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S.mmaTy. The concept of Chomsky-gramm~rs is generalized to graph-grammars; 
the "gluing" of graphs is defined by s pushout-construction. In the present paper, 
we allow the left-lmnd and fight-hand side of a production to be partial graphs, i,e. 
graphs in which there may be edges without a source or target node. A necessary 
and sufficient condition for applicability of productions is given. Furthermore, convex 
grRph-grammars are studied. 

Introduction 

In trying to generalize the concept of Chomsky-grammars to multidimensional 
symbol-structures, the main problem is to specify the embedding and the ex- 
change of substructures in order to get direct derivation of symbol-structures. 
There are several concepts to solve this problem. 

The first known approach is the concept of web grammars [8]. A web is a 
directed graph with labelled nodes; a production is given by a pair of webs 
(W~, W,). Applying the production to a web W, a subweb of which is W z, we must 
replace ~ by W,; in addition to the case of strings, we need a rule as to how to 
connect the nodes of W, with the nodes remaining in W after W~ is removed. In 
[8], these "embedding-rules" are given in an informal way. A formal descrip- 
tion of these rules is due to [6]. 

Another approach is given in [12, 13], where "n-diagrazus" are considered, 
i.e. relational systems with a set K of labelled nodes and n partial orderings 

. . . . .  Q~ on K. A production of a n-grammar consists of two n-diagrams Ot and 
D, describing precisely the embedding rules. A generalization of this approach 
is given in [7]. These approaches consider convex graph-grammars only. 

In [2, 3], we proposed an algebraic approach using homomorphisms and 
pushouts. In contrast to the above mentioned concepts, we were able to define 
gluing of graphs and direct derivations of labelled graphs separately. This concept 
was generalized by [t 1 ] to partially labelled graphs and noninjective embeddings. 
In the present paper, we discuss another generalization, mentioned and used 
already in [14] for the description of incremental compilers: We allow the lefts 
hand and right-hand side of our productions to be "part ial" graphs, i.e. graph- 
in which there may be edges without a source or target node, but we give addi 
tional conditions to make sure that the derived graphs are total, labelled graphs 
again. 

There is a great variety of applications about which we can give only some 
references: pattern recognition [5, 8], translation of programming languages [10], 
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two-dimensional programming languages Ct], incremental compilers [14], bio- 
logical organisms E4]. 

The reader may ask why we want to allow partial graphs: Instead of a par- 
tial graph which is to be replaced, we may replace a sufficiently large graph 
containing the given partial graph. It  is clear that  we have to add, on both sides 
of the original production, some nodes which remain unchanged in the deriva- 
tion step. These nodes may be interpreted as constant context. Because all 
possibilities of context must be added, the set of productions increases rapidly. 
Additionally, in the applications mentioned, data structures are to be stored by 
node and edge lists (see e.g. Et 5]); if we want to describe syntactic operations 
on such data structures by formal graph-graznmars, it would be not a natural 
way of thinking to add unnecessary information (which must be tested in each 
step) to the productions and to increase at the same time the number of pro- 
ductions. (In the case of an infinite labelling alphabet, this process leads to an 
infinite set of productions; furthermore, the productions of a convex graph- 
grammar with total  graphs must take into account all combinations of edges 
between nodes of the original partial graph and the additional peripheral nodes.) 
Therefore, it is of interest to know some criteria for applicability of productions 
with partial graphs. 

The definitions of partial graphs, the embedding mechanism, and derivation 
between graphs are given in Section 1. The notion of derivation is illustrated by 
some examples in Section 2. Section 3 contains the main results and proofs: 
the definition of labelled gluing is shown to be correct, and there is a necessary 
condition for applicability and unique applicability of productions. The last 
section is concerned with convex graph grammars. 

1. Definitions 

First, we summarize some basic definitions, given for total graphs in E2, 3]. 
Since we allow partial graphs to be the left-hand and right-hand side of produc- 
tions, we have to modify the definition of morphisms, especially injections, 
and labelled gluing. 

Definition 1.1. A partial directed grapl~ G consists of two sets G~ and Gv to- 
gether with two partial mappings q: GE-->Gv and z: GE-~Gv. The graph is called 
total and directed if and only if dora (q) ---- dora (z)----G~. 

Remarks. (i) The elements of GE are called edges, these of Gv nodes or vertices; 
q determines the source and z the targets of edges. 

(ii) With respect to the applications we have in mind, it is not of interest to 
allow edges to be neither in the domain of q nor in the domain of z, but the proofs 
even hold true in this case. In the following we speak of "g raph"  as abbreviation 
of "par t ia l  directed graph".  

Definition t.2. Let G=(G~, Gv, qG, zG) and H----(H~, Hv, gn, zn) be graphs. 
A weak graph morphism is a pair/----- (/~,/v) of mappings/E: G~--->H~,/v:Gv--~Hv 
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where 

Gz ~ ' Gv 

H E ~  Hv 

commutes for s = q and s = z in the sense that  s n (/~ (e)) is defined if s o (e) is defined. 
Since we require partial graphs to be subgraphs of a total one, we may not 

use in each case the usual graph-morphism: 

Ddinition 1.3. A weak graph-morphism /: G-,.H is called graph-morphism if 
sH(/z(e)) is defined if and only if s~(e) is defined. 

Remarks. (i) Partial graphs together with weak graph-morphisms constitute 
a category @mp~-; composition of morphisms and identities axe defined com- 
ponentwise. 

(ii) If ~etr s is the category of all pairs of sets (together with all pairs of map- 
pings), the/orget/ul/unctor U: @mp~--~et~ t is given by 

UG:=(E, IO for G: Eq=.V, 
I I  

for t:a a'. 

(iii) Let OmiT) be the full subcategory of Or~v~- the objects of which are the 
total graphs. 

(iv) If X is a category, we denote with 13~1 the set of objects and with Mor~ 
the set of morphisms. 

Most of the following results axe applicable to infinite graphs, too, but only 
finite graphs are of interest here. From now on, we consider only graphs the nodes 
and edges of which are labelled: 

Definition 1.4. Let Q= (Q~, Qv) E[ ~etr be a pair of sets (labelling alphabet), 

G: E ~ V  a finite (partial) graph, and m:=(m~,  my) a pair of partial mappings 
$ 

mE: E->Qe, my: V--~Q v (labelling mapping). Then (G, m) with m: G---~Q is 
called (partial) Q--graph. Given Q-- graphs (G, m) and (G', m'), a graph mor- 
phism [: G--,,G' is called Q--graph-morpkism if m' .U/=m holds in the sense 
that  the following diagrams commute: 

dom(m~) . ,  , f2 E dora(my ) ,,v ~ f2 v 

s, - -, Iv I 

Notaton. (i) G is called Q-graph if m s and my are total. 
(ii) Q--graphs together with these Q--graph-morphisms constitute a category 

@rap~ .  The categories ~ r a p ~ ,  ~ a ~ o - ,  and (~ra;~o are full subcategories, the 
objects of which axe the partial Q-graphs, total Q--graphs, and total Q-graphs 
respectively. 
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Definition 1.5. A graph-grammar is a quadruple Q=(12, T,S, P) where 
.Q : ----- (/2m /2 v) is a labelling alphabet, T=(Tg, Tv)~2 the terminal alphabet, 
S a single-noded discrete labelled graph (initial graph), and P a finite set of 
productions of the form: 

p=(( ' s .  'm). % K. p'. (e'. ~')) 

with KE[ @ra~- l and ('B, 'm), (B', m') E I ~ra~fi[ ,  ('B, 'm) r ~mP~i-[, 'P: K--~'B 
and p': K--~ B' graph-raorphisms satisfying 

'Bs\ 'ps  [K~] _(dora (q'8) tu dora (z,B) 
(,) 

B'~\p'~ [Ks] _<dom (gin) c~ dom (ze.). 

If K is a set and p a partial mapping of K into another set, p [K] denotes the 
set of images of K. 

('B, 'm) and (B', m') axe called the left-hand and right-hand side of p re- 
spectively. To derive a new graph from a given one, the left-hand side of a pro- 
duction is to be replaced by its right-hand side; the auxiliary graph K and the 
raorphisras 'p, p' serve to define how to glue (B', m') into the graph which remains 
after having deleted ('B, 'm). Condition (*) ensures an edge in 'B or B' without 
source or target node to be the image of such an edge in K. (This is used in No. 3-2 
to show that  the pushout-object is in ] ~ r a ~  [.) For better understanding, the 
reader should study now the productions given in Section 2, and should read 
these examples step by step as the notions and constructions are introduced. 

If we omit the labelling for a moment, we may introduce the notion of deri- 
vabihty  by two pushout-constructions: 

B , 'P K * , B' 

' i  i .  ~ b "  d in Or 

G, D ,H 

The graph H may be called derivable from G. Intuitively, the graph D is the 
remainder of G after having deleted 'B and before inserting B';  in addition, D 
contains the gluing nodes and gluing edges. One must ask why this diagram 
includes unlabelled graphs only. Actually, we could also consider this diagram 
for labelled graphs. But this would be a real restriction for the applications, 
because a common labelling of K and D would imply that  corresponding gluing 
points in 'B and B' must have the same labels. For example, the labels h of ' l  
and / of l '  in figure I would have to be equal. Therefore, we don't  label the graph 
K and proceed in two steps: first, we define the gluing of D and 'B (resp. D and 
B') along K, and then we define the labelling of G (resp. H). Because of the sym- 
metry of this construction, we may restrict our considerations to one part of the 
diagram: 

Theorem 1.6. Let K E[ ~m~) ~ ], B E[ (~mp~- [, D E] ~ap~  [ be such that  there 
exists an injective weak graph-raorphisra d: K--~D and a graph-morphism 
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~: K-.~ B satisfying 

(a) BE\Px [K~] (_dora (qB) ~ dora (zs), 
(b) If pE(e)=pE(e') for some e, e'eKE, then 

(b t) e, e" edora (qx) ~ q~ dE (e) ---- q.  dE (e'), 

(b 2) e, e' Edom (zK) ~ zo dE (e) = zo ~E (e'). 

Then, there exists a Ge[ @~:aVr~ I, such that 

K P : B  

I l" 
D . - . 7 ~  G 

is p~hout-diagra~ in Nra~t~-. 
Conditions (a) and (b) are used to show that G is a total graph although the 

p~hout--const~ction is in ~m~tV. If edges without source or target node are 
identified by PE, condition (b) ensures the source and target nodes to be identical, 
too. This theorem is a basis of the following definition and wilI be proven in No. 3.2. 

Definition 1.7. Let be KE[ (~rap~-[, (B, me)El (~mP~[al, (D, mz>) E I (~cm~ra-1, 
d and ;b as in No. 1.6 and dora(too)----UD\d[K], then the pushout-object in 

F~sbout [ 
19 .G 

together with the labelling m e given by 

UK up ,, ~ U B  

U~\d[K] .o , a 

is called labelled gluing of (B, ms) and (D, too) along K, abbreviated as: 

(G. ,,~) = (D. m~) g (B. "B) 
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The labelling of G is uniquely determined and/~ and d are morphisms in @ralp~a 
and @ra1~ respectively. According to injectivity of d, 

UD\d < , v,l [K] --~ UD UK 

is a coproduct-diagram in ~,etJ =. Therefore, we have a unique mD with roD" <-=toO^ 
roD" Ud="tB " Up. (Note that  UD\d[K] is the doma/n of .tD. ) Because of the 
pushout-property of Ud �9 Up = U~ �9 Ud, there exists a unique m6 with . t  e �9 U~---- 
~D^.t~. U~=.t~. 

Remark. Although in this definition, K is not labelled and D only labelled 
partially, there exist . t~ and . t  K such that  

(K, inK) P , (B, ms) 

I- [ d in ~.N,mb~ 

(D, m~,) ~ , (6, m~) 

is pushout-diagram in @ra~0~. and we can show that  for each such pushout 
there is a unique . t  D (the restriction of .t~) and 

(G, .ta) = (D..tD) ,~/p (B, .ts). 

The proof is analoguous to that  given in [2]. 
Now, we can define the derivability: 

Definition 1.8. (H, -tn) E[ @raV~o] is called directly derivable from (G, .ta) in Q: 

(a, .t~) -6" (H, m.) 

if and only if there is a production pEP, a partially labelled graph 
(D, .tD) E l (~r~.- [ and an injective, weak graph-morphism d: K--~D satisfying 
(1.6b) and 

dora ("tD) -~- UD\ d [K]. 

such that, up to isomorphism, the following conditions hold: 

(G, -re) = (D, .t~) I / ( ' B ,  '"t) 
d,'h (.) 

(H, mn)= (D, mD)d~p (B', .t'). 

Remarks. (i) e: = (d, (D,-to) ) is called an enlargement. 
(ii) If we want to denote the production and enlargement used, we write ..... 

(p, e) 
instead of ~ ;  if there is no doubt we write -->. 

0 
(iii) The derivability relation + is the reflexive, transitive closure of - .~.  

The set of Q-graphs generated by Q, is 

L (Q): = {(G, -ta) lS 2 .  (G, -re) ^ (G, .t~) ~] @ra~,i)r ]}. 
o 
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In many cases it is necessary to forbid unrestricted use of production: 

Definition 1.9. A graTbh-grammar with enlargements Q~ (~, T, S, P, E) is given 
by a graph-grammar (~, T, S, P) and a family E =  (Ep)pE p of enlargements 
e~(d, (D, mu)). (G, ms)--~(H, mR) holds if and only if there exists a production 

p such that  (.) holds with an eEEp. 

R#mark. The set of enlargements belonging to a production is not necessarily 
finite. (See e.g. 4.8.) 

Definition 1.10. A graph-grammar Q~(s T, S, P) is called cant~xt/ree if and 
only if for all productions (('B, "m), 'p, K, p', (B', m')) 'B contains exactly one 
node. Q is called s~rongly conte~-/ree if and only if it is context-free and 'B doesn't 
contain edges (for all productions). 

2. Examples  

Exaz~le 2.1. First, we consider the production p the left-hand and right- 
hand side of which are given in Figure t.  (In our figures, we write v:x to re- 
present a node or edge with denotation v and label x.) The labels of the edges 
are not of interest in this example and are omitted. In our first example, let K be 
a discrete graph with (unlabelled) nodes I and 2; the graph-morphisms 'p and 
p' are defined by 'p (i) : -----'i and p' (i): =i'  for i =  t ,  2. Now, we choose a partially 
labelled graph D as given in Figure 2a with d(i):=i. Then, the construction 
given in No. t .7 yields the graphs G and H of Figure 2b: H is directly derivable 
from G by the considered production. 

In this example, there is an edge in G between two nodes of the replaced 
subgraph, but this edge is not part of the subgraph: d is not convex. (See Def. 4.t .) 
This case is not considered in most of the known approaches. 

Examp& 2.2. Next, we consider an example related to structured programming 
(programming by step-wise refinement) : the aim is to refine the condition in an 
"if-then-else-statement". In other words, node '1 in G is to be replaced by a 
compound condition which is composed of I '  and 2' (Fig. 3). The production 
realizing this derivation step is given in Figure 4, the graph D in Fig~are 5. ,As in 

' " "' " p v ( l ) =  P v ( - ) - -  PE(3)  = 3, the former examples, pv(z):=~ , p~(/'):=1', and ' ' ~ 'I, ' ' 
'PE (4) = 'PE (5) = ' 4 ,  'p~ (6) = '6 .  We must take into consideration the edges 3, '3, 

B': 1 

�9 

�9 

Fig. I 
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Fig. 2a 

I 

r 

Fig. 2 b 

j / ;  

3': 

4 ' : Y  

'3: Y 

r ' 6  

Y 

Fig. 3 

'8:  N :  

'3: Y 3: 

'4: : N  4: 

Fig. 4 

8': 

'4: Y 

3':Y 

3', too: if we omit these edges in the production, the node 2' may  be the target of 
3' because of 'p (1) = 'p (2). In such cases, the derivable graph is not uniquely 
determined. (See Theorem 3. t t / t2 .)  More details concerning syntax-directed 
description of incremental compilers using grammars on partial graphs, are 
given in [14]. 
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Fig. 5 

3O5 

G �9 

�9 �9 
Fig. 6 

DI: 

Fig. 7 a 

Example 2.3. Our last example is concerned with trees. We consider the pro- 
duction given in Figure 6 with 'p and p' indicated by the numbers. Using the 
enlargement, given by the graph D 1 of Figure 7a and d( i ) :~ i ,  we get the deri- 
vation G-.-*.H 1 of Figure 7b. However, the resulting graph/-/1 depends essentially 
on the enlargement. If we use a D z different from D 1. we get a different H 2 deri- 
vable from G by the same production (Fig. 8). 
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Fig. 7b 

Fig. 8 

3. General Results on Graph-Grammars 

Fi r s t ,  we no te  a l emma,  f r equen t ly  used:  

Lerrmaa 3.1. I f  

K .?, , B  

D . , G  p 
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is ~ pus\out-diagram in ~etr with injective d, we have: 

k~G^kr =, kE~[B\~EK]], 

(b) ,~(~=:(k, . )  =, (~tkeK)(aCk)=k,^/,(k)=,%). 

(c)/; (~h) =~; (kd ^ ~ .  

(d) the restriction/~o: Dhd [K] -*Gk$[B] of/~ is bijective. 

(e) J is injective. 

This lemma follows immediately from explicite construction of pushouts as 
disjoint union using injectivity of d: 

K ~ ,B 
/! 

2 "  ' 1 
J D ~ B  ,,, li 

,,,/ll "~atll 

where ~ is the equivalence-relation induced by 

R: ffi ((d(k), ~(k)) I k~K}. 

In No. t .6, we gave a theorem used to define the labelled gluing, without proof: 

P, oo/ o/ T ~ , e m  (1.6) 3.2. Let Kr I, Br DEI(~r~01 be 
such that there exists an injective weak graph-morphism d: K->D and a graph- 
morphism p: K-, .B satisfying 

(a) Bg\p~. [KE] <dora (qs) :~ dora (zB), 
(b) If pa(e)----p~(d) for some e, d~K~, then 

(b~) e, e"Edom(qK) =, qo dE(e)=qz, dE(d), 

(b 2) e, e' E dora (zK) =~ zo dE (e) ---- z D dg (d). 

Then, we have to show existence of a G E [ @rap~ ], such that 

21 a A ~  Infommatica, VoL 6 

K P p B  

I 1' 
D - - . r - .  G 
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is pushout-diagram in @ra~o~-. To prove this, we consider the pushout in ~et~Z: 

KE pz 

d ~  

D E u  ~ ~ G~ 

"-,~ 
' Gv 

with partial mappings qK and qa. Then, we can construct q~ in the following way: 
due to No. 3.t (a, b) 

i 

Gv 

with an arbitrary coretraction r  [D~] ~ D E  of ~ ,  i.e. 

is coproduct-diagram. (Because of No. 1.6(a), Bz~ z [Kz] is in the domain of 
qs.) Therefore, we have an uniquely determined qG, defined everywhere on GE, 
such that  the diagram commutes. Using a similar construction for z~, the proof 
is complete if we can show: 

(i) q~ doesn't depend on the choice of r (No. 3.3). 
(ii) ~ is a graph-morphism, ~ a weak graph-morphism (No. 3.4). 

(iii) G is pushout-object in @ r ~ -  (No. 3.5). 

Re~ark .  (a) In general, the pushout-object in @~ap~- is not total. Therefore, 
we must construct it explicitly using the assumptions of No. 1.6. 

(b) Here (and in many other proofs), we use the same notation for a mapping 
and for a restriction if it  is dear  what we mean. 

(c) z c may  be constructed in the same way. 

3.3. W e  consider e I, e2ED ~ with/~(ea)  =/~E(e~)=e, ea~=e~, and ca(e)=ea, 
c~(e)=e 2. With (3.1 c), we have unique existence of e I, eZEKE with d~(ei)=~,  
p~ (e 1) =p~ (ez). If qK (ei) are defined, we have 

=~v ~ p~Ce~)=~v ~ p~ (e~) =~ Pv ~(e') 
=~ a~ ~ (e')=~;~ ~ aE (e*)=~;~ ~(e,). 



Gramm=TS on Paxtia/Graphs 309 

p is a graph-morphism; therefore, qK(r i) both are not defined in the other case: 
(4.6b) yields qn('4=qn(r Thus, the total graphs 

c,:, [Ds] . ""v and c=pjz [DE] . ~'v 
: i  s, 

with q~ eonstrucLed as shown in the diagram of No. 3.2 and ~ constructed analo- 
guonsly, axe isomorphic beeanse 

q, (,4 = w  ~ ('4 = ~ v  q~ (,.) = q. ('4- 
3.4. For eEc:e[D~] follows :vqo(e)fq~:,(e) from construction. Let be 

r r [D~] and e':---- c:~ (e), therefore :~ (e') =~ (e). 

=, q~:, (d---q~/;~ (~') = q (,')=:~ qo (e'), 
and the argument of (3-)) yields pv q~ (e') =:v q~(e). Similarly, dv qn (e)=qa ~(e) 
by construction if e~B~r\pe[K~]. If e~@~[dom(qx)], we consider e'~dom(q~) 
with p~(~')=e: 

e~e(e)----eleps(e')=~vqod~(e') (~ is graph-morphism !) 

Since ~ must be only weak, this completes the proof. 

3.5. To prove pnshout-preper~y, we consider ~ weak graph-morphism /: 
B--~H and a graph-morphism g: D -~H with ] p = g  d. Because of pushout-property 
in ~.e~ z, there exist unambiguous k~: G~-~H~, by: Gv--~Hv with 

;'ra,,=/,~, ;,v~vf/v, l,~efg~, hv,:vffigv. 
The proof is complete, if we can show (h~, by) to be a gr~ph-morphism:. 

(a) e~i~ e IDol: We consider e' with/~(e')----e: 

•qn h,~(~')=qn k, (,). 

(b) er ~Ve consider e' with ~[~(e')----e. Then qn(e') is 
defined. (Otherwise. e' has ~t pre-image in Ka by (1.6a) and e is in/~ IDa].) 

hv q~ (e) = hv q~ t~  (e') = hv ~v q~ (e') = I v  qB (e') = q .  & (e') 
=qx hx:~,~(e') =q.'.t ht~(e) q.e.d. 

Example 3.6. In t.6, we must suppose p to be a graph-morphism. It is not 
possible to allow p to be weak. We consider the following example: 

tc~ = {~I} Kv = {,.. v,}. 

Z K (e~ = V x qK ('4 = undefined, 

B~ {d,d} 8,, (,,' ' "} ~--- ~ i, V2J V3 , 

zB (e,) -- v, zs (e~) = v~, 

q~ (~) = ~ q~ (d) = ~,  
�9 �9 e 

P8 ('4 = el Pv (%) = v, Pv (v*.) = v~, 
D~={~.. ~.} my=(%. ~,, v,, ~}, 

a~ ( ea) = gt av  (v,) = ~, av  (v,) = ~,. 
21" 
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Then, it is not possible to construct qH unambiguously because of/ge(~ 1) ~ d e" (e~),~' 
but  

. -  dr (v3)--qx 8s (el). 
' 

With similar examples, one can illustrate that (t.6a) and (1.6b) are necessary. 
We omit the proofs. 

Whereas a production of a string-grammar is applicable if its left-hand side 
is a substring of the given string, a production of a graph-grammar is applicable 
only if there exists a suitable enlargement: 

Theorem 3.7. Let K E[ ~rad0~- [, (B, ms) E I ~ra~Db[, (G, me) E I (~raP~o I be such 
that there exists a graph-morphism p: K--,,B and an injective weak graph~- 
morphism g: (B, me)--*.(G, me). Then, there is an enlargement e=(d, (D, roD) ) 
with 

(G, mr) = (O, m~) I.I (B, ms) ^ g = 
d, p 

(up to isomorphism) if and only if 

(a) q~ ge Pe [K~] c~gv EBv] <_gv Pv qxCKe] 

^ z~ g~ p~ CKE] ~gv [Bv] ~_gv Pv zK [Ke], 

(b) q~ [Ge] ~az~ [#e] C S v w g v  Pv [~v],  where 

G~:=Ge\gs[Be], Gv:----Gv\gv [Bv]. 

To prove this theorem, 

(i) we construct a complete graph D, together with m D and d: K.-.~D (see 
No. 3.9)~ 

(ii) we must show that 

(G, me)~-(D, too) I.I (B, ms) and g = 

up to isomorphism (see No. 3.t0), 
(iii) we must show the gluing condition to be necessary, but this is straight- 

forward and will be left to the reader. 

Remark 3.8. In the case of a contextfree production, the gluing condition 
(3.7b) is trivial on the left-hand side because of gv ~'Bv] ~gv" 'Pv ~Kv]. 

Construction3.9. Consider De:---.~e~K e and Dv:-~v~Kv with the 

"natural" inclusions de: Ke--~.Dz, dr: Kv-,.Dv, ~e: ~e-'~D~, iv: ~"~Dv. Then 

Ks "z JE D E 4 ~E 

Dv 

is a coproduct-diagram: if k and h 
qD ds----k^ qD Js --h. 

are given, there is a unique qD with 
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(a) To construct k, we consider another coproduct-diagram: 

K ~ \ d o m ( q ~  ~ ~ K s ,  a dom(qK ) 

1 
I k 

.h- 

Dv 
If ~ is not in the domain of q~:, q~ g~ p~ (e) is in ~v. (Otherwise, it would be in 
gv[Bv], and therefore, it is an element of gvpvqK[Ks] because of (3.7a) in 
contrary to the a~umption.) Thus, iv  yields a node of Dv by constraction. 
Note that  d:=(dE, dr) is a weak graph-morphism because of dv q K = k = q o  de on 
the domain of qK. 

(b) In order to construct h, we consider the restriction y: Kv"-~gv PvCKv] of 
gv Pv and an arbitrary coretraction c of r. (By definition r is a coretraction of 
r if rc is the identi ty on gvPv[Kv].) Then, we define h:=l~cq~, where ~, is th~ 
resulting morphism in the following coproduet-diagram: 

d r  a , d v v g v p v [ K v ] ,  a gvpv[Kv] 

1 
'~, 

Because of condition (3.7b), ;~ f~ is defined. With a similar construction for zD, 
we have a total graph D. 

Finally, we must define the labelling of D: 

m v (e) : = [undefined otherwise 
and mv (v) analoguously. 

3.10. Using the inclusions iE: dn--~G e and iv! dv~Gz, we define 2~ by  

KB ~ ~Dz,  ~ dz 

G~ 

and/~v in the same way. I t  is easy to see that  ~ is a graph-morphism and d a weak 
graph-morphism. To show that  

K P ~ B  

'11' 
D , G  

2'1 b Aeta  Ilfftmmatica, 3/'ol. 6 
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(with the above constructed D, d,/~) is a pushout-diagram it is sufficient to prove 
the pushout-property for the  V- and E-components in ~et~. Let  us consider the 
V-component: Given x t: D v'-~ X and x 2: B v--~ X with some set X and x x d v---- x,. p v, 
we must prove existence of a unique x: Gv-->X with X~v----xt^ x gv=x~. Consider 
the following diagram: 

Kv ~, By 

Dv by r. 

~ is defined by  ~ lv. Because of the coprMuct-property,  there is a unique x with 
x gv---- xs^ x i~,.~:~ I. Then, we have 

x~v  i v =  z i v = ~ =  ~ iv, 

z ~v  d r =  z gv Pv = x~ pv = xl dr. 

Since l"v and dv are coproduct-injections of Dr, we get X~v----xt. I t  is easy to 
show. that  this is the only way to construct x: If there exists another x' with 
X'~v=Xt, and x'gv=x.. ,  we have also X ' i v : X ' ~ v J v : X t j v = ~  and hence 
x = x' by uniqueness of x. 

Since we have m.=mG" U~.  c by construction in 3.9, the diagram in No. t .7, 
defining m~, commutes showing that /gEMor ~h:~[3o- and m~ is the labelling of 
(D, too) ~ (B, ma). 

If we have a production (('B, 'm), 'p, K, p', (B', m')) and g: ('B, ' m ) ~ ( a ,  ma) 
satisfying (3.7a, b), then existence of an (H, ran) with (G, ma)--~(H, ran) follows 
immediately from the existence of an enlargement. But  this (H, ran) is not uniquely 
determined: 

Definition 3.10a. v, v'EDv are called p-e, quivM~nt if either v~v' ,  or there 
exist k, k' r  with Pv(k)=pv(k'), v-~dv(k'), and v'=dv(k'). 

Theorem 3.11. If the assumptions of 3.7 axe satisfied and if (d x, (D 2, roD,)) 
and (d~, (D~, roD,)) are enlargements, then there is a pair of bijections b----(b r, bv): 
UD1--~ UDz with b �9 UDI ~ U ds^ mD~=raD " bid ̀  such that  b is a graph-morphism 
up to p-equivalence of nodes. 

Remark. Proposition 3.3 in [3] does not remain true if we allow partial graphs, 
because it is not possible to simulate assumption (t.6b) without edges in K. 

Theorem 3.12. If the assumptions of 3.7 and 3 . t t  are satisfied and p is in- 
jective, then b is an isomorphism in @tap~. 
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In this case, the enlargement--therefore (H, m~), too- - i s  unique up to iso- 
morphism. The proofs of 3.1t and 3A2 are the same as in [3]. 

4. Convex Graph-Grammars 

Following an idea of J.  Pfaltz, we consider now the replacement of convex 
subgmphs. However, we use a more general definition as in E9] : 

Definition 4.1. A graph-morphisra d: K--~D is called convex if and only if it 
satisfies 

(Veo, ex . . . . .  e. ~DE) (qo(eo) r dv [Kv] ^ zo (e.) Cdv CKv] 

^ (V0 (1 ~ i  ~ n ~'zz, (e~_l) =q~(e~)) 

(vi) (o ~ i  ~ n) (e~dE EKE])). 

This means that  the edges of a path the first and the last node of which are 
images of nodes of K, are images of edges of K, too. Thus, there are no new 
paths in D between the images of nodes of K. If d is injective, K is a convex 
subgraph of D in the usual sense. Note that  we allow q(ei)~z(ei). 

Corollary 4.2. If d: K - * D  is convex, we have 

(Vi) (o ~ i ~ n  =. qo (e3 cdv [Kv] ^ zo (e3 ~dv[Kv ]) 

with the above e~. 

Consider e~EK~ with d~(e~)~ei, qtc(e~), and zK(e~). Then, we have e.g.: 
d v (qK (e3)=  q~ (dE (e;)) = q .  (e,). 

In Definition 4A, we have not assumed the pre-images of the edges to form 
a path:  

Corollary 4.3. If d: K - ~ D  is convex and injective, then the e" with d~(el)~e~ 
form a path. 

Because of injectivity dv(qx(e~))=qD(ei)=zt~(ei_t)=dv(ztc(e~_x)) yields 

Lerarp.a 4.4. If d: K--~D and c: D--->C are convex and injeetive, then c �9 d is 
convex and injective. 

We must only prove convexity. Consider eo, ex . . . . .  e. ~ C~ with 

qc(eo) Ecv dv[Kv] ^ (V i) (t ~ i ~ n~ ,  zc(ei_l)~qc(ei)) ^ zc(e.) Ecv dv ~Kv]. 

Because of the convexity of c, we have 

(Vi) (0 -'~ i ~ n~.e iec  s IDol). 

c is injeetive. Therefore, the pre-images e~ form a path with 

t I 

qD (eo) Edv EKv] ^ ZD (e.) Edv ~Kv]. 

Convexity of d yields the proposition. 
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Theorem 4.~. If 

K P JB 

.l 1. 
D - - - 7 - ,  G 

is a pushout-diagra~ in @~l~l~ with d injective, then d is convex if and only if 
d is convex. 

Tkis result corresponds to Theorem 8 and 10 in [9]. 

Proo/o/(4.,~) 4.6. Given %~ e~ . . . . .  e,r >0)  with 

q~ (eo) ~ dv [By] ^ (Vi) (t _~ i _~ n =.zG (e,_x) =q~ (eD) ̂  zG @,,) r ;Lv [BvL 

we must only show 

because of Corollary 4.3. Without loss of generally, we assume furthermore 

(vo 0 ~ i _~,, => q~ @D r [By]). (.) 

Otherwise the path in G may be divided into subpaths such that  each subpath 
satisfies the assumptions of 4.5 and (*). From (*) it follows that  e i r ds (BE). In other 
words, there is e~ED~ with ~ (e~)=e i. (Possibly e~ is not uniquely determined, but 
this is not important.) Then, we have: 

We consider the following cases: 

(a) (vO (I ~i_~,,==.z~(eL~)=q.@~)), 

~, # # �9 

(a) In this ease, eo, ex . . . . .  e, are a path from qz~(eo)~dv[Kv] because of 
qo (~0) ~Pv [Dv] c~;lv [By], (see No. 3.1 b) to zD @',) ~dv [Kv]. Since d is convex, 
there exist e~'EKs with ds(e~')---.e'. We consider dr(p~(e~'))=~r(ds(~'))=~i.  
I t  follows that  e i ~ r [B~] for all i showing the assertion. Particularly, this holds 
for n =  0. 

(b) We assume 7" to be minimal, thus z~(e~_a):qD(e~) for i < i .  From 
zz) (ej_x) * qo (e;! ̂  j v  (zD (e;_t)) ----'P v (q~ (e;!) and ,Lemma 3.1 (e) follows the exis- 
tence of v i, v# c K  v with d e (v#):  qo (e/) ̂  de (v i) : zm (ei_x) ̂  Pv (v#): pv (v;). We 
consider 

8v (Pv (vi)) :'Pv (dr (itS)) =i#r (qz~ (e;)): go (es) by (**) 
= ~ (e,) = zo (e/_x) r ~v [Bv]. 

Therdore, the subpath %, e a . . . .  , es_ x with/" ~ t satisfies (a). On the other hand, 
es, eS+~ . . . . .  e, either satisfies (a), too, or (b) may be repeated. 

Proo/ o/ 4.5 (Converse) ~.7. Given e0, ea . . . . .  e,,~D~ with qD (Co), ZD (e.)~d v [Kv] 
and (Vi) (t < i  <n=~zo(ei_x) = qo (e~)), we must show (Vi) (0 ~ i  ~_n~eiEd~ [Ks] ). 
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We have v, v' CKv with d v (v) = qo (e0) ̂  dv (v') -.~ zo (e,,). From 

~v(Pv(v)) =:~;(d~,(~)) ~i;v(~(eo)) =q~(/;~(eo)) ~ ~r r Bv] 

and 
~ i )  (o ~ii ~ n . . w  (e~) r 
(w) 0 ~i i ~ n ~. ~G ( ~  (e,-O) ~ (~ (e,.O) = ~  (q~ (e,)) ffi q~ (w (e,))) 

and the convexity of ~: B---~.G it follows that all ~(r are images of edges in 
B~ and of edges in KB, too (Lemma 3.t (b)). 

Theorem 4.5 enables us to characterize grammars  the derivations of which 
replace convex subgraphs only: 

Definition 4.8. A graph-grammar Q with ~n]argements is called convex if and 
only if for all productions p of Q Ep contains convex enlargements d: K..-~.D only. 

This chssification into convex and non-convex graph-grammars  m a y  be used 
in addition to classifications considered in [3]. Espec/ally, contextfree graph-gram- 
mars are convex by definition if there are no cycles, bemuse in this case d is convex 
and hence also ~ by Theorem 4.5. 

Theorem 4.9. Let G be cycle-free, ~, e) a production and an enlargement of 
a convex graph-grammar,  and G {p, , ,  H,  then H is cycle-free if and only if the 

right-hand side B '  of the production is cycle-free. 

This result corresponds to Theorem I in [t 3 ]. 

Proof. Let H contain a cycle. I f  this cycle doesn' t  possess a common node v 
with B' ,  then G contain~ already this cycle. Otherwise, there is a pa th  in H from 

to v total ly in B '  because of convexity, thus B '  is not cycle-free. The converse 
is trivial. 

.4r The authors would like to thank K. S, Vijayan and the un- 
known reviewers for their helpful suggestions. 
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