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Abstract. An a posteriori examination of the site of a ship 
wreck on the outer edge of the Great Barrier Reef re- 
vealed an unique, macroalgal-dominated benthic com- 
munity. The persistence of community structure 
throughout a year of observation in an environment 
characterised by intensely grazed microalgae, and in the 
absence of a measurable wreck-derived influence, pro- 
vides circumstantial evidence that it represents an alter- 
native stable state. A mechanism for effecting state shifts 
in coral reef algal communities involves the size-depen- 
dent response by grazing organisms to algae in a per- 
turbed environment. 

Introduction 

Shallow marine hard bottom communities range from 
those with a high biomass dominated by large attached 
algae (e.g. kelp beds) to those having a low biomass of 
small encrusting and symbiotic algae, which occur in 
many coral reef habitats. A structural dichotomy exists 
between multi-layered benthic algal assemblages which 
include overstory and/or canopy-forming macroalgae, 
and uni-layered assemblages composed of turfing or 
crustose coralline algae (termed "microalgae" hereafter). 
Functionally, the bulk of the primary production in mac- 
roalgal-dominated communities enters detritus food 
webs (Mann 1982) while that in microalgal-dominated 
communities is consumed primarily by grazers (Chap- 
man 1981; Hatcher 1982). Temperate hard-bottom com- 
munities are subject to dramatic shifts from macro to 
microalgal dominate (North 1971; Mann 1977), which 
can result in new and apparently stable communities with 
an altered species composition and reduced algal stand- 
ing crop, productivity and commercial yield (Chapman 
1981; Wharton and Mann 1981). Such changes in the fun- 
damental structure of marine benthic communities have 

* Present  address: Marine Biology Laboratory, University of Western 
Australia, P.O. Box 20, North Beach, Western Australia 6020, Austra- 
lia 

usually been shown to be the direct result of destructive 
grazing by benthic echinoderms in numerical or behav- 
ionral response to reduced predation (Estes and Pal- 
misano 1974; Lawrence 1975; Bernstein et al. 1981). But 
the underlying cause(s) of the shifts, and the relative sta- 
bility of the new community structure remain obscure 
(Mann 1977). Are the shifts simply a result of natural 
cycles in the relative abundance of predators and prey 
(North 1971; Rosenthal et al. 1974)? Or are they pertur- 
bation-related changes between alternate stable states 
(sensu Holling 1973; Sutherland 1974), requiring another 
perturbation or natural catastrophe to return the com- 
munity to its original structure (Jones 1975; Pearse et al. 
1977; Simenstad et al. 1978)? Shifts in the opposite direc- 
tion (micro to macroalgal-dominance) have been ob- 
served in previously kelp-dominated communities as a re- 
sult of pathological decimation of echinoid populations, 
even after periods of up to 12 years in the microalgal state 
(Pearse et al. 1977; Miller and Colodey 1983, K.H. 
Mann, personal communication). Such shifts have not 
been observed to occur naturally in communities in 
which the initial state is one of microalgal dominance (al- 
though they have been intimated, Lighty 1982). 

Most coral reefs are characterized by microalgal- 
dominated communities (Dahl 1974; Marsh 1976). Al- 
though macroalgal assemblages do occur as permanent 
features on some coral reefs (Adey et al. 1977; Wanders 
1976; Wilson and Marsh 1980), and may have profound 
effects on coral growth and reef development (Crossland 
1982; Johannes et al. 1983), natural state changes have 
not been observed. Macroalgal dominance has been in- 
duced in coral reef habitats by the exclusion of grazing 
organisms (Ogden 1976; Lassay 1980), and by fertiliza- 
tion (Banner 1974). However, the persistence of the new 
algal community structure after the perturbation ends 
has not been demonstrated (but see Smith et al. 1981). I 
document here the persistence for one year of an appar- 
ently stable macroalgal community in a habitat that is 
usually microalgae-dominated, and provide circumstan- 
tial evidence that a shift occurred as a result of pollution 
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Fig. 1. Diagram of area on Myrmidon Reef dominated by A. taxO:ormis, as measured on three dates in relation to the ship wreck 

Table 1. Chemical composition of a composite sample of Pozzalin, and a comparison of selected compounds in 
sediments and the water column within and outside the area affected by the shipwreck on Myrmidon Reef, Values 
are means (with standard deviations) of three samples per category. N.D. = No data 

Components Pozzalin Sediments Water Column (~tM) 
(% of total) 

Within Outside Within Outside 

SiO 2 56 Nil Nil N.D. N.D. 
A120 3 19 Nil Nil N.D. N.D. 
Fe203 8 N.D. 66 (22) ppm <0.03 <0.03 
Na/O 2 N.D. N.D. N.D. N.D. 
CaO 2 86 (2.4)% 86 (2.8)% N.D. N.D. 
K20 2 N.D. N.D. N.D. N.D. 
MgO 1 1.54 (0.21)% 1.52 (0.18)% N.D. N.D. 
Loss on Ignition 9 0.18 (0.06)% 0.14 (0.07)% N.D. N.D. 
N (total) 0.7 28.6 (7.4) llM 25.0 (10.2) llM 6.5 (3.8) 6.3 (3.1) 
PO~ 0.3 6.7 (3.7) I~M 5.7 (2.9) I~M 0.14 (0.04) 0.16 (0.04) 

in an intensely grazed habitat. I suggest that the macroal- 
gal community developed, and has persisted since the 
wreck (5 years) in the absence of any continuing pollution 
due to a perturbation-induced escape in size by a grazer- 
resistant macroalga. 

M e t h o d s  and  R e s u l t s  

On June 8th, 1976 the bulk carrier M.V. Florida ran aground on the 
windward (NE) edge of Myrmidon Reef (Lat. 18 ~ 15'S, Long. 147~ 
on the outer margin of the Great Barrier Reef, Australia. The vessel 
came to rest just behind the submerged reef crest in 2-4 m depth (Fig. 1). 
A shallow (<  1 in) groove in the reef structure to seaward is the only vis- 
ible legacy of structural damage to the reef resulting from the wreck. The 
cargo of 700 tonnes of crushed Pozzalin (a soft metamorphosed volcanic 
rock used in cement, Table 1) was spilled onto the reef surrounding the 
wreck as it broke up during the following weeks. Pozzalin is not soluble 

in seawater, and the cargo was no longer visible at the wreck site after 
three months (B. Keogh, personal communication). Samples of the sed- 
iments and water column near the wreck, and outside the affected area 
were collected on October 17, 1980 and frozen for later analysis. The 
geochemical analyses were made by a commercial laboratory using stan- 
dard techniques, while the nitrogen, iron and phosphorous determina- 
tions were made using the methods of Strickland and Parsons (1972). 

I swam three transects across the reef on April 22, 1980 (4 years 
later), one through the wreck site, and one approximately 250 m on ei- 
ther side. The transition from reef crest to back reef is characterized by 
wave pounded, heavily cemented spur and groove topography support- 
ing 38%-61% cover of live coral (Done 1982), and an extensive epilithic 
algal community consisting of a dense assemblage of filamentous, small 
foliose and crustose algae. Such microalgal communities are typical of 
sub-tidal coral reef habitats subjected to intense grazing (Bakus 1966; 
Wanders 1977; Hatcher 1983). The standing stock of herbivorous fish is 
very large (45 gms m -2) on these offshore reefs, and is composed pri- 
marily of non-territorial grazers (Williams and Hatcher 1983). Echinoid 
grazers are virtually absent (Borowitzka 1981; B.G. Hatcher, personal 
observation). 
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Table 2. Comparison of algal community structure on natural reef substrata outside the area affected by the wreck (control), within damselfish 
territories beyond the affected area (Territory), and within the area affected by the wreck (Wreck). Means and 95% confidence limits are given. 
* = significantly > control; ** = significantly > territory and control, (t-test, S-N-K test, P = 0.001); N.B. = stoloniferous thalli only; N.D. = no data 

Sample Date N Ash-free dry wt. Density 

Epilithic algal A. taxiformis A. taxiformis Mierograzers 
community 
(mg cm -2) (%) ( # c m  -2) ( # c m  -2) 

Control 17/10/80 6 4.4+2.3 0 -  N.D. N.D. 
Wreck 17/10/80 6 20.1+3.0" 81+_8 N.D. N.D. 

Control 22/9/81 7 4.5+1.9 0.01 _0.01 (N.B.) 0.008 +-_0.011 (N.B.) 0.032+0.025 
Territory 22/9/81 7 8.0 +__ 1.2 * 0 - 0 - 0 - 
Wreck 22/9/81 7 22.0+2.3** 78_+8 0.163+_0.047"* 0.230_+0.131'* 

Imbedded within this habitat is a roughly elliptical area (approxi- 
mately 0.15 ha) surrounding the wreck (located at the windward apex of 
the elipse), which is dominated by the macrophytic, perennial red alga 
Asparogopsis taxiformis (Delile) Trevsian. The upright thalli of this sto- 
loniferous plant form a dense overstory (1,200-2,100 branches m-2), ex- 
tending 60-140 mm above the substrata (Table 2). Microalgae and en- 
crusting corallines are poorly developed under the overstory, and live 
coral covers less than 1% of the area, with no colony exceeding 14 cm 
in diameter. I measured the extent of the macroalgal community on three 
occasions spanning 12 months in four directions from the wreck (Fig. 1). 
No significant change in the calculated elliptical area (_+ 15%), nor the 
appearance of the affected area was detected, although the location of 
the boundaries with respect to the wreck differed by as much as 5 m dur- 
ing the year. 

On October 16-18, 19801 haphazardly sampled segments of natural 
reef rock from within and outside the affected area by chiselling off 
about 100 cm a of dead coral rock, at the locations of a hammer thrown 
from a boat. The segments were placed in plastic bags, frozen, and re- 
turned to the lab where the epilithic algal community was analysed as in 
Hatcher and Larkum (1983). Briefly, all surface material was scraped 
from the substrata, freed of macroscopic epifauna, dried to constant 
weight, and ashed for 24 h at 495 ~ to determine ash-free dry weight. 
The measurements were repeated 11 months later. In addition, samples 
were taken from within herbivorous damselfish territories (absent in the 
affected area), and counts of the number of A. taxiformis uprights and 
small invertebrates in samples were made at this time (Table 2). The 
standing crop of the epilithic algal community in the affected area was 
about five times greater than outside on both occasions, and about three 
times greater than that within fish territories. A. taxiformis occurred at 
high density within the wreck zone where it dominated the biomass, but 
was rare, and present only in stoloniferous form outside. Reproductive 
structures were observed, as well as the alternate, filamentous life form 
Falkenbergia hildenbrandii (Bomet) (Mitsuo 1960). Microinvertebrates 
(primarily amphipods and crabs) were much more abundant in the mac- 
roalgal-dominated community (Table 2). 

Discussion 

The presence of a macroalgal community in this habitat 
is almost certainly related to the spill of Pozzalin. The 
shape and orientation of the affected area suggest a 
downstream plume from the wreck (Fig. 1). Larger spills 
of similar materials on windward coral reefs were rapidly 
dispersed (Dollar and Grigg 1981; Hudson et al. 1982). 
Only the stern section of the M.V. Florida remains, and 
there is no sign of the cargo nor its chemical constituents 
in either the sediments or the water column near the 
wreck (Table 1), indicating that there is no continuing 

toxic or fertilization effect. The topography, substrata, 
water movement and turbidity of the affected area do not 
differ obviously from those of the surrounding habitat. 
Large predators were not observed within the wreckage, 
and herbivorous fish were consistently seen grazing 
microalgae from the wreckage itself, but never from the 
macroalgal-dominated, natural substrata. 

How did the macroalgal community become estab- 
lished, and why has it persisted for at least seventeen 
months, and probably five years in an area of low am- 
bient nutrient concentrations (Entsch et al. 1983 a), inten- 
sive herbivory (Hatcher 1982; G. P. Russ, in preparation) 
and in the absence of a continuing perturbation? I suggest 
that the Pozzalin spill served to temporarily enhance the 
growth of benthic algae within the affected zone by one 
or more of the following factors: (1) excluding grazers 
due to toxic, turbidity or increased predation effects (as 
discussed by Dollar and Grigg 1981), (2) increasing the 
availability of potentially limiting nutrients (Kinsey and 
Davis 1979; Hatcher and Larkum 1983; Entsch et al. 
1983 b), (3) reducing competition with other benthic or- 
ganisms (e.g. corals) by inhibiting their growth or killing 
them (Baker 1978; Dollar and Grigg 1981), (4) clearing 
and/or modifying a large area of the substrata in a man- 
ner, or at a time which favoured colonisation by a for- 
merly rare alga (Glynn et al. 1964; Walsh 1983). 

The resulting increase in the standing crop of the ex- 
tant algal assemblage allowed a macroalga (A. taxi- 
formis) which normally exists in grazer-resistant, pros- 
trate or alternate life forms (sensu Slocum 1980; Hay 
1981 a) in response to the algal production/grazing inten- 
sity relationship (sensu Montgomery 1980) in this habi- 
tat, to develop upright thalli. I suggest that the macroal- 
gal-dominated community developed, and has persisted 
after the perturbation because: (1) A macroalga which 
had previously been consumed incidentally (i.e. along 
with the turfing algal community in which it was imbed- 
ded) by large herbivorous fish feeding non-selectively 
(Montgomery et al. 1981) became recognisable to 
grazers. These then avoided A. taxiformis due to its rela- 
tive unpalatibility (Tsuda and Bryan 1973; Norris and 
Fenical 1982), providing a size-related escape from 
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predaton (sensu Lubcheno and Gaines 1981; Hay 
1981 a). (2) The macroalga was able to inhibit the colo- 
nisation of (Connell and Slatyer 1977), and/or outcom- 
pete smaller forms for potentially limiting resources (e.g. 
light) due to its thallus morphology, which formed an 
overstory (Littler and Littler 1980). (3) Micrograzers 
(sensu Brawley and Adey 1981 a) used the macroalga as 
shelter, and fed on potentially competing microalgae 
(Lobel 1980; Brawley and Adey 1981 b). The food-size 
dependent selectivity of grazers (item 1) may be of pri- 
mary importance where preference is inversely related to 
thallus size, as it serves as a positive (destabilizing) feed- 
back, facilitating shifts from micro to macroalgal-domi- 
nated communities. Shifts in the reverse direction also 
appear to involve positive feedbacks (Mann 1977; Bern- 
stein et al. 1981). 

Two alternative hypotheses to explain the local dom- 
inance ofA. taxiformis around the wreck must be consid- 
ered: (1) The wreck and the area of macroalgal domi- 
nance are not causally related, their co-occurence being 
a chance event. (2) The perturbation is continuing due to 
the sustained release of some chemical other than those 
measured, associated with the wreck or its cargo. The 
macroalgal-dominated community is maintained by this 
regime and the epilithic algal community will return to 
the microalgal-dominated (original) state following the 
termination of the perturbation, as a result of physical at- 
trition (e.g.: storm removal) and recolonisation by better 
competitors under conditions of intense grazing. 

The wreck was not co-incidental with another obvi- 
ous perturbation, such as a cyclone. The position and the 
shape of the area of macroalgal dominance in relation to 
the wreck, and the fact that the similar communities have 
not been observed on this reef make the first hypothesis 
highly improbable. 

The chemical composition of the Pozzalin cargo 
(Table 1) does not include nutrients which are likely to se- 
lectively enhance the growth of Asparagopsis (Segot and 
Codomier 1981), nor compounds which are likely to be 
toxic to fish (Doudoroff 1957; Mckee and Wolf 1963). 
Furthermore, the major constituents of both the cargo 
and the hull (e.g., Fe), occur in oxidised states which are 
relatively non-reactive biologically (Stumm and Morgan 
1970). The maintenance of elevated local concentrations 
of any compound for five years in an area of such high 
advection would require very rapid efflux from an unrea- 
sonably large mass of source material. 

Finally, the relative stability of the macroalgal-domi- 
nated community must be considered. As no data on the 
composition and extent of the community is available for 
the first 4 years after the wreck, it is possible (but improb- 
able) that the shift to macroalgal dominance occured 
shortly before the community was discovered and has 
thus persisted for only 17 months. Alternatively, the orig- 
inal effect of the wreck may have been more extensive, 
and the affected area is contracting through the mecha- 
nism discussed in item 2) above (i.e. the community is 
very gradually returning to its original state). In this case 

the macroalgal community may be but one stage in a suc- 
cessional sequence following the clearing of space by the 
wreck. The critera for assessing the stability of the species 
composition (successional stage) of a community (as Sug- 
gested by Connell and Slatyer 1977) are not fully met, in 
that the whole range of types and intensities of perturba- 
tions have not occurred during the observation period. 
However, an examination of meteorological data re- 
vealed a high frequency of the most likely destabilising 
perturbations: tropical cyclones. Four cyclones with 
wind strengths of greater than 70 kph passed within 220 
km of Myrmidon reef between the date of the wreck and 
the first sample. A severe cyclone ("Freda": 972 mb, 
winds of up to 130 kph) passed directly over the reef be- 
tween the second and third sample dates (Anonymous 
1976-1983) without significantly altering the macroalgal 
community. Evidence from space-freeing perturbations 
on other coral reefs demonstrated that a well-defined al- 
gal succession takes place following the clearing of large 
areas: but the stage of macroalgal dominance lasts con- 
siderably less than 18 months after the perturbation ter- 
minates (Ogg and Koslow 1978; Pearson 1981; Walsh 
1983). It is thus highly unlikely that the macroalgal-domi- 
nated community surrounding the wreck at Myrmidon 
reef is simply an ephemeral stage in a successional se- 
quence. 

Only time will test these hypotheses, and the conclu- 
sions are dependent on which definitions of "stability" 
and "perturbation" are used (Lewontin 1969). However, 
even if the community does not exhibit long term stability 
(due perhaps to the relatively small size of the effect), the 
mechanisms which allowed its development and persist- 
ance for even 5 years are worthy of note, and further 
study. 

If my interpretation of this accidental perturbation is 
correct, then differences in benthic algal standing crop 
and community structure on coral reefs may not always 
be explainable simply in terms of the prevailing physical 
and/or biotic environment (e.g. grazer-control models; 
Wanders and Wanders-Faber 1974; Connor and Adey 
1977; Van den Hoek et al. 1978; Montgomery 1980; Hay 
1981 b), but rather by (often unknown) historical events 
(Doty 1971; Sutherland 1974; Simenstad et al. 1978). Re- 
cently, Lighty (Lighty and Macintyre 1980; Lighty 1982; 
see also: Walker et al. 1982) has provided evidence for al- 
ternate stable states for coral reefs. He suggests that a 
large scale shift from live coral to macroalgal dominance 
of a bank barrier reef ecosystem resulted from a geomor- 
phological perturbation of local water temperature 3,500 
years B.P. The macroalgal-dominated community per- 
sists, in the absence of a continuing perturbation. 

A further implication of this study is that some forms 
of pollution on coral reefs, which may have apparently 
insignificant immediate effects (such as the clay spills re- 
ported by (Dollar and Grigg 1981; Hudson et al. 1982), 
may have significant long term secondary effects on com- 
munity structure by precipitating a shift between alter- 
nate stable states. 
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