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Summary. Organization and maintenance of an index for a dynamic random 
access file is considered. I t  is assumed tha t  the index must  be kept  on some pseudo 
random access backup store like a disc or a drum. The index organization described 
allows retrieval, insertion, and deletion of keys in time proportional to log k I where I 
is the size of the index and k is a device dependent  natural  number such tha t  the per- 
formance of the scheme becomes near optimal. Storage utilization is a t  least 50 % 
but  generally much higher. The pages of the index are organized in a special data-  
structure, so-called B-trees. The schern& is analyzed, performance bounds are obtained, 
and a near optimal k is computed. Experirrlents have been performed with indexes 
up to 100000 keys. An index of size t 5 000 (t00000) can be maintained with an average 
of 9 (at least 4) transactions per second on an IBM 360/44 with a 2 31 t disc. 

1. Introduction 

In  this  pape r  we consider the  problem of organizing and  ma in t a in ing  an 
index for a d y n a m i c a l l y  changing r andom access file. By  an index we mean  a 
collection of index e lements  which are pairs  (x, ~) of f ixed size physi.cally ad jacen t  
d a t a  i tems,  name ly  a key  x and  some associa ted informat ion  ~. The  key  x identif ies  
a unique e lement  in the  index,  the  associa ted informat ion  is t yp i ca l ly  a po in te r  
to a record  or a collection of records in a r andom access file. F o r  this paper  the  
associa ted informat ion  is of no' fur ther  interest .  

W e  assume t h a t  the  index itself is so voluminous  t ha t  only  r a the r  small  
pa r t s  of i t  can be kep t  in main  store a t  one t ime.  Thus  the  bu lk  of the  index mus t  
be kep t  on some b a c k u p  store. The  class of b a c k u p  stores Considered are pseudo 
random access devices which have  a r a the r  long access or wai t  t i m e - - a s  opposed 
to  a t rue  r andom access device like core s t o r e - - a n d  a ra the r  high d a t a  ra te  once 
the  t ransmiss ion of phys ica l ly  sequent ia l  d a t a  'has been in i t ia ted .  Typica l  pseudo 
random access devices are:  f ixed and  moving  head  discs, drums,  and  d a t a  cells. 

Since the  d a t a  file itself changes, i t  mus t  be possible not  only  to  search the 
index and  to  re t r ieve  elements,  bu t  also to delete  and  to inser t  k e y s - - m o r e  
accura te ly  index e lements - -economica l ly .  The index organiza t ion  descr ibed 
in th is  paper  a lways  allows retr ieval ,  insert ion,  and  delet ion of keys  in t ime 
propor t iona l  to  log k I or be t te r ,  where I is the  size of the  index,  and  k is a device 
dependen t  na tu ra l  number  which describes the  page size such t ha t  the  perform- 
ance of the  main tenance  and  re t r ieva l  scheme becomes near  opt imal .  

In  more  i l lus t ra t ive  te rms theore t ica l  analysis  and  ac tua l  e x p e r i m e n t s  show 
tha t  i t  is possible to ma in ta in  an index of size 15 000 with  an average of 9 retr ievals ,  
insert ions,  and  delet ions per  second in real  t ime on an IBM 360/44 with  a 23 t t  
disc as b a c k u p  store. According to our  theore t ica l  analysis,  i t  should be possible 
to ma in ta in  all index of size I 500000 with at  least  two t ransac t ions  per  second 
on such a conf igurat ion in real  t ime.  
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The index is organized in pages of fixed size capable of holding up to 2k 
keys, but  pages need only be partially filled. Pages are the bIocks of information 
transferred between main store and backup store. 

The pages themselves are the nodes of a rather specialized tree, a so-called 
B-tree, described in the next section. In this paper these trees grow and contract 
in only one way, namely nodes split off a brother, or two brothers are merged 
or "ca tena ted"  into a single node. The splitting and catenation processes are 
initiated at the leaves only and propagate toward the root. If the root node splits, 
a new root must be introduced, and this is the only way in which the height 
of the tree can increase. The opposite process occurs if the tree contracts. 

There are, of course, many competitive schemes, e.g., hash-coding, for or- 
ganizing an index. For a large class of applications the scheme presented in this 
paper offers significant advantages over others: 

i) Storage utilization is at least 50% at any time and should be considerably 
better in the average. 

ji) Storage is requested and released as the file grows and contracts. There 
is no congestion problem or degradation of performance if the storage occupancy 
is very high. 

iii) The natural order of the keys is maintained and allows processing based 
on that order like: find predecessors and successors; search the file sequentially 
to answer queries; skip, delete, retrieve a number of records starting from a 
given key. 

iv) If retrievals, insertions, and deletions come in batches, very efficient 
essentially sequential processing of the index is possible by presorting the trans- 
actions on their keys and by using a simple prepaging algorithm. 

Several other schemes try to solve the same or very similar problems. AVL- 
trees described in [t] and [2] guarantee performance in time log 2 I, but they 
are suitable only for a one-level store. The schemes described in [3] and [4] do 
not have logarithmic performance. The solution presented in this paper is new 
and is related to those described in [t-4] only in the sense that the problem to 
b e  solved is similar and that  it uses a data organization involving tree structures. 

2. B-Trees 
Def. 2.1. Let h ~ 0  be an integer, k a natural number. A directed tree T 

is in the class z (k, h) of B-trees if T is either empty (h----0) or has the following 
properties: 

i) Each path from tire-root to any leaf has the same length h, also called the 
height of T, i.e., h = number of nodes in path. 

ii) Each node except the root and the leaves has at least k + t sons. The root 
is a leaf" or has at least two sons. 

iii) Each node has at most 2k + 1 sons. 

Number o/Nodes in B-Trees. Let Nmm and Nmx be the minimal and maximal 
number of nodes in a B-tree TEv(k, h). Then 

2 Nmm = 1 + 2 ((k + t) 0 + (k + t) 1 + . . . .  ~- (k + t) ~-z)  = t + ~ ((k + t )  h - l - t  ) 
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for h => 2. This also holds for h ----- 1. Similarly one obtains 

/*--1 
t ( ( 2 k + 0 , _ t ) ;  h > l .  Nmaz = E (2k+t)i=-~--/~ 

i=0 

Upper and lower bounds for the number N (T) of nodes of T E v (k, h) are given by: 

N(T) = 0  if Te~(k, 0); (2A) 

2 ((k+l)h_l t ) < N ( T ) <  = 2 _ ~ ( ( 2 k + t ) , _ 1 )  otherwise. 

Note that  the classes v (k, h) need not be disjoint. 

3. The Data Structure and Retrieval Algorithm 
To repeat, the pages on which the index is stored are the nodes of a B-tree 

TEv(k, h) and can hold up to 2k keys. In addition the data structure for the 
index has the following properties: 

i) Each page holds between k and 2k keys (index elements) except the root 
page which may hold between ! and 2k keys. 

ii) Let the number of keys on a page P, which is not a leaf, be l. Then P has 
l + t  sons. 

iii) Within each page P the keys are sequential in increasing order: xx, x2, 
. . . .  xl; k ~ l_~  2k except for the root page for which I ~ l  ~ 2k, .Furthermore, 
P contains l + t  pointers P0, Px . . . . .  Pl to the sons of P. On leaf pages these 
pointers are undefined. Logically a page is then organized as shown in Fig. 1. 

X1 ~1 I Pl j 21 21 2 x I 
Fig. 1. Organization of a page 

~l P~ 
r / / / / / / / / / / / / / / A  
V// /  unused //////~ 

s ace 

The aq are the associated information in the index element (x i, ai). The triple (xi, 
r162 Pi) or--omitt ing a i - - the  pair (x o p~) is also called an entry. 

iv) Let P (p;) be the page to  which Pi points, let K (Pi) be the set of keys on 
the pages of that maximal subtree of which P (Pi) is the root. Then for the B-trees 
considered here the following conditions shall always hold: 

(Vy ~K (P0)) (Y < x,), (3-t) 

(VyEK(pi))(xi<y<xi+l);  i : t ,  2 . . . . .  l - -1 ,  (3.2) 

(VyeK(p,))(x, < y ) .  (3.3) 

Fig. 2 is an example of a B-tree in v(2, 3) satisfying all the above conditions. 
In the figure the ai are not shown and the page pointers are represtmted graphi- 
cally. The boxes represent pages and the numbers outside arc page numbers to 
be used later. 

12" 



t 76 R. Bayer and E. McCreight: 

2 

4/: 
5 
[ 6 7  

/ 
1 

I I rl6,  21 .,, ] 

] 117 18 19 

17 
14 

23 24 25 ] 

20 1 

Fig. 2. A data structure in ~ (2, 3) for an index 

Retrieval Algorithm. The flowchart in Fig. 3 is an algorithm for retrieving a 
key y. Let p, r, s be pointer variables which can also assume the va lue"  undefined" 
denoted as u. r points to the root and is u if the tree is empty,  s does not serve 
any purpose for retrieval, but  will be used in the insertion algorithm. Let P (p) 
be the page to which p is pointing, then x I . . . . .  x~ are the keys in P (p) and P0 . . . . .  Pz 
the page pointers in P (p). 

The retrieval algorithm is simple logically, but to program it for a computer 
one would use an efficient technique, e.g., a binary search, to scan a page. 

Cost o I Retrieval. Let h be the height of the page tree. Then at most h pages 
must  be scanned and therefore fetched from backup store to retrieve a key y. 
We will now derive bounds for h for a given index of size I.  The minimum and 
maximum number I ~  and/max of keys in a B-tree of pages in x (k, h) are: 

+ k ( 2  (h +1) h-1 --1 k ) = 2 (k + t) h - ~ - t  lmin = t  

((2h + t ) ~ - 1  
2h ) = (2k + t ) h - t "  I = ~  ~ 2 k  

This is immediate from (2.t) for h > t. Thus we have as sharp bounds for the 
height h: 

logs~+a( I+ t  ) < h ~ t + l o g k + t  - -  for I~_1, (:~.t) 
h = 0  for I = 0 .  

4. Key Insertion 

The algorithm in Fig. 4 inserts a single key y into an index described in 
Section 3. The variable s is a page pointer set by  the retrieval algorithm pointing 
to the last page that  was scanned or having the value u if the page tree is empty.  
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< [ P~-Po ~ - ~  
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,l 
y < x t ?  

~l NO 

3i(y=xi)? 

~l NO 

3i(xi<y<xi+l) ? 

a~ 
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Fig. 3. Retrieval algorithm 

I 

1 
) 

) 

Splitting a Page. If a page P in which an entry should be inserted is already 
full, it will be split into two pages. Logically first insert the entry into the sequence 
of entries in P--which is assumed to be in main store--resulting in a sequence 

Po, (x,, p:,.), (x,,, p.-.) . . . . .  (x,,+.,, ~,,+1). 
Now put the subsequence P0, (xl, Pl) . . . . .  (xk, Ph) into P and introduce a new 
page P '  to contain the subsequence 

#k+l, (x~+2, ~+2), (~+,, ~+3), . . . ,  (x~+l ,  ~+~). 
Let Q be the father page of P. Insert the entry (xk+~, p'), where p' points to P', 
into Q. Thus P' becomes a brother of P. 
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Inserting (x~+x, ib') into Q may, of course, cause Q to split too, and so on, 
possibly up to the, root. If the splitting page P is the root, then we introduce a 
new root page Q containing p, (xk+l, Ib') where p points to P and p' to P'. 

Note that this insertion process maps B-trees with parameter k into B-trees 
with parameter k, and preserves properties (3.t), (3.2), and (3.3). 

To illustrate the insertion process, insertion of key 9 into the tree in Fig. 5 
with parameter k = 2 results in the tree in Fig. 2. 

m l  

i split page 
routine 
for P(s) 

( 
( 

apply retrieval 
algorithm for 

key y 

found y? ) 

~NO 
S=tt .9 

2 

is P(s) full? ) 

insert entry ] 
(y, u) in P(s) 

YES 

YES 

* Key y is already in index, take appropriate action. 
Fig. 4. Insertion algorithm 

G 
[ tree is empty, 

~ l  create root 
page with y 
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2 

4 

11 2 3 41 16 7 8 101 112 1314151 1171819201 12223 24 251 
Fig. 5. Index structure in ~(2, 2) 

5. Cost of Retrievals and Insertions 

To analyze the cost of maintaining an index and retrieving keys we need 
to know how many pages must be fetched from the backup store into main 
store and how many pages must be written onto the backup store. For our analysis 
we make the following assumption: Any page, whose content is examined or 
modified du~ng a single retrieval, insertion, or deletion of a key, is fetched or 
paged out respectively exactly once. I t  will become clear during the course of 
this paper that  a paging area to hold h '+  t pages in main store is sufficient to do 
this. 

Any more powerful paging scheme, like e.g., keeping the root page permanently 
locked in main store, will, of course, decrease the number of pages which must 
be fetched or paged out. We will not, however, analyze such schemes, although 
we have used them in Our experiments. 

Denote by /rain (tm=) the minimal (maximal) number of pages fetched, and 
by wm~ (w~,) the minimal (maximal) number of pages written. 

Cost o] Retrieval. From the retrieval algorithm it is clear that  for retrieving 
a single key we get 

/ ra in  = t ; / m a x  = h ; Wmi n = Wma x = 0 .  

Cost o/Insertion. For inserting a single key the least work is required if no 
page,splitting occurs, then 

/rain = h ; Wmi n = t .  

Most work is required if all pages in the retrieval path including the root page 
split into two. Since the retrieval path contains h pages and we have to write 
a new root page, we get: 

/max=h; wm.~ = 2 h  + t .  

Note that  h always denotes the height of the old tree. Although this worst bound 
is sharp, it is not a good measure for the amount of work which must generally 
be done for inserting, one key. 

If we consider an index in which keys are only retrieved or inserted, but no 
keys are deleted, then we can derive a bound for the average amount of work 
to be done for building an index of I keys as follows: 

Each page sprit causes one (or two if the root page splits) new pages to be 
created. Thus the number of page splits occurring in building an index of I items 
is bounded by n ( / ) - - t ,  where n(I) is the number of pages in the tree. Since 
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each page has at least k keys, except the root page which may have only t,  we 

get: n(I)<=--Ikt ~-l. Each single page split causes at most 2 additional pages 

to be written. Thus the average number of pages written per single key insertion 
due to page splitting is bounded by 

2 2 (.(i) T < 7 

A page split does not require any additional page retrievals. Thus in the average 
for an index without deletions we get for a single insertion: 

2 ta=h; w a < t + ~ - .  

6. Deletion Process 

In a dynamically changing index it must be necessary to delete keys. The 
algorithm of Fig. 6 deletes one key y from an index and maintains our data 
structure properly. I t  first locates the key, say Yi. To maintain the data structure 
properly, yi  is deleted if it is on a leaf, otherwise it must be replaced by the 
smallest key in the subtree whose root is P(pi). This smallest key is found by 
going from P (Pi) along the P0 pointers to the leaf page, say L, and taking the 
first key in L. Then this key, say x 1, is deleted from L. As a consequence L may 
contain fewer than k keys and a catenation or underflow between L and an 
adjacent brother is performed. 

Catenation. Two pages P and P '  are called adiacent brothers if they have the 
same father Q and are pointed to by adjacent pointers in Q. P and P' can be 
catenated, if together they have fewer than 2k keys, as follows: The three 
pages of the form 

Q 

I ' " '  (Yi-1, P), (Yi' P')' (Yi+x, Pi+,) .... I 

can be replaced by two pages of the form: 

Q 

(yi-l, P), (yj+1, Pi+l) 
I 

. . . .  . . . .  [ 
i 

P O  P ' " (xl, Pl) . . . . .  (xt, P~), (Yi, Po), (xz+l, P~+I), .. 
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As a consequence of deleting the entry (Yi, P') from Q it is now possible that Q 
contains fewer than k keys and special action must be taken for Q. This process 
may propagate up to the root of the tree. 

Under/low. If the sum of the number of keys in P and P' is greater than 2.k, 
then the keys in P and P' can be equally distributed, the process being called 
an underflow, as follows: 

apply retrieval 
algorithm for y 

~ YES 

y on leaf 
page? ) 

retrieve pages 
down to leaf 

along P0 pointers 

replace y by 
first key on 

leaf page 

delete first 
key on leaf 

NO 

YES ] delete y 
r[  from leaf 

1 
[ if necessary, 

,_ perform 
] r ] catenations 

and underflow 

* The key to be deleted is not in index, take appropriate action. 

Fig. 6. Deletion algorithm 
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Perform the catenation between i ~ and P '  resulting in too large a P. This 
is possible since P is in main store. Now split P " in  the middle" as described in 
Section 4 with some obvious minor modifications. 

Note that  underflows do not propagate. Q is modified, but  the number  of 
keys in it is not changed. 

To illustrate the deletion process consider the index in Fig. 2. Deleting key 9 
results in the index in Fig. 5. 

7. Cost of Deletions 

For a successful deletion, i.e., if the key y to be deleted is in the index, the 
least amount of work is required if no catenations or underflows are performed 
and y is in a leaf. This requires: 

~min = ]$ ; Wmi n : t .  

If y is not in a leaf and no catenations or underflows occur, then 

l - -h;  w=2 .  

A maximal amount of work must be done if all but  the first two pages in the 
retrieval path are catenated, the son of the root in the retrieval path has an 
underflow, and the root is modified. This requires: 

/ m x = 2 h - - t ;  W m ~ = h + t .  

As in the case of the insertion process the bounds obtained are sharp, but  very 
far apart and assumed rarely except in pathological examples. To obtain a more 
useful measure for the average amount of work necessary to delete a key, let us 
consider a "puredele t ion process" during which all keys in an index I are deleted, 
but  no keys are inserted. 

Disregarding for the moment catenations and underflows we may get fl = h 
and w 1 ----2 for each deletion at worst. But  this is the best bound obtainable if 
one considers an example in which keys are always deleted from the root page. 

Each deletion causes at most one underflow, requiring ~2 = t  additional 
fetches and w~ = 2 additional writes. 

The total number of possible catenations is bounded by n(I)--l, which is 

at most ~ Each catenation causes t additional fetch and 2 additional 

writes, which results in an average 

t I 1 - t  \ t 
l ,  = T < 

2 / I - - t  \ 2 
' * ,  = T [ - r -  ) < " 

Thus in the average we get: 

1 
/,,~_h + / j + / s < h +  l + 

2 2 w,~_wl +w2 + w 8 < 2  + 2  + -~ = 4  + - ~ .  
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8. Page Overflow and Storage Utilization 

In the scheme described so far utilization of back-up store may be as low as 
50% in extreme cases--disregarding the root page--if  all pages contain only k 
keys. This could be improved by  avoiding certain page splits. 

An over]low between two adjacent brother pages P and P' can be performed 
as follows: Assume that  a key must be inserted in P and P is already full, but  P' 
is not full. Then the key is inserted into the key-sequence in P and an underflow 
as described in Section 6 between the resulting sequence and P' is performe d. 
This avoids the need to split P into two pages. Thus a page will be split only if 
both adjacent brothers are full, otherwise an overflow occurs. 

In an index Without deletions overflows will increase the storage utilization 
in the worst cases to about 66%. If both insertions and deletions occur, then 
the storage utilization may of course again be as low as 50%. For most practical 
applications, however, storage utilization should be improved appreciably With 
overflows. 

One could, of course, consider a larger neighborhood of pages than lust the 
adjacent brothers as candidates for overflows, underflows, and catenations and 
increase the minimal storage occupancy accordingly. 

Bounds for the cost of insertions for a scheme With overflows are easily derived 
a s :  

/ram = h ;  w~t~ --= t ; 

/ma~ = 3 h - - 2 ;  Wmax = 2 h + t .  

For a pure insertion process one obtains as bounds for the average cost: 

2 
] a < h + 2 + ~ - ;  wa<3  +-k- .  

I t  is easy to construct examples in which each insertion causes an overflow, 
thus these bounds cannot be improved very much Without special assumptions 
about the insertion process. 

9. Maintenance Cost for Index with Insertions and Deletions 

The main purpose of this paper is to develop a data structure which allows 
economical maintenance of an index in which retrievals, insertions, and deletions 
must be done in  any order. We will now derive bounds on the processing cost 
in such an environment. 

The derivation of bounds for retrieval cost did not make any assumptions 
about the order of insertions or deletions, so they are still valid. Also, the minimal 
and maximal bounds for the cost of insertions and deletions were derived Without 
any such assumptions and are still valid. The bounds derived for the average 
cost, however, are no longer valid if insertions and deletions are mixed. 

The folloWing example shows that  the upper bounds for the average cost 
cannot be improved appreciably over the upper bounds of the cost derived for 
a single retrieval or deletion. 
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Example. Consider the trees T~ in Fig. 2 and T 6 in Fig. 5. Deleting key 9 from 
T~ leads to T 5, and inserting key 9 in T 5 leads back to T 2. Consider a sequence 
of alternating deletions and insertions of key 9 being applied starting with T I. 

Case 1. No page overflows, but  only page splits occur: 

i) Each deletion of key 9 from Tg. requires: 
3 retrievals to locate key 9, namely pages t ,  2, 6. 
t retrieval of brother 5 of page 6 to find out that  pages 5 and 6 can be 
catenated. 
2 pages, namely 5 and 2 are modified and must  be written. Pages 6 and 3 
are deleted from the tree T~. 
Thus I = 5 and w = 2. But/----- 5 = 2h - - t  = ]maz and w = 2 = h --  t '--- Wmax-- 2. 

ii) Each insertion of key 9 into T 5 requires: 
2 retrievals to locate slot for 9 in page 5. 
5 pages must be written, namely t ,  2, 3, 5, 6. 
Thus 

1=2 =h =1,~ 
w = 5  = 2 h  + t = Wma. .  

Case 2. Consider a scheme with page overflows. 

i) Deletion of key 9 leads to the same results as in Case t .  

ii) Insertion of key 9 requires: 
2 retrievals to locate sl0t for 9 on page 5. 
2 retrievals of brothers 4 and 7 of 5 to find out that  5 must  be split. 
5 pages must  be written as in Case t. 
Thus: 

t = 4  = 3 h  - 2  = t,~,,  

w = i  = 2 h + t  -----~max. 

Analogous examples can be constructed for arbi trary h and k. 
From the analysis it is clear that  the performance of our scheme depends 

on the actual sequence of insertions and deletions. The interference between 
insertions and deletions may degrade the performance of the scheme as opposed 
to doing insertions or deletions only. But  even in the worst cases this interference 
degrades the performance at most by  a factor of 3. 

I t  is an open question how important  this interference is in any actual applica- 
tions and how relevant our worst case analysis is. Although the derivable cost 
bounds are worse, the scheme with overflows performed better  in our experiments 
than the scheme without overflows. 

10. Choice of & 

The performance of our scheme depends o~ the parameter  k. Thus care should 
be taken in choosing k to make the performance as good as possible. 

To obtain a very rough approximation to the performance of the scheme we 
make the following assumptions: 
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Re- 
tdeva l  

Inser t ion  Deletion Inser t ion Insert ion Deletion Inser t ion 
in index in index in index in index in index in index 
wi thout  wi thout  wi thout  with with with 
deletions insertions, deletions, deletions, insertions, deletion, 
and with or  bu t  with wi thout  with or with 
wi thout  wi thout  overflow overflow wi thout  overflow 
overflows overflows overflows 

m i n  1=I /=h /=h l=h l=h l=h l=h 
w = 0  w = l  w = l  w = t  w = t  w = t  w = t  

t 2 
Averageas f<h /=h l < h + l + -  k- l '<h+2+~- l =h  /<2h--t  1~3h--2 
derived in 

2 2 2 
paper  w = 0  w < i + ~ -  w < 4 + - - ~ -  w ~ 3 + -  k- w < 2 h + t  h - - l ~ u  w < 2 h + l  

~ h + l  

max / = h  / = h  l = 2 h - - t  1 = 3 h - - 2  / = h  I = 2 h - - 1  I = 3 h - - 2  
w = 0  w = 2 h + l  w = h + t  w = 2 h + t  w = 2 h + t  w = h + l  w = 2 h + l  

[ = number  of pages fetched h = height of B-tree 
w = number  of pages wri t ten k = parameter  of B-tree of pages 
I = size of index set u = best  upper  bound obtainable for w 

Fig.  7. T a b l e  of cos t s  for  a s ingle  re t r ieva l ,  inser t ion ,  or  de le t ion  of  a k e y  

i) The time spent for each page which is written or fetched can be expressed 
in the form: 

0t +f l (2k  + t )  + 7  ln(vk + t )  

0t fixed time spent per page, e.g., average disc seek time plus fixed CPU 
overhead, etc. 

fl transfer time per page entry. 
7 constant for the logarithmic part of the time, e.g., for a binary search. 

factor for average page occupancy, t -< v ~ 2. 

We assume that  modifying a page does not require moving keys within a 
page, but  that  the necessary channel subcommands are generated to write a 
page by concatenating several pieces of information in main store. This is the 
reason for our assumption that  fetching and writing a page takes the same time. 

i) The average number of pages fetched and written per single transaction 
in an environment of mixed retrievals, insertions, and deletions is approximately 
proportional--see Fig. 7-- to  h, say 6h. The total time T spent per transaction 
can then be approximated by: 

r ~ ~h (~ + ~(2k + t )  + 7  In (vk + t ) ) .  

Approximating h itself by: h ~  log, k+ l ( I+ t )  where I is the size of the index, 
we get: r ~ T, ----- 6 log, k+1 (1+ t )  (~ +f l (2k  + t )  + 7  In (vk + t ) ) .  

Now one easily obtains the minimum of T, if k is chosen such that:  

+,1)- (,-,, =//k, 
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Neglect ing CPU t ime,  k is a number  which is charac ter i s t ic  for the  device 
used as b a c k u p  store. To ob ta in  a near  op t ima l  page size for our  tes t  examples  
we assumed ~ = 50 ms and  fl = 90 bts. According  to  the  tab le  in Fig.  8 an acceptab le  
choice should be 64 < k < t28. F o r  reasons of p rog ramming  convenience we chose 
k = 60 resul t ing in a page size of t20  entries.  

k t(k, ~) I(k, ~.5) I(k, 2) 

2.0000oE + 00 1.59167E + oo 2.39356E + oo 
4.00000E + oo 7.09437 E + 00 9.16182E + 00 
8.00000E + 00 2.25500E + 01 2.74591 E + 01 
1.60000E + 01 6.33292E + 01 7.42958E + 01 
3.20000E + 01 !.65769E + 02 1.89265 E + 02 
6.40000E + 01 4.13670E + o2 4.62662E + 02 
t .28000E + 02 9.96831 E + 02 1.09726E + 03 
2.56000E + 02 2.33922 E + 03 2.54299E + 03 
5.12000E + 02 5.37752E + 03 5.78842E + 03 
1.02400E + 03 1.21625E + 04 1.29881 E + 04 
2.0480oE + 03 2,71506E + 04 2.88062E + 04 
4.09600E + 03 5.99647 E + o4 6.32806E + O4 
8.19200E + 03 t.31269E + o5 1.37906E + o5 
t .63840E + 04 2.85235E + 05 2.98514E + 05 
3.27680E + 04 6.15877 E + o5 6.42442 E + 05 
6.5536oE+ 04 1.32258E + 06 1.37572E+ 06 

3.o4718E + oo 
t.O775OE + 01 
3.11646E+ 01 
8.23847 E + 0t 
2.06334E + O2 
4.97915 E + O2 
1.1691tE+ O3 
2.68826E + 03 
6.08075 E + 03 
1.35748E + O4 
2.99818E + 04 
6.56343 E + 04 
t.426t 7E + 05 
3.07938E + 05 
6.61292E + O5 
t.4t342E + 06 

Fig. 8. The function /(k, v) for optimal choice of k 

The size of the index which can be stored for k -----60 in a page tree of a certain 

height  can be seen from Fig. 9. 

Height of Minimum Maximum 
page tree index size index size 

1 1 t20 
2 t21 14640 
3 7441 t 771 560 
4 4 5 3 9 6 1  214358880 

Fig. 9. Height  of page tree and index size 

11. Exper imenta l  Results  

The algori thms presented here were p rogrammed and their  performance 
measured during various experiments .  The  programs were run on an IBM 360/44 

computer  wi th  a 231t disc uni t  as a backup store. For  the index e lement  size 

chosen (t4 8-bit characters) and index size general ly used (about 10000 index 
elements),  the average access mechanism delay for this uni t  is about  50 ms, 
af ter  which informat ion transfer  takes  place at the rate  of about  90 bts per index 
element.  F r o m  these two pa rame te r s ,  our analysis~ predicts  an opt imal  page 

size (2k) on the order of t20 index elements.  
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The programming included a simple demand paging scheme to take advan- 
tage of available core storage (about t 250 index elements' worth) and thus to 
at tempt to reduce the number of physical disc operations. In the following 
section by virtual disc read we mean a request to the paging scheme that  a certain 
disc page be available in core; a virtual disc read will result in a physical disc 
read only of there is no copy of the requested disc page already in the paging 
area of core storage. A virtual disc write is defined analogously. 

At the time of this writing ten experiments had been performed. These ex- 
periments were intended to give us an idea of what kind of performance to expect, 
what kind of storage utilization to expect, and so forth. For us the specification 
of an experiment consists of choosing 

t) whether or not to permit overflows on insertion, 
2) a number of index elements per page, and 
3) a sequence of transactions to be made against an initially empty index. 

At several points during the performance of an experiment certain performance 
variables are recorded. From these the performance of the algorithms according 
to various performance measures can be deduced; to wit 

1) % storage utilization 
2) average number of virtual disc reads/transaction 
3) average number of physical disc reads/transaction 
4) average number of virtual disc writes/insertion or deletion 
5) average number of physical disc writes/insertion or deletion 
6) average number of transactions/second. 

We now summarize the experiments. Each experiment was divided into 
several phases, and at the end of each of these the performance variables were 
measured. Phases are denoted by numbers within parentheses. 

E t : 25 elements/page, overflow permitted. 
(t) 10000 insertions sequential by key, 
(2) 50 insertions, 50 retrievals, and t00 deletions uniformly random in 

the key space. 

E 2: 120 elements/page; otherwise idontical to E t.  

E3 : 250 elements/page; otherwise identical to E t. 

E 4: t 20 elements/page, overflow permitted. 
(t) t0000 insertions sequential by key, 
(2) t 000 retrievals uniformly random in key space, 
(3) 10000 sequential deletions. 

g 5 : t 20 elements/page, overflow not permitted. 
(t) 5 000 insertions uniformly random in key space, 
(2) t 000 retrievals uniformly random in key space, 
(3) 5 000 deletions uniformly random in key space. 

E6:  Overflow permitted; otherwise identical to E 5. 

E 7: t 20 elements/page, overflow permitted. 
(t) 5 000 insertions sequential by key, 
(2) 6000 each insertions, retrievals, and deletions uniformly random in 

key space. 
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t 20 elements/page, overflow permitted. 

(t) t 5000 insertions uniformly random in key space, 
(2) t00 each insertions, deletions, and retrievals uniformly random in 

J~ey space. 

250 elements/page; otherwise identical to E8. 

120 elements/page, overflow permitted. 

(1) t00000 insertions sequential by key, 
(2) 1000 each insertions, deletions, and retrievals uniformly random in 

key space, 
(3) t00 group retrievals uniformly random in key space, where a group is 

a sequence of t00 consecutive keys (statistics on the basis of t0000 
transactions), 

(4) 10000 insertions sequential by key, to merge uniformly with the 
elements inserted in phase (1). 

% Stor- VR/T* PR/T VW/I PW/I T/see 
age used or D or D 

E1 (1) 99.8 2.2 0 2.3 0.04 66.1 
E1 (2) 91.5 4.4 1.62 2.7 t.5 6.6 
E2 (t) 99.2 1.o 0 t.0 0.008 94.5 
E2 (2) 87.3 2.5 1.t5 1.3 1.1 6.7 
E3 (1) 97-6 t .0  o t.0 0,004 100.0 
E3 (2) 84.7 2.4 t.08 1.3 1.1 5.2 
E4 (1) 99.2 1.0 0 1.0 0.008 94.5 
E4 (2) 99.2 2.0 - -  - -  - -  19.5 
E 4  (3) - -  2.0 0.01 2.0 o 74.1 
E5 (t) 67.1 t.0 0.55 t.0 0.56 17.0 
E5 (2) 67.1 2.0 0.83 - -  - -  18.2 
E5 (3) - -  4.0 0.68 2.2 0.65 t2.4 
E6 (1) 86.7 1.t 0.55 t.1 0.54 17.1 
E6 ( 2 )  86.7 2.0 0.79 - -  - -  24.3 
E 6  (3) - -  4.0 0.65 2.2 0.62 13,4 
E7  (1) 96.9 1.0 0 1.0 0.008 11t.9 
E7 (2) 76.8 2.3 0.83 1.3 0.88 13.1 
E8 (t) 84.5 t.3 0.87 1.3 0.85 10.1 
E8 (2) 83-9 3.7 t.00 3.0 1.00 9-5 
E9 (1) 86.4 1.1 0.84 1.0 0.82 8.5 
E 9  (2) 85-2 2.3 0.94 t . t  0.96 8.2 

E lO  (1) 99.8 1.9 0 t .9 0.008 9t.7 
E l 0  (2) 82.t 4.1 1.94 1.8 1.54 4.2 
E l 0  (3) 82.1 4.0 0.03 - -  - -  75,7 
E t 0  (4) 83.8 2.2 0.t0 2.2 0.11 38,0 

* This  statistic is unneCessarily large for deletions, due to the way  deletions were pro- 
grammed.  To find the necessary number  of vir tual  reads, for sequential  deletions sub t rac t  
one from the number  shown, and for r andom deletions sub t rac t  one and mult iply the result 

by  abou~ 0.5. 
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