare them 
with available experimental  data. The goodness of the 
agreement may  then lead to a numerical evaluation 
of the parameters  appearing in the model. The draw- 
back of such a procedure is tha t  in all cases the neuron's 
input  has to be chosen ad hoc. As it was pointed out 
by  Ricciardi et al. (1970), if one wishes to retain in 
the model some of the well-known features exhibited 
by  biological neurons, the input-output  relationship 
can be theoretically determined only if suitable as- 
sumptions on the input process are made. For a more 
detailed discussion as well as for the description of a 
realistic neural model and of the mathemat ical  tech- 
niques suitable for describing its input-output  relation- 
ship, we refer to the above-quoted paper. 

In  this article we will be concerned with a problem 
studied by  some authors since the t ime when Gerstein 
et al. assumed a "brownian motion-l ike" mechanism 
as responsible for the spike generation in a very simpli- 
fied model neuron. Several articles aiming a t  arigorous 
formulation of the diffusion approximation for the 
probabilistic description of the act ivi ty of simplified 
model neurons have appeared in the Literature.  We 
will not refer to all of them, as some are obviously 
wrong and some others have already been mentioned 
by  Johannesma,  to which we make reference. 

I t  is our opinion tha t  some very crucial points 
implicit in the nature of the diffusion approximation 
for the description of the neuron's act ivi ty have not  
been pointed out, which makes some of the results so 
far presented rather  obscure. For  this reason, we take 
up the problem ex hove and proceed to show how a 
sensible meaning can be at tached to it  and to what  
extent  it  can be solved. 

The underlying idea is tha t  the state of the neuron 
can be described by  a single variable y representing 
the variat ion of the potential  difference existing across 
the membrane (membrane potential, for short) of biolog- 
ical neurons. The state y ~--0 is the resting potential. 
In  the absence of inputs to the neuron, y spontaneously 
decays with an exponential law to the resting value: 

y(t) = y(to)exp (-- ~ )  , (1.1) 

where 0 is the t ime constant typical  of the neuron's  
membrane.  

As is customary, we assume tha t  the neuron's input  
consists of a sequence of two types of zero-width im- 
pulses Poisson distributed in t ime with rates ae and 
~i respectively, where the suffixes e and i s tand for 
excitatory and inhibitory. The effect of an incoming 
input  pulse is supposed to be instantaneous: I f  y(t) 
is the state of the neuron a t  t ime t, the arrival of an 
exci tatory input in the t ime interval (t, t + dr) induces 
the transition 

y(t) --> y(t) ~- e, e > O , (1.2) 

whereas an inhibitory pulse produces the jump:  

y(t) ---> y(t) + i,  i <O. (1.3) 

Assuming tha t  the neuron releases a spike when and 
only when the variation of the membrane potential  y 
reaches or exceeds a constant  threshold value S, being 
then instantaneously reset to an initial value y(0)--~ 
Yo ~ S, the neuron's output  is completely described by 

the so-called "/irst passage time" probabil i ty density 
function (p.d.f.), to be defined more carefully later. 
Before coming to some quanti ta t ive t reatment ,  we only 
want  to remark tha t  in any realistic neural model 
attaining the first passage p.d.f, should not  be con- 
sidered as the achievement of the final task,  but  only 
the starting point toward the description of the 
neuron's output.  

In  Section 2 we will determine the exact  equation 
for the transition p.d.f., describing the t ime course of 
the neuron's state in terms of the input parameters  
~ ,  g~, e, i, and in Section 3 we will see how paradoxical 
results may  be obtained if one a t tempts  approximating 
this equation by only choosing suitable values for the 
magnitude of the jumps e, i. I n  Section 4 we will prove 
tha t  without making any  approximation a diffusion 
equation can be written by a limiting procedure tha t  
makes the magnitude of the jumps infinitesimal and 
the rates of the input  process infinitely large. We also 
determine in a closed form the transition p.d.f, and its 
steady-state limiting form, the use of which is made 
in Section 5 to give a closed form expression for the 
average firing interval. In  Section 6 we determine the 
Laplace transform of the first passage t ime p.d.f., in 
terms of Parabolic Cylinder Functions, as solution of 
a Weber equation. Finally, in Section 7 we release the 
assumptions so far made about  the input process, in 
order to consider a more realistic situation, i.e., the 
case when the input impulses are not  delta-like, bu t  
have all finite width and amplitude. To simplify the 
mathematical  t rea tment  we assume tha t  these pulses 
are identical to one another, although we do not  foresee 
any  particular difficulty in dealing with pulses whose 
parameters  are random variables. Because of the break- 
down of markovi ty  and stat ionari ty in this model, the 
first passage t ime p.d.f, cannot be evaluated but  by  
numerically solving an integral equation involving the 
transition p.d.f. 

2. The Transition p.d./, and its General Equation 

The assumptions made in the previous Section 
amount  to saying tha t  the membrane potential  y(t) 
is a Marker  s tat ionary random function (or stochastic 
process) in one dimension. Introducing then the transi- 
tion p.d.f. / (y , t /yo,  0) the Smoluchowski equation 
holds: 

I(Y, t § At/yo, O) 

= f dz / (y ,  t + A t / z ,  t) l(z, t/yo,O), 
(2.1) 

where t -F zJ t ~ t ~ 0 are arbi t rary  instants. This is an 
integral equation regulating the time evolution of the 
considered stochastic process. Due to the simplicity 
of our model, Eq. (2.1) can be thrown into a much 
simpler form. To do so, we note that ,  disregarding 
infinitesimal quantities of order higher then A t:  

l S b  Kybernetik, Bd. 8 
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where J(x) is the Dirac delta-function. Substitution 
of (2.2) in (2.1) yields: 

I(Y, t~-At/yo, 0)---- 1 A t  t {[1 - -  (~%+ ~i) At] 
1 

o 

�9 z !  . ,4t ' t / Y o ' O  d ( z )  

1 --  ~ -  (2.3) 

+:r f dz/~ Y - - ~  't/y~ O) l 

o) 
I1 t 't/y~ l, 

o r :  

/(y, t + At /y  o, O) 

= (1 "-I--~-){[1- (q.~ + ~i) A t] 1 (y-F y ~- ,  fly o, O) 

where use of the approximation 

At 

1 - -  - - -  (2.5) At ~ e ~  ~1-~  Ato 

0 

has been made. We incidentally note tha t  Eq. (2.4) 
differs from the corresponding expression found by  
Johannesma.  From Eq. (2.4), in the limit when A t-->0 
we obtain the following differential-difference equa- 
tion: 

a/ a 

- -  l (Y, t /yo,  O] + cq [l (Y - -  i, t / y  o, 0) (2.6) 

--t(y, tlYo, 0)]. 
Let  us note explicitly tha t  Eq. (2.6) is by  no means 
easier to handle than Eq. (2.1), a t  it involves deriv- 
atives (with respect to y) of arbitrarily high order, 
thus being equivalent to an integral operatorL Ex- 
panding, indeed, {(y--e,  fly o, 0) and I (Y-- i ,  t/yo, O) 
as Taylor  series about  y, Eq. (2.6) takes the form: 

81 ~ _ ~  ~ a  co (_  1)n A ~nl (2.7) 
st ~y [A~(y)'l]+ ~ n'. "-'~ ay,,' 

n ~ 2  

where we set 

A l ( y ) = - - Y  ~-m, m- - -ae .e~-~ . i ,  
(2.8) 

A n = ~ % ' e  ~ + : q ' i  ~ (n----2,3 . . . .  ). 

As it  is easily seen, An's defined in (2.8) coincide with 
the infinitesimal moments  of the displacement z, de- 
fined as: 

�9 l n f (2.9) An(y, t) 

Due to the s tat ionari ty of our process these moments  
are effectively time-independent. 

1 I t  is easy to determine the y-Fourier transform of the 
solution of this equation satisfying the initial condition (3.2), 
but this does not appear to be of any help for solving the first 
passage time problem (el. Sections 3, 4). 

Unless we add to our model some further suitable 
assumption, the non-vanishing of the An's for all 
n prevents us from simplifying Eq. (2.6) into a dif- 
ferential equation, thus being negated the possibility 
of determining the transition p.d.f, so tha t  we would 
not  achieve any  description of the neuron's output�9 
This is a very crucial point deserving considerable 
care: As we will see in Section 3, approximating 
Eq. (2.6) by  a differential equation may  lead to mean- 
ingless or useless results for solving the neuron's model 
described before. 

3. ApTroximafions to the Transition p.d.{. Equation 
For a better  understanding of the problems arising 

when one a t tempts  approximating Eq. (2.6) by  a dif- 
ferential equation, let us start  examining two simple 
cases. As a first instance, let us take e and i as in- 
fiuitesimal quantities. Eq. (2.6) then becomes: 

8/ _ y a/ 1 
st 0 ay ~- -~}-" {' (3.1) 

which is nothing but  the equation describing the spon- 
taneous decay of the membrane potential toward its 
resting value. The solution of (3.1) satisfying the initial 
condition 

~mol(y, t/y o, O) ~--(~(Y--Yo) (3.2) 

is indeed readily seen to be: 

Clearly, this is a trivial case, as the approximation 
made amounts to eliminating the input parameters  
from the equation regulating the transition p.d.f., the 
only spontaneous exponential decay being left un- 
altered. However, we will see right away tha t  an in- 
consistent result may  be found even though the ap- 
proximating equation retains the input parameters.  
Indeed, disregarding in Eq. (2.6) all the terms con- 
raining powers of e and i, i.e. taking small enough 
these quantities, we obtain: 

St ~ -~ O / "  (3.4) 

The general solution of (3.4) is: 

= o x .  

where H denotes an arbi trary function whose form, 
using condition (3.2), is found to be: 

H(x) = ~ (x ~- m 0 -- Yo)" (3.6) 

Therefore, the solution of (3.4) satisfying (3.2) is: 

(3.7) 

In  other words, the approximation made leads us to 
a meaningless result. The membrane potential,  sub- 
jected to a random input, is a deterministic function 
of t ime: 
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Wha t  about  retaining in (2.6) only terms containing 
e, i and e 2, i ~ ? The resulting equation is then:  

Ot -~ 2 0 y '  Oy --  + m  / , (3.9) 

with: 
# ~- ~e" e~ ~- a~" i~, (3.10) 

which is a Focker-Planck equation with dri/t m -  Y~ 
0 

and dispersion tz. In  this case we should expect the 
existence of a non-trivial approximation to the transi- 
t ion p.d.f. Of course, one can go on in a sim~l~r way, 
retaining in Eq. (2.6) higher powers of e and i, thus 
obtaining, if able to solve the corresponding equations, 
bet ter  and better  approximations to the transition 
p.d.f. However, unless one aims only a t  possessing such 
a function, this way of proceeding is sterile, as it  does 
not lead us to any  further  understanding of the be- 
havior of the considered model neuron. Indeed, as long 
as we take e and i /inite (though small) the random 
/unction underlying our model is not continuous, thus 
becoming badly set the problem of determining the 
p.d.f, for the first passage time, i.e., for the times when 
the neuron releases spikes. I n  the following, we will 
have occasion to point out where the continuity of 
the random function is a necessary prerequisite for 
determining the first passage t ime p.d.f. In  any  case, 
we refer to Siegert and to Darling et al. for an ex- 
haustive presentation of the conditions under which 
the first passage t ime p.d.f, can be calculated, and for 
the mathematical  techniques to be used. To our knowl- 
edge, none of the authors who have  been concerned 
with the first passage t ime problem for model neurons 
were aware of the existence of the quoted papers;  this 
may  explain in pa r t  the incorrectness of some of their 
findings, and justify why sometimes results two dec- 
ades old have been presented as original ones. 

4. The Di//usion Equation and its Solution 

I n  the previous Section we showed tha t  assump- 
tions about  the magnitude of only the jumps e and i 
induced by  the input  on the neuron's membrane poten- 
tial either lead us to inconsistent results or do not 
permit  to solve the first passage t ime p.d.f, because 
of the consequent lack of continuity of the stochastic 
process y(t). This suggests tha t  sensible results m a y  
be found only for limiting values of both the magnitude 
of the jumps e, i and the rates ~e, ai a t  which input  
pulses bombard  the neuron. Before showing how one 
can write a diffusion equation for the transition p.d.f., 
let us consider a single instance showing that ,  under 
suitable hypotheses, even a first order equation of the 
type  found in Section 3 can describe a meaningful 
situation. This is the case when 

e-->0, i-->0, cce-->c~, :r 

and these limits are taken in such a way tha t  

--  co ~ m = o:e. e-~ ~ .  i ~ c~. (4.1) 

The quantities An's defined in (2.8) are thus all vanish- 
ing, whereas A 1 (y) is not zero. The equation for the 
transition p.d.f, is then identical to (3.4), the only 
difference lying in its interpretation. Indeed, it  has to 

be looked at  as the equation for the membrane poten- 
tial of a neuron subjected to a D C  input  of magnitude 
m. The deterministic transition p.d.f, expressed by  
(3.7) is quite consistent since, in the considered limiting 
case, only one value for the potential  membrane should 
be expected at  any  given time. Clearly, the first pas- 
sage t ime p.d.f, defined by  the proper ty  

g (S, t/yo) dt --  (Probabil i ty tha t  for the first t ime in the 
interval (t, t -~dt )  the potential  mem- 
brane y, starting from the value Y0 at  
t ime zero, equals the threshold value S}, 

can now be calculated as 

g(S,t/yo) ~ ( t - - o "  yo-mO~ = ~ m ~ ) ,  y 0 < S .  (4.2) 

This result can be given a rigorous proof by  noting 
tha t  (el. Siegert, 1951) due to the continuity and the 
stat ionary of y(t), the following renewal equation 
holds: 

t 

I(Y, t/yo, O) -~ f/(y, t --  ~/S, O) g(S, ~/yo) d r ,  (4.3) 
0 

y o ~ S .  

Denoting by  the suffix L the Laplace transform of a 
function, from (4.3) one obtains: 

g~(S, ~/yo) -/~'(Y' ~/Y~ o) /L(y, ~/s, 0) ' Y0 < S (4.4) 

where 2 is the transformed variable. A simple calcula- 
tion then leads us to write: 

g L ( S , ~ / y e ) - - _ e x p I _ ~ "  Yo -toO1 m ~ _ ~ - ] ,  Y0 < S (4.5) 

whose inverse transform is immediately seen to co- 
incide with (4.2). Note tha t  relation (4.4) cannot be 
written for a discontinuous random function. 

We now return to the original problem of writing 
a diffusion equation for the transition p.d.f. In  order 
to do this, we use the fact  tha t  (Blanc-Lapierre et al.) 
a su//icient condition for y(t) to be continuous is 
essentially that :  

, /  - - o o <  lira d z z / ( y ~ - z , t - ~ - A t / y , t )  
,d t--*- 0 ~ -  

----Al(y, t) < ~ -  oo 

~--A~(y, t) ~ + 

(4.6) 

and tha t  

lira ~ f d y / ( y , t + A t / y o ,  t ) = O  (4.7) 
At--~O At J 

for any  positive quant i ty  ~. Conditions (4.6) and (4.7) 
are known as the Lindeberg-L6vy conditions for the 
Focker-Planck equation. Further  constraints (Blanc- 
Lapierre et al.) on Al  (y, t), A2(y,  t), ~A1/ay should be 
given; however, for brevity, we will not  specify them, 
as they will be automatically satisfied in the situation 
we are going to consider. Note tha t  (cf. Helstrom) 
condition (4.7) secures tha t  the moments  An's (n .~ 
3, 4, ...) are all vanishing. 
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I f  we then take 

(x e = l i m  C_ e , C e > 0 
:V ----~ 0 X z 

or lim C/_, Ci>O 
X ---)- 0 X ~ 

i = l i m  kix  , k i < 0  
:V--~ 0 

e = ~-~olim k e x, k~ = -CC~ I kil '  

(4.8) 

it  is easily seen tha t  relation (2.8) reads: 

Y 

.~/ Ci +1)>~ (4.9) 
_ _  ] A~ l i m x  k iCi  C~ n ~ §  = 0  ~-->0 Ce 

(n : 3, 4 . . . .  ). 

Thus conditions (4.6) and (4.7) are satisfied, which 
secures the continuity of the random function y(t). 
The transition p.d.f. ](y, t/y o, O) - - / (y ,  t/yo) is then the 
solution of the Focker-Planek equation 

a/ a ~ /  (4.10) 
- -  - F  2~ ff 0 y ~ ,  ~ t  

where we set 

ff--A~=Cik~(CC:+ 1) 2. (4.11) 

Furthermore,  / (y, t/yo) should also satisfy the following 
initial and boundary conditions: 

] (Y, O/Yo) = 5 (y -- Yo) 
1 ( •  0% t/yo) = 0 for finite Y0 

/ (y, t / •  ~)  = 0 for finite y. 

(4.12) 

We incidentally note tha t  Eq. (4.10) is the continuous 
counterpart  of the discrete random walk for a harmoni- 
cally bound particle (see for instance Middleton) whose 
Langevine (or fluctuation) equation is 

dy 
dt -[- 0 y=F( t ) ;  (4.13) 

in this equation the driving force F(t) belongs to a 
s tat ionary normal process such tha t :  

~(t) = o  
(4.14) 

F ( t l )  F ( t2 )  = f f  ~ (t~ - -  tl) 

where the bar  denotes the ensemble average operation. 
In  order to determine ] (y, t/yo), we note tha t  pass- 

ing to the Fourier t ransform T of [, defined as 

~(2, t/yo)=--- ~{I(Y, t/yo)} 
+ ~ (4.15) 

= f d y e x p ( i y 2 ) l ( y ,  t/yo), 
- - C O  

there results: atat _~-1{~} 
a~l _ ~ - 1 { _  ;2 ~} 
8y ~, (4.16) 

Therefore, Eq. (4.10) leads to the following first order 
equation for ~0 : 

~ 1 - ~ 1 
~t + 0-~-~- = - -  2 #~2q~' (4.17) 

whose general solution is readily seen to be: 

here H is an arbi trary function to be determined by 
the initial condition (4.12)x. Indeed, one easily obtains: 

lim ,-~o ~(~' flue) - ~ ~ { / ( y ,  t/y0) 

= e x p ( i  yo,~) = H(,~)exp [-- ~O4-~z ]. (4"19) 

Hence, 

H(,~) = exp [i yo,~ d- ~-~04~ ] ; (4.20) 

Eq. (4.18) then reads: 

(4.21) 

Invert ing the Fourier transform, we finally obtain: 

1 exp --  (4.22) ! (y, tlYo) = V 2 ~  2(~ ' 

having ~et: 

This is the desired transition p.d.f, for the membrane 
potential  of our model neuron. As the t ime t is de- 
creased to zero, the transition p.d.f, becomes more 
and more concentrated near Y0, and in the limit t----~0 
it  becomes a delta function, as expressed by  (4.12)1. 
On the other hand, it is easy to see that  as t ime 
increases the transition p.d.f, depends less and less on 
the initial state Yo, to approach, in the limit t--> co, 
a steady-state p.d.f. W(x) which is time-independent. 
In  fact, there results: 

W(x) = l~n  I(Y, tlYo) -- V ~ o  

Note that ,  if existing, the steady-state p.d.f, can 
be directly expressed in terms of the first and second 
moment  appearing in the Focker-Planck equation. In-  
deed, it is easily seen tha t  

W ~ y -  ~4~ A~ 2 ~y ] '  (4.25) 

from which it follows: 

[f ' (4.26) W = cons t •  dy  A~ 2 ~y/J " 

Substituting A x and A ~ with - -  ~- and respectively, 

and using the normalization condition one finds again 
(4.24). 

We conclude this Section by  stressing tha t  a Focker- 
Planck equation for the transition p.d.f, describing the 
membrane potential of a model neuron can be written 
without infirming the continuity of the underlying 
random function. We have given an example leading 
to the transition p.d.f. (4.22), without discussing 
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whether the limiting conditions (4.8) are the only 
possible ones. Finally, note tha t  (4.22) is not an ap- 
proximation of the transition p.d.f., contrary to what  
we should expect if the diffusion equation were writ ten 
by  taking finite (though small) sizes for the jumps e 
and i. 

5. The Average Firing Interval 
In  the previous Section we have determined the 

transition p.d.f. / (y ,  t/yo) as solution of a Focker- 
Planck equation, and we have shown tha t  a steady- 
state transition p.d.f. W(y)ex i s t s .  This circumstance 
will now enable us to determine the average firing 
interval t 1 (yo/S) for our model neuron, without having 
to possess beforehand the first passage t ime p.d.f. This 
result follows from the theory worked out by  Siegert; 
this is very useful and elegant, as all the moments  
tn(yo/S) (n = 1, 2 . . . .  ) of the first passage t ime can be 
obtained in terms of the infinitesimal variance appear- 
ing in the Focker-Planck equation and the steady-state 
p.d.f. Indeed there results: 

t o (yo/S) = 1 
S z 

f tn(Yo/S ) -~ n A~-W(z) W(x)  tn_l (x /S  ) d x  (5.1) 
Y" - ~  (n = 1, 2 . . . .  ). 

In  particular, for n = 1, recalling (4.11) and (4.24), 
after simple manipulations one obtains: 

S S 

y. yo (5.2) 
Z 2 Z - -  

where Err denotes the well-known error-function de- 
fined as: 

Er/(x) = f exp (-- t~) dr. 
0 

We now note tha t  I 1 can be writ ten as 

r s l ~  Uo/V~-e 1 
I I : 0 V ~  [ / exp( t2 ld t  - f exp( t ' )d t ]  

o (5.3) 

L ]/~o/ 

where Erfi (x) is the imaginary error function: 

Erfi (x) = f exp (t 2) dr. (5.4) 
0 

Making use of the Kum m er ' s  function (cf. for instance, 
Tricomi) 

~ a(a-~-l) . . . (a~-n--1)  xn 
~b(a, c; x ) = l ~ -  c(c§ n! " (5.5) 

I 1 takes the form (cf. Tricomi): 

V ~  ,2-, ~o 
(5.6) 

V~o ' ~o /j" 

In  order to calculate I~, we recall tha t  

Err (x) ---- e x p ( - -  x~) • r  ~; x~); (5.7) 

therefore, there results : 

S~I~O 
I ~ = 0  f ~b(1,{; x) d x  

v~l~O 

which, after a 
yields: 

(5.8) 

permissible te rm by  te rm integration, 

I 2 = 0  ( n +  1) ( 2 n +  1)!! 
n ~ 0  (5.9) 

Summing up (5.6) and (5.9) one obtains the desired 
average firing interval t 1 (yo/S) : 

t l ( yo /S )=O ~ S q5 , ~ ;  ~ 

yo 
~ z ; l / ~  ' ~o11 

(5.m) 
co 2 n  

@n_~0= (n+l)(2n-{-1)!! 

"t - ~ -  - ~ I / Y 0 ,  Jl 

We incidentally note tha t  (5.10) corresponds to the 
mean output  interval determined by  Roy  et al. by  
means of the recurrent relation (cf. Helstrom): 

a" (Yo) ~ o'  t , (yo/S ) = ( - -  1)~ ~ g~ = (5.11) 

where g~.(Yo) denotes the Laplace transform of the 
first passage time p.d.f. (cf. Section 6). As pointed out 
earlier, our result, instead, follows from the knowledge 
of the sole Focker-Planck equation, the steady-state 
transition p.d.f, being itself expressed by  means of 
the coefficients of this equation. 

6. First  Passage Time Problem 
We will now make use of some impor tant  results 

worked out by  Siegert and by  Darling et al., in order 
to determine the Laplace transform of the first passage 
t ime p.d.f. Unfortunately,  there seems to be no way 
of determining an analytical expression for the first 
passage p.d.f., but  one can t ry  to evaluate it by  numer- 
ical methods over a reasonably large grid of para- 
meters. However, we stress the fact  tha t  the present 
paper does not aim at  any direct application of the 
results presented, whose interest is purely theoretical. 
In  any case, as we mentioned in the Introduction,  
obtaining the solution of the first passage t ime problem 
for our model should only be regarded as a starting 
point toward a complete mathemat ica l  description of 
the input-output  behavior of the considered neuron. 
Of course, if one wishes to determine the moments  of 
the first passage t ime one does not need at  all to find 
first the Laplace-transform of the first passage t ime 
p.d.f., as Roy  et al. did. In  fact, as seen in Section 5, 
the knowledge of the Focker-Planck equation, whose 
solution is the transition p.d.f., suffices for the calcula- 
tion of all the moments. 

Let  us now star t  recalling that ,  due to the con- 
t inui ty  and stat ionari ty of our random function, the 
L-transform of the first passage t ime p.d.f, g (S, ~/Yo) 
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is expressed (independently of whether f(y, t/yo) is 
solution of a Focker-P]anek equation) by (4.4), where 
the second member should not  depend on y. Therefore, 
if one were able to calculate the L-transform of (4.17), 
the function gL (S, 2/yo) would be attainable. There is, 
however, another way for calculating this function 
which also implicitly yields, apart  from a factor func- 
tion, the L-transform of (4.17). As we will see, it  allows 
us to compare the results achieved by Roy et al. with 
ours and shows that  the function gL (S, 2/ys) is "natu-  
ra l ly"  expressed in terms of the Parabolic Cylinder 
Functions. 

The starting point consists in realizing tha t  
9a(Yo) ~gL( S, ~/Yo) can be obtained as solution of the 
equation 

(Lo* -- 2) ga = 0 (6.1) 

satisfying the boundary conditions 

ga (S) = l, ga (--  oo) = 0. (6.2) 

In  Eq. (6.1) the symbol Lo* denotes the operator 

d 1 . d2 -~L~, (6.3) Al(Yo) d~y ~ + ~ A2 ~y~- 

where the coefficients A 1 (Y0) and A 2 are to be obtained 
from (4.9)1 and (4.11), respectively. In problems of the 
type considered here, it  is expedient to change the 
boundary conditions (6.2) into the following: 

g~ (S) = 1, g~ (--  b) = 0, (6.4) 

where b > -  S is an otherwise arbitrary quantity. 
Solving Eq. (6.1) together with conditions (6.4) thus 
yields a function g* (Y0) ~ g~ (S, 2/yo) such that  

lim g~(Yo) ---- 9x (Y0). (6.5) 
b- -+  oo 

Let  us now see how this method applies to our 
model. Recalling (4.9)1 and (4.11), by the definition 
(6.3), Eq. (6.1) in our case reads: 

d2g~ 2 dg~ 22 g* = 0 .  (6.6) -d y~ #0 ?4o dy~ /x 

This, after the change of variable 

Y0 ~ - -  ( #  0 x)�89 (6 .7 )  
becomes : 

d~g~ (12 ) dg~ 20 x ~ +  - - x  gx 2 g ~ = 0 ,  (6.s) 

which is an t typergeometric Confluent Equation of 

(?  ;) I.. oa  o,,roooo    oivo parameters 
k ~  

it  by  means of the existing standard techniques, we 
note tha t  changing both function and variable in the 
previous equation by  the following transformation 

(2 )  l z~ (6.9) g * ( x ) = e x p  - u(2, x), x = ~  

throws Eq. (6.8) in the form 

d ~ u (  1 1 ) 
dz 2 + - - 2 0 +  2 4 z2 u = 0 .  (6.10) 

This is a Weber equation, admitting of the linearly 
independent solutions D-a  0 (z), D a 0 (--  z), where D~ (x) 
is the PCF defined, for instance, in Tricomi. The 
general solution of Eq. (6.10) is therefore: 

u(2, z) =AD_~o(Z) + BD_ao(--z), (6.11) 

where A, B are arbitrary constants. Applying back- 
ward the transformations (6.9) and (6.7), the general 
solution of Eq. (6.6) is found to be: 

(6.12) 
+ BD-ao(Yo V ~ ) ] "  

Using the boundary conditions (6.4) specifies the con- 
stants A, B. A simple calculation shows that  

)_ 

(6.13) 

B =  

Substituting these expressions in (6.12) gives the func- 
tion g*(Yo) satisfying Eq. (6.6) and conditions (6.4). 
However, in order to obtain the solution to our prob- 
lem, we need to take the limit of (6.13) when b-> ~ .  
This is easily done by means of the asymptotic ex- 
pansions of the PCF (see, for instance, Tricomi): 

- ~-(2~ 

where the notation used means that :  

: y + o ( l  

By means of (6.14) we find, in the limit b--> co 

A - -  

B = O ,  

so that  (6.12) becomes 

g~ (yo) --b~m g* (y0) 

Io,~ s2,D-~~176 -) (6.17) 
o ,I 

This is the L-transform of the first passage time p.d.f. 
for our model neuron, in which the dependence on the 
initial state Y0 is clearly expressed. We incidentally 
note that,  assuming 

0 = �89 = 1 (6.18) 

(6.17) coincides with the expression determined by 
Siegert for a normalized Gauss-Markov function. Note 
also that  equating the second members of (4.4) and 
(6.17) yields, apart  from a term ~v(y), an expression 
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for the L-transform of the transition p.d.f. : 

1~, (Y, 2/yo, O) 

=v/(y) exp ( ~ )  D_~o ( _  Y o y ~  ) . (6.19) 

We finally remark tha t  expressing the PCF in terms 
of Kummer ' s  function (cf. Tricomi) we obtain an equiv- 
alent formula for the L-transform of the first passage 
t ime p.d.f. Indeed, a straightforward calculation leads 
to the following expression: 

g~(Y0)= ~(.~o _1. yg~ 

S 2 

�9 (~~ 2 

2Yo 

o §  

(6.20) 

~(~o+1 ~.yo~ 
2 ' 2 ' # 0 }  

which, after simple manipulations, is recognized to be 
in agreement with the corresponding formula deter- 
mined by  Roy  et al. 

7. Input Impulses o/Finite Width 
We now wish to investigate to what  extent  con- 

sidering a more realistic input  we are allowed to de- 
scribe the behavior of our model neuron. As we will 
soon see, very little can be said, due to the breakdown 
of the markovi ty  and the stat ionari ty of the new 
random function, even in the simplest ease, i.e., when 
the input  consists of a sequence of positive and nega- 
t ive rectangular pulses, all having equal ampli tude 
and width generated from a Poisson sequence of im- 
pulses, starting a t  t ime t = 0, by  the following rule: 
After each Poisson pulse, all other pulses following i t  
in a t ime interval of length ~ are suppressed. In  other 
words, we assume tha t  the neuron's input  is the output  
of a non-linear device, having a dead time of duration 7, 
tha t  changes a sequence of positive and negative 
Poisson pulses into a train of rectangular pulses all 
having the same (positive or negative) strength and 
same duration. The probabilistic description of the 
output  of such a device was extensively investigated 
b y  Riceiardi et al. (1966) in the case when all Poisson 
input pulses are positive. However,  with very little 
effort one can generalize these results to the case of 
interest to us. 

This t ime we can retain the continuity of the 
stochastic process describing the t ime course of the 
neuron's membrane  potential  without any  need to con- 
sider ]imlting situations for the input parameters.  I t  
will suffice to assume tha t  the arrival of an input pulse 
a t  any t ime t makes the state y(t) change in a con- 
tinuous fashion for a t ime interval equal to the pulse 
duration ~. In  the absence of input, y(t) is again 
assumed to decrease exponentially to the resting value 
y = 0 .  

Out of the several possible variat ion laws tha t  one 
can pick up for describing the effect of the input  on 
the membrane  potential  we will choose the linear one, 
only because it is the simplest to deal with. Further-  
more, we will assume the slopes of the linear increase 
and linear decrease of the state y to be identical. With- 
out any  difficulty, however, one can generalize our 
calculations to the case of any  continuous variat ion 
law one may  wish to take.  Denoting by  2 this slope, 
ff at  t ime t an input pulse impinges on the neuron the 
state y (t) undergoes the following change in the sub- 
sequent t ime interval (t, t Jr T) : 

y( t ' )=y(t)-F2(t ' - - t )  t ~ t ' ~ t q - v ,  (7.1) 

where q- sign applies according to the polari ty of the 
incoming pulse. In  the absence of input  we assume 
relation (1.1) to describe the spontaneous exponential 
decay. 

I t  will be convenient, from now on, to refer to the 
transition distribution function (D.f.) F(y,  t/yo, O) -- 
F(y,  t/yo) instead than  to the transition p.d.f. 

Denoting again by  ~e and ~i the rates of the positive 
and negative Poisson processes underlying the neuron's 
inputs, one can prove tha t  the following equation 
holds: 

�9 (r ,) 
+ F(y--2At, t lydPs + at, t/y--,tAt, t) 
+ F(y + 2at, tlydP~-(t- 7: + At, t/y + 2zlt, t) 
ta=t+ At 

+ f F [, ~ t/yo] 
ta=t, 

�9 e xp  [ - -  (0q + ~i) (t + / 1  t - - / J  ] 

�9 [ , . - , , , , - , +  A,/,,ox,,('+ 
t*=t+At 

t*=t 
, t * - - t  

�9 < , "  

§ o ")+ 2(t,-tl, tlyo] 
h=t 

�9 exp  [ - -  (~, + ~i) (t + A t - -  tt) ] 

�9 dP l - [ ta - -%t l - -~+At lyexp( - '+A{-h )  
t*= t + A t  

-{-" 2( '  1 -  t), t[-4-~, I 
% 

dr* 
t* =t 

�9 < , * - . .  ,*/[,, + ;,(,+ ox.. ,} 
+O(At), 

where t t and t* are instants in the interval (t, t + A t) 
and Px +, Po, ~ are functions defined as follows 
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P1 ~ (a, b/y, t) ~ Probability of having one positive (neg- 
ative) input pulse in the time interval 
(a, b), knowing that  at t the neuron's 
state is ~ y. 

Po (a, b/y, t) ---- Probability of having no input pulses in 
(a, b) knowing that  the neuron's state 
is _--< y at t. 

Clearly the following identity holds: 

P1 + (a, a + r/y, t) + P1- (a, a + r/y, t) 
(7.3) 

+ Po (a, a -p r/y, t) = 1 

for any given a, y, t. 
Retaining only the linear term in the exponentials 

and making use of the identity 

P~( t - -  v + A t, t/y, t) ----P~ (t--v,  t/y, t) 
(7.4) 

--dPl~ (t--  % t - -  v +,d t /y ,  t), 

Eq. (7.2) takes the form: 

F(y, t + At/yo) = F(Y + Y A~ , t/yo) 

�9 Px + ( t  - -  v ,  t / y - -  h A  t, t)  + F ( y  + 2 A  t, t / y o )  

Pl-(t % t / y + a A t ,  t) F ( y +  At tlYo) (7.5) �9 _ _ y ~ - ,  

�9 P o ( t - - v , t / y + y ~ - ,  t ) ( ~ q - ~ , ) A t  

- - F (y - -  2At ,  t/yo)dP~+ (t-- v, t - -  v + A t / y - -  hAt ,  t) 
-- F(y + hAt ,  t/yo)dP~-(t-- %t - -  v + A t / y - -  2At,  t) 
+ A (t, t*, ta) + 0 (A t), 

where A(t, t*, tl) stands for the sum of the integrals 
of Eq. (7.2). Making then use of (7.3) and of some 
obvious manipulations the previous equation becomes : 

F(y, t-t-Z1 t/yo)--F(y, t/yo)-F F(y, t /yo)--F(y--2 A t/yo) 

: 

�9 e0( t -  v, u y + y ~ ' ,  t) + iF(y+ h a t, tlyo) 
- -F(y ,  t/yo) ]Pl-(t--% t / y+ h A t, t) + IF(y, t/yo) 
-- F(y - -h  A t, t/yo) ] Po (t--% t /y--h A t, t) q- [F (y, t) 
-- F(y  -- h A t, t)] P~- (t --% t/y - -hA t ,  t) (7.6) 

+ [Po(t--%t/y+ y--o-,At t ) - -Po(t--v , t /y ,  t)j] F(y, t/Yo) 

+ [P~-(t--v, t / y + 2 A t ,  t)--P~-(t--% t/y, t)]F(y, t/yo) 
-t- [P0 (t--% t/y, t)-- Po(t--% t /y--2 A t, t) ]F (y, t/yo) 
+ [P~- (t--v, t/y, t)--P~-(t--% t / y - -hA t, t)]F(y, t/yo) 

(, 
- - F ( y - - 2  A t, t/yo) dP~ + (t-- v, t--  v + A t /y--h A t, t) 
- - F ( y + 2 A  t, t/yo) d P~-(t-- v, t - -  v + A t/y-l-2A t, t) 
-~ A (t, t*, t~) q- 0 (A t). 

Dividing now both members by A t, in the limit 
when A t--~0 one finds the following equation: 

(7.7) 
s ( F .  P~-) - ;t s ~  

or, making use of (7.3): 

SFst --[Y0 SPOsy ~y(PI+- -P1- ) ]  F 
(7.8) 

+ [~ po_ h(p+_ pl_)] sF S y '  

where we set: 
F = F(y, t/yo) 

Po = Po(t -- v, t/y, t) (7.9) 

p~ = P~ ( t -  v, t/y, t). 

Eq. (7.9) describes the time course of the D.f. for the 
membrane potential of our model neuron. We inci- 
dentally note that  in the limit when ~e-+0, ai->0, or 
when the width v of the input impulses vanishes, 
Eq. (7.4) simplifies as follows: 

OF y SF 
- -  ( 7 . 1 0 )  st 0 Sy 

which, after differentiation over y, is immediately 
recognized to coincide with Eq. (3.1) describing the 
spontaneous decay in the absence of inputs. 

Solving Eq. (7.8) with the initial condition 

{10' Y~Y~ (7.11) 
F(y, O/Yo)= , Y < Yo 

leads to determine the D.f. F(y, t/yo). For instance, 
taking ~----~i, Eq. (7.8) becomes: 

SF _ Y F ~P0 + Y ~F 
st 0 ~ -  o P o - ~  �9 (7.1.2) 

Its general solution is 

where the arbitrary function H, determined by (7.11), 
holds : 

H(x) = 1 [x -- In Y0] ; (7.14) 

here l(x) denotes the Heavyside unit step-function, 
defined as: 

i(x) ={10', x<o.X---->0 (7.15) 

The desired D.f. is thus expressed as: 

/, / ) 
p(y,t /yo)=expl~ j ,j~-y dt (7.16) 

�9 1 I f  dy , Uo] ~ T  + g - i n  . 

Note that, in the particular trivial ease when ~e =:r 
(7.16) shows that  

F ( y ,  t /yo) = 
0, y <  y0 exp (-- O- ) , 

which confirms the existence of the only spontaneous 
deterministic decay. 

The transition p.d.f. /(y, t/yo), derived from F by 
differentiation, should then allow us to compute the 
first passage time p.d.f, g(S, v/yo) by numerically 
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solving the integral  equat ion 
t 

/(y,  t / y o ) = f d ~ / ( y ,  t/S, r )g(S ,  ~/Yo). (7.18) 
o 

Note  that ,  because of the non-s ta t ionar i ty  of y(t), 
Eq.  (7.18) cannot  be solved by  the Laplace t ransform 
method,  as done in Section 4. 

We  conclude not ing t h a t  the calculation of the 
coefficients of Eq.  (7.8) m a y  be ext remely  difficult, 
because of the lack of s ta t ionar i ty  and  markov i ty  in 
the r andom funct ion y (t). We will no t  a t t e m p t  here 
to  perform this calculation in general. We only note  
t h a t  as far as y is greater  than  Y0 -}- 2 t, F is independent  
of y and  the coefficients of Eq. (7.8) can be easily 
evaluated.  Indeed  after sui tably generalizing some 
results derived by  Ricciardi et al. (1966) one finds : 

P F ( t - r ,  t) 

= ~{1-- .=o~ exp [ - - r 1 6 2  r)] ~-(t z n z>" I n !  J 

P K  (t - -  v ,  t) 

= ~ { 1 - -  n=0~ e x p [ - - ~ c ( t - - n , ) ]  a"(t--nv)'~n! J (7.19) 

Po( t - -  ~, t) = ~ ,  exp [ - -  or - - n v ) ]  
ol?t ( t - -  Tb T ) ~1 

n !  
n=O 

having set 
~ ~ ~e -~ ~i 

The same situation, of course, occurs as far  as y is 
less t han  Y0--,~ r I n  this ease one has :  

P~§ 0 = P c ( t - ~ ,  0 = 0  (7.21) P,(t-~, 0 =1. 
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Abstract. A systematic approach to problems of form 
analysis is proposed, the first part of which is an improved ver- 
sion of the Procrustes algorithm (Caianiello, 1962 etc.). I t  is 
shown that an appropriate use of this algorithm will yield in all 
cases convergence to a hierarchy of structural levels of "fea- 
tures", which are typical of the forms considered if one assumes 
a linguistic description which translates everything into 
"words" written in terms of some starting alphabet. 

The properties of the codes generated by this algorithm 
are analyzed. M. P. Schutzenberger's criterion for a submonoid 
of a free monoid to be also free is shown to be verified in the 
transition between any two of the resulting levels of features. 

I. Introductiou 
1. The present work is in tended as a first step 

towards  a systematic  approach  to  various problems 
which arise in the s tudy  of " f o r m s " - - o r ,  if one likes 
t ha t  t e rm better,  " p a t t e r n s " .  There is cer tainly no 
scarci ty of l i terature in this field, which is of para- 
moun t  interest as a source of technological applications 
and  as a typical  example of the  " in te l l igen t"  ac t iv i ty  
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performed by  nervous systems. Much of it is in fact  
originated either by  the  f rankly  acknowledged need 
of solving specific problems, or by  the (occasionally 
less clearly stated) intent ion of proving t h a t  one or 
another  aprioristic conception is indeed adequate  to 
cover a broad range of re levant  instances. The t empta -  
t ion of identifying, perhaps too hastily, some such 
description with tha t  of the intelligence of a living 
organism is also no t  easily resisted. 

The point  of view taken  here is t ha t  our knowledge 
of facts and therefore our abil i ty to  theorize are still 
ext remely limited, as is na tura l  with studies which 
are barely at  their inception;  t h a t  we do no t  ye t  
know even how to  formulate  mos t  of the  re levant  
problems, and  tha t  possibly our present-day mathe-  
matics is no t  suited to this purpose. As a consequence, 
we propose to approach the analysis, description and 
recognition of forms at  wha t  a physicist  would call 
t h e "  phenomenological  level"  ; theories being acknowl- 


