
Acta Informatica t, 2t4-224 (1972)
by Springer-Verlag 1972

Program Proving: Jumps and Functions
M. CL~NT and C. A. R. HOARE

Received July 25, t97t

Summary. Proof methods adequate for a wide range of computer programs have
been expounded in [t] and [2]. This paper develops a method suitable for programs
containing functions, and a certain kind of jump. The method is illustrated by the
proof of a useful and efficient program for table lookup by logarithmic search.

1. Introduction

There is a current well-justified view [3] that the use of jumps (go to state-
ments) in programming is neither desirable nor necessary; and that the quality
of a program tends to be inversely proportional to the number of jumps it contains.
I t is certainly true that the majority of programs are much more clearly expressed
by use of regular structuring methods such as blocks, loops and procedure calls
where necessary. These constructions reveal explicitly the underlying structure
and normal flow of the algorithm at run time.

However, there are certain cases in which the program needs to break away
from the normal flow, disrupting the regular hierarchical structure which has
been built up. These cases are often those in which some abnormal condition has
been detected which invalidates the assumptions on which the structure is based.
Thus the only appropriate solution is immediately to break away from the
current context by means of a jump. Since no return to this context in desired,
the resulting breakdown of structure is deliberate and necessary.

If jumps are recognised as exceptional structure-breaking actions, then they
fall irito one of two classes, return-jumps and exit-jumps. A return-jump is one
that occurs on recognition of the fact that the answer to the problem has already
been found (or nearly found), and there is no need to unfold the nested loops,
conditionals, procedures, and perhaps even recursions; all that is required
(possibly after some adjustment) is to jump straight to the place where the answer
is wanted. The exit jump is one that occurs on recognition of the fact that the
problem posed is not soluble anyway; again there is no need to pass in an orderly
fashion through the stacked ends of the enclosing loops, conditionals and
procedures; what is required (possibly after some adjustment) is to jump to the
end of the program; or at least jump to a context surrounding that in which the
problem was posed, and which is prepared to take action in the event of its
insolubility.

There is no doubt that the effect of return-jumps and exit-jumps can be
obtained without using explicit jump instructions. However, this involves the
introduction, assignment, and possibly quite frequent testing of Boolean markers;

Program Proving: Jumps and Functions 2t 5

and although the loss of efficiency may be slight, it is doubtful whether the
program is any more perspicuous than one which contains an occasional explicit
jump [4]. The objection to jumping is that it destroys the orderly structure of the
algorithm; but in exceptional conditions, this expresses exactly the intention of
programmer. The jump may be considered an ugly device, but it is thereby well
suited to the occasional ugly situation in which it should be used,

If the jump is to be recognised as a useful programming tool, the problem
arises of devising a notation for it that is highly convenient for its primary purpos e
of returning and exiting, but is sufficiently inconvenient to deter its use for
expressing conditionals or loops, for which better notations are available. The
solution was suggested by Landin [5], who regarded a label as a special kind of
procedure. T h e " body" of the label is the sequence of statements which is executed
immediately following that label --in ALGOL 50, the statements (roughly speaking)
between the labelled statement and the end of the block to which the label is
local. However, we prefer to "declare" the label (together with its body) at the
head of the block, just like an ALGOL 50 procedure. Now the only difference
between a procedure and a label is that on completion of a procedure body control
returns to the place of call, but on completion of the label body, it always returns
to the end of the block to which the label is local. A jump statement to a label is
just like the call of a procedure, except that it is known that control will never
come back to the place of the call.

However, the general proof methods described in this paper d o not depend
on the use of this non-standard notation for jumps; and Appendix III describes
similar proof methods for more conventional jumps, provided that jumps into a

compound or conditional statement from outside it are excluded.

Readers who have reached this point will probably be divided into two
classes: those who ask " w h a t ' s wrong with jumps anyway ?" and those who are
still unconvinced by the need for any kind of jump. To those in the first class
there is little to say; to those in the second, it is possible to offer the consolation
that programs which confine their jumping to genuine returns and exits do not
present any great difficulty in the proof of their correctness.

Apart from jumps, this paper also gives pr.oof rules for function declarations
and calls. These rules apply only to the simplest type of a function--one which
has no side-effects, and whose value does not depend on any global variables. The
rule permits functions defined by procedures to feature in the normal way in
mathematical and logical formulae, on the understanding that the functions are
possibly only partial. The main interest in dealing with jumps and functions
together is that although their proof rules are entirely independent, the proof
methods turn out to apply satisfactorily even to functions which are exited by
jumps.

2. Jumps

We introduce the following notation for the declaration of a label within a
block

I label {)1; Q2

2t6 M. Clint and C. A. R. Hoare:

where l is the identifier for the label, 01 is the body of the label, and 03 is the
body of the block. As in the case of a procedure declaration, it is 03 that is executed
on entry to the block; 0z is executed only if and when the label is jumped to.

As described above, a label is a procedure which shares its exit point with the
block to which it is local. Thus the exit from this block may be made either after
execution of 01 (the body of the label) or after execution of 02 (the body of the
block). If R 1 is a condition which is always true on execution of 0z, and R~ is a
condition which is always true after executing 02, then the condition which is
true on exit from the block will be either one or the other, i.e., R 1 v R 2.

Now let PI be the precondition which must always be true before execution
of the label body 0z if the desired result R 1 is to be true afterwards. If the block
as a whole is to be correct, P1 must be true before every jump to the label. Provided
this is guaranteed, it does not mat ter what the programmer assumes to be true
when control returns from the jump, since by definition of a jump such a return
never takes place. I t is even possible to assume that the uniformly false statement
false is true after such a return. Using the notation of [t], this intuitive reasoning
is embodied in the rule that

Pl{go to l}false
may be assumed as a hypothesis in the proof of the block 03 to which the label is
local. Since false implies any proposition, the rule of consequence justifies
replacement of false in this hypothesis by an arbi trary assertion.

In summary, proofs of programs containing jumps will use a rule of inference
requiring a subsidiary deduction (based on hypothesis) as follows:

P~{go to/}false)- P{Q2}R 2

P{l labem

A method of dealing axiomatically with more conventional methods of
labelling is given in Appendix I I I .

3. Functions

A function is declared by the schema

/(x) function Q

where / is the function name, (2 is the body of the function, and ae is a list of
formal parameters containing all of the free non-local variables appearing in Q
(this stipulation can be relaxed under certain conditions not relevant to this
paper). I t is assumed that Q makes no assignment to any of its parameters so
that there is no possibility of side effects. The function is invoked by writing [(y)
as part of an expression, where y is a list of expressions (or actual parameters)
of the same length as ae. The effect of the invocation of a function is the execution
of the body of the function with the actual parameters ' replacing' the formal
parameters. As in ALGOL 60 and FORTRAN, the function name is used as a
variable to store the result of the function to be returned to the place of the
function call.

Program Proving: Jumps and Functions 2t 7

Suppose that some precondition P holds before commencing execution of Q,
and that P is sufficient to establish the t ruth of a consequence R after execution
of the function body. R will include the function n a m e / , denoting the result of
the function; and both P and "R will include the formal parameters x of the
function. I t follows that the t ruth of P is sufficient to guarantee the t ruth of R
with each occurrence of the function name] replaced by the function ca l l / (x) .
Furthermore, this is true of all possible values of x that satisfy P. Thus the rule
for functions may be written as

P{Q}R

v x (p ~ R~(~,)) "

4. The Null Statement
Normally, the body of a label includes actions which must be performed to

make final adjustments before exiting from the associated block. However in
some cases no further action is required at this point. This is expressed by writing
a null s tatement as the body of the label. To make this more explicit, the null
s ta tement is denoted by the symbol

null;

thus a block with a null label would have the form

begin l Iobel null; Q end.

The ALGOL equivalent of this form would be

begin Q; l: end*.

In either case, exit from the block may be achieved by executing the s tatement
g o to l within Q.

The statement null is a dummy one and any condition P which holds before
its execution is preserved after execution. Thus we obtain the obvious axiom
schema:

P{nul l}P .

5. Description of Lookup

5.1. Criterion o/Correctness
The function lookup is designed to perform a logarithmic search of a linear

ar ray A of length N. The elements in this array are assumed to be sorted in
increasing order and no two elements have-the same value. The purpose of the
function is to discover which element of the array has a value equal to a specified
number x. This number x must satisfy

A [t] ~ x < A [N].

The result returned by the function is the array subscript value corresponding to
the element which is equal to x, i.e. the value k such that A [k] = x. If such an

* The importance of this kind of exit jump is evidenced by the frequency in
ALGOL 60 programs of labelled ends and by the incorporation in FORTRAN and
PL/I of a special RETURN statement.

2t 8 M. Clint and C. A. R. Hoare:

element does not exist then a branch to an error label is made. This causes an
error flag to be set and a message to be printed.

Thus what we wish to prove is that

VA, N, x (t < N & sorted (A) & A [t] ~ x < A EAT] ~ A [lookup(A, N, x)] = x)

where sorted (A) ----df Vi, i (t _--< i <] ----< N -~ A [i] < A [/']). However, it is obvious
that lookup is a partial function, being undefined whenever

7 qi(t--<i-----N&A [i] = x) .

We therefore also wish to prove that a jump is made to the error label when (and
only when) this condition holds. Thus this condition is chosen as the precondition
for the label.

5.2. The Method o/Lookup

Lookup operates on a sorted'linear array A. None of the elements of the array
are reassigned during execution of lookup so that A remains sorted throughout.
The method used by lookup is a logarithmic scan. I t consists in defining a sequence
of progressively shorter nested segments of A, each of which is such that the
values of its terminal elements provide bounds for the sought number x. The
upper element of these pairs has value strictly greater than x, and the lower has
value less than or equal to x. The endpoints of the segments are recorded by the
variables m and n, where m < n. Thus the following relationship is invariant, and
holds throughout the algorithm:

A [m] <--<_x<A In].

The first segment in the sequence coincides with the full array A so that initially
x must satisfy

A It] < x < A [N].

The length of the .segment of interest is repeatedly reduced as follows. The
value of the element of the array with subscript (m + n) -- 2 (this will be termed
the central element) is compared with x. If this value is equal to x lookup is
assigned the value of (m + n) -- 2 and exit from the function occurs immediately.
If x has a greater value than the central element then the search may be confined
to those elements of the array which have subscripts higher than this element
and still lower than n. The lower endpoint of the target segment is therefore
advanced by assigning the value of (m + n) - - 2 to m. If x is less than the value
of the central element then the search may be confined to those elements of the
array which have subscripts greater or equal to m and less than (m + n) + 2.
Accordingly the upper endpoint of the target segment is reset by assigning the
value of (m + n) + 2 to n. Having fixed the endpoints of the new subsegment the
process is repeated.

This procedure is continued if necessary until the values of m and n are
consecutive integers. When this point has been reached then either x is equal to
A Ira] or it does not appear at all in the array A. In the first case lookup is assigned
the value of m and exit from the function occurs. In the second case a jump is made
to an error label E.

Program Proving: Jumps and Functions 219

5.3. The Annotated Program

c o m m e n t 7 3 i (t < = i < N & A [i] = x) ; E label {print ('number not there');
error :r= t rue} c o m m e n t error & last (print) ='number not there';
lookup (A, N, x) func t ion c o m m e n t I < N & sorted (A) & A [t] <_<_ x < A IN];
b e g i n c o m m e n t A [lookup] = x;

out label nul l ; new m, n;
m : = t ; n : = N ; commen t m < n &A[m] <=x<A In] & sorted (A) is
invariant ;

while m + t < n do
begin new i;

i := (re+n) + 2 ;
if x < A [i] t h e n n: = i

else i f A [i] < x then m : = i
else {lookup:= i; goto out}

end;
if A Ira] 4= x t h e n g o t o E

e l s e lookup: = m; c o m m e n t A [lookup] ~ x;
end;

5.4. Statement o/ Proo/ Requirements

The proof of the program given in w 5-3 falls into two parts, one part being
a proof of the correctness of the label E and the other a proof of the correctness
of the function lookup. For the label w~ require to prove

7 3i (t ~ i ~ N & A [i]'----- x){bodyE}error & last(print) = 'number not there'

&7 3i(t ~ i - - < N & A [i]= x).

This is taken to be reasonably obvious. For the function we require to prove

t < N & sorted(A) & A [t] ~ x < A [N]{body~k,, } A [lookup] = x

on the assumption that

7 3 i (t < i < N & A [i] = x) { g o t o E} f a l s e .

The proof of the function depends on the lemmas

Lemma 1. m + t < n = i f x < A [i] t h e n m < i & s o r t e d (A) &A[m] ~ x < A [i]
e l s e if A [i] < x ~ e n i < n & sorted (A) & A [i] ~ x < A In]

else A [i] = x

where i = (m + n) + 2.

I.emma 2. 7 m + t < n ~ i f A [m] @x then 7 3 i (t < i ~ N & A [i]= x)
else A~ Ira] = x

given that sortat(A) & A [m] ~_x < A In] & m <n.

220 M. Clint and C. A. R. Hoare:

5.5. Proo/ o! the Lemmas

Proo] o] Lemma 1. The proof may be divided into three cases

Case 1, given that x < A E(m+n) . 2] it follows from the relation A Ira] _~
x < A In] that

A Era] <=x<A [(m + n) . 2] ;

Case 2, given that x > A [(m + n) . 2] it follows from the same relation that

A [(m + n) - - 2] ~ x < A In] ;

Case S, -1 (x < A [(m + n) -- 2]) & ~ (x > A [(m + n) . 2]) = x---- A [(ra + n) - - 2].

Proo] o/ Lemma 2. Obviously

m < n & l m + t < n ~ m = n - - l .

If A [m] ~. x then A [n - - t] ~ x ~ A [n]. Since A is sorted, x is greater than all
elements below the (n - - l) t h and less than all elements above the nth. I t is
therefore unequal to all elements of A. Otherwise A [m]---- x, and the lemma is
proved.

6. Formal Proof of Lookup

The purpose of this section is twofold; firstly to formalise the intuitive
reasoning which convinces us that the lemmas proved in the previous section are
those on which the correctness of the program depends; and secondly, to provide
some grounds for belief that the formal rules of inference introduced in this paper
are adequate to their purpose. The proof is given in full in Appendix I.

The complete set of axioms and inference rules used in the proof are given in
Appendix II .

7. Conclusion

The precondition for the error label E in the proof above was selected in order
to ensure that the function lookup fails to evaluate only in the case in which
there is no answer. If a weaker precondition had been set (for example t rue)
the proof of correctness of lookup would have been trivial but correspondingly
useless. Thus the stated precondition for the jump must really be regarded as
part of the criterion of correctness of lookup rather than as part of the correctness
criterion of the label. This awkwardness shows that the P{Q}R notation for
expressing correctness is not wholly adequate and that some aspects of the
correctness can be stated only by making assertions at some intermediate stage
of the program i.e., just before the jumps.

The technique proposed here for declaring labels which deal with abnormal
exits from functions migh t be developed to provide simple and efficient means
of achieving the combined effect of conditions, ON-units and condition prefixes
in PL/I. All that is necessary is to regard a condition as a standard label name
(e.g., fpoverflow). If a label is declared with this name, and the corresponding
error is detected in the block to which the label is local, a jump is made to the
body of the label, and then to the end of the block. The proof methods associated
with this facility are similar to those displayed in the case of lookup.

Program Proving: Jumps and Functions 22t

Of course, ON-conditions in the full PL]I language are more powerful than
this, since they permit a return to the point at which the error was detected.
However, the possibility that this was not the point at which the error actually
occurred, together with some ugly problems of implementation and efficiency,
suggest t h a t the proposed treatment of error conditions as exit jumps may be
a more successful language design decision, both for high quality implementation,
and for user comprehension.

There may be some advantages to be gained by following a suggestion of
Landin, permitting labels to have parameters in the same way as procedures.
This would be certainly desirable for the suggested approach to traps and ON-
conditions.

This work was carried out with the aid of a grant from the Science Research
Council.

Appendix I

This Appendix contains the formal proof of lookup. The convention L~ and
R, (where i is an integer) is used to denote the propositions to the left-hand side
and right-hand side of line i respectively. Q, represents the fragment of the
program text under consideration at line i.

Line Formal proof of lookup Justification
No.

t. l<N&sorted(A)&A[l]<x<A[N]{m:----- t ;n:----N}ra<n Assignment
& sorted (A) & A[m] < x < A I n] and Composition

2. m + t < n & R l ~ i f x < A [(m + n) - 2] t h e n m < (m + n) - 2
& sorted (A) & A [m] < x < A [(m +n) --2]
e l s e i fA [(m + n) + 2] < x t h e n (m + n) - - 2 < n
& sorted (.4) & A [(m + n) + 2] < x ~ A In] e l s e A [(m + n) -- 2] ~ x

3. R2{i : - - - - (m+n)- -2} i fx<A [i] thenA [m] < x < A [i] & m < i
& sorted (A) e l s e ifA [i] < x then i < n & sorted (A)
& A [i] < x < A In] else A [i] = x

4. m<i&sorted (A) &A[m] < x < A [i]{n:=i}R 1

5. i < n& sorted (A) & A [i] --< x < A In] {m: = i} R 1

& A [i] = x{lookup: =i}A [lookup] = x

7. Re{go to out} false [~ Rx]
8. Rs{ifx < A [i]thenQ4elseifA [i] <xthenQselse{Qe;QT}}R1

9. R~{Qs; Qs}R1

t0. Rz{new i; Qg)R1

11. L {Q,o}R,
~5 Acta Informatica, Vol. t

Lemma t

Assignment

Assignment

Assignment

Assignment

Hypothesis

Composition
(6, 7) & Alternation (4, 5)

Composition (3, 8)

Declaration (9)

Consequence (2, 10)

222 M. Clint and C. A. R. Hoare:

t2. Rl{while m + 1 < n do Q19}-1 m + 1 < n & R z Iteration (2, t t)

t3. Rx2~ i fA [m] ~ x t h e n ~ 3i(1 < i < _ N &A [i] = x) elseA [m] = x Lemma2

t4. 7 3i(t ~ i _<N & A [i] = x) { g o to E} false

t 5. A[m] = x{ lookup: = m } A [lookup] = x

16. R~s{if A [.*]'4= x then Q1, else Qzs}R~5
17. Rxz{Q16} RI~

t8. L,{Q1; Q~,; Q~,}R,~

t9. Lx{new m, n; Qls}Rls

20. R,5{null}Rx5

2t. Lz{out label null; Q19}R15 vR15 [--= R1,]

[~ A [lookup] = x I Hypothesis

Assignment

Alternation (t4, t 5)

Consequence (13, t 6)

Composition (5, 12, 17)

Declaration (t8)

Vacuity

Interruption (t 9, 20)

22. Lx4{print (' number not there') ; error: = true} error & last (print)
= ' n u m b e r not there' Obvious

23. V A, N, x (Lt ~_A [lookup (A, N, x)] = x) Functionality (2t)
Suppose that the definition of the function lookup is included in a program
text Q and that a condition R holds on execution of Q. Then

24. LI{E label Q22; Q}R vR2z Interruption

V, P1, P , ,R ,R , ,S
q, QI, Q,
x, y

B
!
~g

Appendix II

stand for propositional formulae

stand for program statements

stand for variable.names (with y not free in P or R)

stands for an expression

stands for a Boolean expression

stands for a function name

stands for a list of all free (non-local) variables of Q.

Formal rules

Do

D,

D2

R * , { x : ~ e } R

P{Q}S PFS
SF R S{e}R

P{Q}R P{Q}R

P{Q1}S
S{Q,} R

P{Q,: q,}R

Assignment

Consequence

Composition

Program Proving: Jumps and Functions 223

Ds

D4

Ds

D~

P{Q}s
S b if B then P else R

S{while B do Q}R

 {Q1}R

if B then Pz else P2{if B then Q1 else Qz}R

P {Q~} R
P{new x; Q}R

(where y is not in Q unless y and x are the same)

P~{go to l } false /- P{Q~} R
P {l label Qa; Q~} R v R~

l(x) function Q

P{Q}R

/

R{nulJ}R

Iteration

Alternation

Declaration

Interruption

Functionality

Vacuity

Appendix I I I

This appendix gives an axiomatic t reatment of a more conventional method
of setting labels, by prefixing them to the statement to which they refer, e.g. :

Q,; l: q2

where Q1 and Q~ are simple or compound statements constituting the compound
tail of the block to which label l is local. For simplicity, we will assume that l is
the only local label of the block. Now if S is the desired precondition of each
jump to l, S must also be true on termination of Q1. Since jumps to l may occur
in either QI or Q~, we shall require to use the relevant hypothesis in both halves.
In other respects Lm rule given below is very similar to that for an ordinary
compound statement

S{go to/}false/- P{Q,}S
S{go to/}false/- S{Q~} R

P{Q1; t: (h}R

This rule becomes very" nmch more complicated when there is mole than one
label in the. block; though the extra complexity would be avoided if backward
jumps were disallowed. But even worse complications follow if the programmer is
permitted to jump into a structure, such as a conditional statement. These
complications were first discovered in [5], and it is gratifying to note that some
recent programming languages have disallowed such jumps.

t 5*

224 M. Ciint and C. A. R. Hoare: Program Proving: Jumps and Functions

References

t . Hoare, C. A. R. : An axiomatic basis for computer programming. Comm.. ACM
12, No. 10, 576-580 (October t969):

2. -- Procedures and parameters; an axiomati c approach, Symposium on the Se-
mantics of Algorithmic Languages (ed. E. Engeler). Berlin-Heidelberg-New York:
Springer t97t.

3. Dijkstra, E .W. : Go to s ta tement considered harmful. Let ter to the editor. Comm.
ACM 11, No. 3, t47- t48 (March t968).

4. Knuth, D .E . , Floyd, R .W. : Notes on avoiding "go t o " statements. Technical
Report No. CS t48, Computer Science Dept., Stanford, Jan. t970.

5. Landin, P. J. : A correspondence between ALGOL 60 and Church's lambda nota-
tion, parts I and II . Comm. ACM 8, Nos. 2 and 3, 89- t0 t , Feb., t 58-t65, Mar. (1965).

Dr. M. Clint
Depar tment of Mathematics
New University of Ulster
Coleraine, Co. Londonderry
Northern Ireland

Prof. C. A. R. Hoare
Depar tment of Computer Science
The Queen's Universi ty of Belfas~
Belfast BT 7 t N N .
Northern Ireland

