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Summary. Proof methods adequate for a wide range of computer programs have 
been expounded in [t ] and [2]. This paper develops a method suitable for programs 
containing functions, and a certain kind of jump. The method is illustrated by the 
proof of a useful and efficient program for table lookup by logarithmic search. 

1. Introduction 

There is a current well-justified view [3] that  the use of jumps (go to state- 
ments) in programming is neither desirable nor necessary; and that the quality 
of a program tends to be inversely proportional to the number of jumps it contains. 
I t  is certainly true that  the majority of programs are much more clearly expressed 
by use of regular structuring methods such as blocks, loops and procedure calls 
where necessary. These constructions reveal explicitly the underlying structure 
and normal flow of the algorithm at run time. 

However, there are certain cases in which the program needs to break away 
from the normal flow, disrupting the regular hierarchical structure which has 
been built up. These cases are often those in which some abnormal condition has 
been detected which invalidates the assumptions on which the structure is based. 
Thus the only appropriate solution is immediately to break away from the 
current context by means of  a jump. Since no return to this context in desired, 
the resulting breakdown of structure is deliberate and necessary. 

If jumps are recognised as exceptional structure-breaking actions, then they 
fall irito one of two classes, return-jumps and exit-jumps. A return-jump is one 
that  occurs on recognition of the fact that the answer to the problem has already 
been found (or nearly found), and there is no need to unfold the nested loops, 
conditionals, procedures, and perhaps even recursions; all that  is required 
(possibly after some adjustment) is to jump straight to the place where the answer 
is wanted. The exit jump is one that  occurs on recognition of the fact that  the 
problem posed is not soluble anyway; again there is no need to pass in an orderly 
fashion through the stacked ends  of the enclosing loops, conditionals and 
procedures; what is required (possibly after some adjustment) is to jump to the 
end of the program; or at least jump to a context surrounding that in which the 
problem was posed, and which is prepared to take action in the event of its 
insolubility. 

There is no doubt that  the effect of return-jumps and exit-jumps can be 
obtained without using explicit jump instructions. However, this involves the 
introduction, assignment, and possibly quite frequent testing of Boolean markers; 
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and although the loss of efficiency may be slight, it is doubtful whether the 
program is any more perspicuous than one which contains an occasional explicit 
jump [4]. The objection to jumping is that  it destroys the orderly structure of the 
algorithm; but in exceptional conditions, this expresses exactly the intention of 
programmer. The jump may be considered an ugly device, but it is thereby well 
suited to the occasional ugly situation in which it should be used, 

If the jump is to be recognised as a useful programming tool, the problem 
arises of devising a notation for it that  is highly convenient for its primary purpos e 
of returning and exiting, but is sufficiently inconvenient to deter its use for 
expressing conditionals or loops, for which better notations are available. The 
solution was suggested by Landin [5], who regarded a label as a special kind of 
procedure. T h e "  body"  of the label is the sequence of statements which is executed 
immediately following that label --in ALGOL 50, the statements (roughly speaking) 
between the labelled statement and the end of the block to which the label is 
local. However, we prefer to "declare" the label (together with its body) at the 
head of the block, just like an ALGOL 50 procedure. Now the only difference 
between a procedure and a label is that  on completion of a procedure body control 
returns to the place of call, but on completion of the label body, it always returns 
to the end of the block to which the label is local. A jump statement to a label is 
just like the call of a procedure, except that  it is known that control will never 
come back to the place of the call. 

However, the general proof methods described in this paper d o  not depend 
on the use of this non-standard notation for jumps; and Appendix III  describes 
similar proof methods for more conventional jumps, provided that jumps into a 

compound or conditional statement from outside it are excluded. 

Readers who have reached this point will probably be divided into two 
classes: those who ask " w h a t ' s  wrong with jumps anyway ?" and those who are 
still unconvinced by the need for any kind of jump. To those in the first class 
there is little to say; to those in the second, it is possible to offer the consolation 
that programs which confine their jumping to genuine returns and exits do not 
present any great difficulty in the proof of their correctness. 

Apart from jumps, this paper also gives pr.oof rules for function declarations 
and calls. These rules apply only to the simplest type of a function--one which 
has no side-effects, and whose value does not depend on any global variables. The 
rule permits functions defined by procedures to feature in the normal way in 
mathematical and logical formulae, on the understanding that  the functions are 
possibly only partial. The main interest in dealing with jumps and functions 
together is that  although their proof rules are entirely independent, the proof 
methods turn out to apply satisfactorily even to functions which are exited by 
jumps. 

2. Jumps 

We introduce the following notation for the declaration of a label within a 
block 

I label {)1; Q2 
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where l is the identifier for the label, 01 is the body of the label, and 03 is the 
body of the block. As in the case of a procedure declaration, it is 03 that  is executed 
on entry to the block; 0z is executed only if and when the label is jumped to. 

As described above, a label is a procedure which shares its exit point with the 
block to which it is local. Thus the exit from this block may  be made either after 
execution of 01 (the body of the label) or after execution of 02 (the body of the 
block). If R 1 is a condition which is always true on execution of 0z, and R~ is a 
condition which is always true after executing 02, then the condition which is 
true on exit from the block will be either one or the other, i.e., R 1 v R 2. 

Now let PI be the precondition which must  always be true before execution 
of the label body 0z if the desired result R 1 is to be true afterwards. If the block 
as a whole is to be correct, P1 must be true before every jump to the label. Provided 
this is guaranteed, it does not mat ter  what the programmer assumes to be true 
when control returns from the jump, since by definition of a jump such a return 
never takes place. I t  is even possible to assume that  the uniformly false statement 
false is true after such a return. Using the notation of [t ], this intuitive reasoning 
is embodied in the rule that  

Pl{go to l}false 
may be assumed as a hypothesis in the proof of the block 03 to which the label is 
local. Since false implies any proposition, the rule of consequence justifies 
replacement of false in this hypothesis by an arbi trary assertion. 

In summary,  proofs of programs containing jumps will use a rule of inference 
requiring a subsidiary deduction (based on hypothesis) as follows: 

P~{go to/}false )- P{Q2}R 2 

P{l labem 

A method of dealing axiomatically with more conventional methods of 
labelling is given in Appendix I I I .  

3. Functions 

A function is declared by the schema 

/(x) function Q 

where / is the function name, (2 is the body of the function, and ae is a list of 
formal parameters containing all of the free non-local variables appearing in Q 
(this stipulation can be relaxed under certain conditions not relevant to this 
paper). I t  is assumed that  Q makes no assignment to any of its parameters so 
that  there is no possibility of side effects. The function is invoked by  writing [ (y) 
as part  of an expression, where y is a list of expressions (or actual parameters) 
of the same length as ae. The effect of the invocation of a function is the execution 
of the body of the function with the actual parameters ' replacing'  the formal 
parameters. As in ALGOL 60 and FORTRAN, the function name is used as a 
variable to store the result of the function to be returned to the place of the 
function call. 
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Suppose that  some precondition P holds before commencing execution of Q, 
and that  P is sufficient to establish the t ruth of a consequence R after execution 
of the function body. R will include the function n a m e / ,  denoting the result of 
the function; and both P and "R will include the formal parameters x of the 
function. I t  follows that  the t ruth of P is sufficient to guarantee the t ruth of R 
with each occurrence of the function name ] replaced by the function ca l l / (x ) .  
Furthermore, this is true of all possible values of x that  satisfy P. Thus the rule 
for functions may  be written as 

P{Q}R 

v x  ( p  ~ R~(~,)) " 

4. The Null Statement 
Normally, the body of a label includes actions which must  be performed to 

make final adjustments before exiting from the associated block. However in 
some cases no further action is required at this point. This is expressed by  writing 
a null s tatement as the body of the label. To make this more explicit, the null 
s ta tement  is denoted by  the symbol 

null; 

thus a block with a null label would have the form 

begin l Iobel null; Q end. 

The ALGOL equivalent of this form would be 

begin Q; l: end*. 

In either case, exit from the block may be achieved by executing the s tatement  
g o  to  l within Q. 

The statement null is a dummy one and any condition P which holds before 
its execution is preserved after execution. Thus we obtain the obvious axiom 
schema: 

P{nul l}P .  

5. Description of Lookup 

5.1. Criterion o/Correctness 
The function lookup is designed to perform a logarithmic search of a linear 

ar ray  A of length N. The elements in this array are assumed to be sorted in 
increasing order and no two elements have-the same value. The purpose of the 
function is to discover which element of the array has a value equal to a specified 
number x. This number  x must satisfy 

A [t] ~ x < A  [N]. 

The result returned by the function is the array subscript value corresponding to 
the element which is equal to x, i.e. the value k such that  A [k] = x. If  such an 

* The  importance of this kind of exit jump is evidenced by the frequency in 
ALGOL 60 programs of labelled ends and by the incorporation in FORTRAN and 
PL/I of a special RETURN statement. 
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element does not exist then a branch to an error label is made. This causes an 
error flag to be set and a message to be printed. 

Thus what we wish to prove is that  

VA, N, x ( t < N  & sorted (A) & A [t] ~ x  < A  EAT] ~ A [lookup(A, N, x ) ] =  x) 

where sorted (A) ----df Vi, i (t _--< i < ] ----< N -~ A [i] < A [/']). However, it is obvious 
that  lookup is a partial function, being undefined whenever 

7 qi(t--<i-----N&A [i] = x ) .  

We therefore also wish to prove that  a jump is made to the error label when (and 
only when) this condition holds. Thus this condition is chosen as the precondition 
for the label. 

5.2. The Method o/Lookup 

Lookup operates on a sorted'linear array A. None of the elements of the array 
are reassigned during execution of lookup so that  A remains sorted throughout. 
The method used by lookup is a logarithmic scan. I t  consists in defining a sequence 
of progressively shorter nested segments of A, each of which is such that  the 
values of its terminal elements provide bounds for the sought number x. The 
upper element of these pairs has value strictly greater than x, and the lower has 
value less than or equal to x. The endpoints of the segments are recorded by  the 
variables m and n, where m < n. Thus  the following relationship is invariant, and 
holds throughout the algorithm: 

A [m] <--<_x<A In]. 

The first segment in the sequence coincides with the full array A so that  initially 
x must  satisfy 

A It] < x < A  [N]. 

The length of the .segment of interest is repeatedly reduced as follows. The 
value of the element of the array with subscript (m + n) --  2 (this will be termed 
the central element) is compared with x. If this value is equal to x lookup is 
assigned the value of (m + n) --  2 and exit from the function occurs immediately. 
If x has a greater value than the central element then the search may  be confined 
to those elements of the array which have subscripts higher than this element 
and still lower than n. The lower endpoint of the target segment is therefore 
advanced by  assigning the value of (m + n) - -  2 to m. If x is less than the value 
of the central element then the search may  be confined to those elements of the 
array which have subscripts greater or equal to m and less than (m + n ) +  2. 
Accordingly the upper endpoint of the target segment is reset by assigning the 
value of (m + n) + 2 to n. Having fixed the endpoints of the new subsegment the 
process is repeated. 

This procedure is continued if necessary until the values of m and n are 
consecutive integers. When this point has been reached then either x is equal to  
A Ira] or it does not appear at all in the array A. In the first case lookup is assigned 
the value of m and exit from the function occurs. In the second case a jump is made 
to an error label E. 



Program Proving: Jumps and Functions 219 

5.3. The Annotated Program 

c o m m e n t  7 3 i ( t < = i < N & A [ i ] = x ) ;  E label {print ('number not there'); 
error :r= t rue} c o m m e n t  error & last (print) ='number not there'; 
lookup (A, N, x) func t ion  c o m m e n t  I < N  & sorted (A ) & A [t] <_<_ x < A IN]; 
b e g i n  c o m m e n t  A [lookup] = x; 

out label nul l ;  new m, n; 
m : = t ;  n : = N ;  commen t  m < n  &A[m] <=x<A In] & sorted (A) is 
invariant ; 

while m + t < n do 
begin new i; 

i :=  (re+n) + 2 ;  
if x < A [i] t h e n  n: = i 

else i f A  [ i ] < x  then m : = i  
else {lookup:= i; goto out} 

end; 
if A Ira] 4= x t h e n  g o t o  E 

e l s e  lookup: = m; c o m m e n t  A [lookup] ~ x; 
end; 

5.4. Statement o/ Proo/ Requirements 

The proof of the program given in w 5-3 falls into two parts, one part being 
a proof of the correctness of the label E and the other a proof of the correctness 
of the function lookup. For the label w~ require to prove 

7 3i (t ~ i  ~ N  & A [i]'----- x){bodyE}error & last(print) = 'number not there' 

&7 3i( t  ~ i - - < N & A  [ i ]=  x). 

This is taken to be reasonably obvious. For the function we require to prove 

t < N  & sorted(A) & A [t] ~ x < A  [N]{body~k,, } A [lookup] = x  

on the assumption that  

7 3 i  (t < i  < N  & A [i] = x ) { g o  t o  E}  f a l s e .  

The proof of the function depends on the lemmas 

Lemma 1. m + t  < n =  i f x < A  [i] t h e n m < i & s o r t e d ( A )  &A[m] ~ x < A  [i] 
e l s e  if A [i] < x ~ e n  i < n & sorted (A) & A [i] ~ x < A In] 

else A [i] = x 

where i = (m + n) + 2. 

I.emma 2. 7 m + t  < n ~  i f A  [m] @x then 7 3 i ( t  < i ~ N & A  [ i ]=  x) 
else A~ Ira] = x 

given that  sortat(A) & A [m] ~_x < A  In] & m <n.  
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5.5. Proo/ o! the Lemmas 

Proo] o] Lemma 1. The proof may  be divided into three cases 

Case 1, given that  x < A  E(m+n) . 2 ]  it follows from the relation A Ira] _~ 
x < A In] that  

A Era] <=x<A [(m + n )  . 2 ] ;  

Case 2, given that  x > A  [(m + n )  . 2 ]  it follows from the same relation that  

A [(m + n) - -  2] ~ x < A In] ; 

Case S, -1 (x < A [(m + n )  --  2]) & ~ (x > A [(m + n ) .  2]) = x---- A [(ra + n )  - -  2]. 

Proo] o/ Lemma 2. Obviously 

m < n & l m + t < n  ~ m = n - - l .  

If  A [m] ~. x then A [n - -  t ] ~ x ~ A [n]. Since A is sorted, x is greater than all 
elements below the ( n - - l ) t h  and less than all elements above the nth.  I t  is 
therefore unequal to all elements of A. Otherwise A [m]---- x, and the lemma is 
proved. 

6. Formal Proof of Lookup 

The purpose of this section is twofold; firstly to formalise the intuitive 
reasoning which convinces us that  the lemmas proved in the previous section are 
those on which the correctness of the program depends; and secondly, to provide 
some grounds for belief that  the formal rules of inference introduced in this paper 
are adequate to their purpose. The proof is given in full in Appendix I. 

The complete set of axioms and inference rules used in the proof are given in 
Appendix II .  

7. Conclusion 

The precondition for the error label E in the proof above was selected in order 
to ensure that  the function lookup fails to evaluate only in the case in which 
there is no answer. If  a weaker precondition had been set (for example t rue)  
the proof of correctness of lookup would have been trivial but correspondingly 
useless. Thus the stated precondition for the jump must really be regarded as 
part  of the criterion of correctness of lookup rather than as part  of the correctness 
criterion of the label. This awkwardness shows that  the P{Q}R notation for 
expressing correctness is not wholly adequate and that  some aspects of the 
correctness can be stated only by  making assertions at some intermediate stage 
of the program i.e., just before the jumps. 

The technique proposed here for declaring labels which deal with abnormal 
exits from functions migh t  be developed to provide simple and efficient means 
of achieving the combined effect of conditions, ON-units and condition prefixes 
in PL/I. All that  is necessary is to regard a condition as a standard label name 
(e.g., fpoverflow). If a label is declared with this name, and the corresponding 
error is detected in the block to which the label is local, a jump is made to the 
body of the label, and then to the end of the block. The proof methods associated 
with this facility are similar to those displayed in the case of lookup. 
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Of course, ON-conditions in the full PL]I language are more powerful than 
this, since they permit a return to the point at which the error was detected. 
However, the possibility that  this was not the point at which the error actually 
occurred, together with some ugly problems of implementation and efficiency, 
suggest t h a t  the proposed treatment of error conditions as exit jumps may be 
a more successful language design decision, both for high quality implementation, 
and for user comprehension. 

There may be some advantages to be gained by following a suggestion of 
Landin, permitting labels to have parameters in the same way as procedures. 
This would be certainly desirable for the suggested approach to traps and ON- 
conditions. 

This work was carried out with the aid of a grant from the Science Research 
Council. 

Appendix I 

This Appendix contains the formal proof of lookup. The convention L~ and 
R, (where i is an integer) is used to denote the propositions to the left-hand side 
and right-hand side of line i respectively. Q, represents the fragment of the 
program text under consideration at line i. 

Line Formal proof of lookup Justification 
No. 

t. l<N&sorted(A)&A[l]<x<A[N]{m:----- t ;n:----N}ra<n Assignment 
& sorted (A) & A[m] < x < A  I n] and Composition 

2. m + t < n & R  l ~ i f x < A [ ( m + n ) - 2 ] t h e n m < ( m + n ) - 2  
& sorted (A) & A [m] < x < A  [(m +n)  --2] 
e l s e  i fA  [(m + n) + 2] < x t h e n  (m + n) - -  2 < n 
& sorted (.4) & A [(m + n) + 2] < x ~ A In] e l s e  A [(m + n) -- 2] ~ x 

3. R2{i : - - - - (m+n)- -2} i fx<A [i] thenA [m] < x < A  [i] & m < i  
& sorted (A) e l s e  ifA [i] < x then  i < n & sorted (A) 
& A [i] < x < A In] else A [i] = x 

4. m<i&sorted (A) &A[m] < x < A  [i]{n:=i}R 1 

5. i < n& sorted (A) & A [i] --< x < A In] {m: = i} R 1 

& A [i] = x{lookup: =i}A [lookup] = x 

7. Re{go to out} false [~ Rx] 
8. Rs{ifx < A  [i]thenQ4elseifA [i] <xthenQselse{Qe;QT}}R1 

9. R~{Qs; Qs}R1 

t0. Rz{new i; Qg)R1 

11. L {Q,o}R, 
~5 Acta Informatica, Vol. t 

Lemma t 

Assignment 

Assignment 

Assignment 

Assignment 

Hypothesis 

Composition 
(6, 7) & Alternation (4, 5) 

Composition (3, 8) 

Declaration (9) 

Consequence (2, 10) 
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t2. Rl{while  m + 1  < n  do  Q19}-1 m + 1  < n  & R z Iteration (2, t t )  

t3. Rx2~ i fA [m] ~ x t h e n  ~ 3i(1 < i < _ N  &A [i] = x )  elseA [m] = x  Lemma2 

t4. 7 3i(t ~ i  _<N & A [i] = x ) { g o  to E} false 

t 5. A[m] = x{ lookup:  = m } A  [lookup] = x 

16. R~s{if A [.*]'4= x then Q1, else Qzs}R~5 
17. Rxz{Q16} RI~ 

t8. L,{Q1; Q~,; Q~,}R,~ 

t9. Lx{new m, n; Qls}Rls 

20. R,5{null}Rx5 

2t. Lz{out label  null; Q19}R15 vR15 [--= R1, ] 

[ ~ A [lookup] = x I Hypothesis 

Assignment 

Alternation (t4, t 5) 

Consequence (13, t 6) 

Composition (5, 12, 17) 

Declaration (t8) 

Vacuity 

Interruption (t 9, 20) 

22. Lx4{print  (' number  not there') ; error: = true} error & last (print) 
= ' n u m b e r  not there' Obvious 

23. V A, N, x ( Lt ~_A [lookup (A, N, x)] = x) Functionality (2t) 
Suppose that the definition of the function lookup is included in a program 
text Q and that a condition R holds on execution of Q. Then 

24. LI{E label Q22; Q}R vR2z Interruption 

V, P1, P , ,R ,R , ,S  
q, QI, Q, 
x, y 

B 
! 
~g 

Appendix II 

stand for propositional formulae 

stand for program statements 

stand for variable.names (with y not free in P or R) 

stands for an expression 

stands for a Boolean expression 

stands for a function name 

stands for a list of all free (non-local) variables of Q. 

Formal rules 

Do 

D, 

D2 

R * , { x : ~ e } R  

P{Q}S PFS 
SF R S{e}R 

P{Q}R P{Q}R 

P{Q1}S 
S{Q,} R 

P{Q,: q,}R 

Assignment 

Consequence 

Composition 
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Ds 

D4 

Ds 

D~ 

P{Q}s 
S b if B then P else R 

S{while B do Q}R 

 {Q1}R 

if B then Pz else P2{if B then Q1 else Qz}R 

P {Q~} R 
P{new x; Q}R 

(where y is not in Q unless y and x are the same) 

P~{go to l } false /- P{Q~} R 
P {l label Qa; Q~} R v R~ 

l(x) function Q 

P{Q}R 

/ 

R{nulJ}R 

Iteration 

Alternation 

Declaration 

Interruption 

Functionality 

Vacuity 

Appendix I I I  

This appendix gives an  axiomatic t reatment  of a more conventional method 
of setting labels, by prefixing them to the statement to which they refer, e.g. : 

Q,; l: q2 

where Q1 and Q~ are simple or compound statements constituting the compound 
tail of the block to which label l is local. For simplicity, we will assume that  l is 
the only local label of the block. Now if S is the desired precondition of each 
jump to l, S must also be true on termination of Q1. Since jumps to l may occur 
in either QI or Q~, we shall require to use the relevant hypothesis in both halves. 
In other respects Lm rule given below is very similar to that  for an ordinary 
compound statement 

S{go to/}false/- P{Q,}S 
S{go to/}false/- S{Q~} R 

P{Q1; t: (h}R 

This rule becomes very" nmch more complicated when there is mole than one 
label in the. block; though the extra complexity would be avoided if backward 
jumps were disallowed. But even worse complications follow if the programmer is 
permitted to jump into a structure, such as a conditional statement. These 
complications were first discovered in [5], and it is gratifying to note that  some 
recent programming languages have disallowed such jumps. 

t 5*  
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